
3. Refactoring Assistants
(Last Update: 2024-02-27)

In this session, we will learn about two tools that offer refactoring assistance. Using tools, we can plan the
refactoring tasks that could improve our design. We will search for bad smells (symptoms of design
problems) that give us hints on where and how to refactor. When planning refactoring tasks, remember
the pattern "Keep it Simple" (OORP, p.37), as it is a common mistake for people to over-complicate
the design of a refactored artefact. Another important pattern to remember when refactoring is "Most
Valuable First" (OORP, p.29), meaning you should prioritise the refactoring tasks that bring more
benefits.

During this session, we will perform simple refactoring tasks. However, it is important to remember that
for the Reengineering Course, we focus on Strategic Refactoring, i.e., we should refactor with a clear
reason or goal in mind.

Sample Project
django-cms/django-cms

Materials & Tools

● PyCharm IDE
● JPacman repository.
● CodeScene - *no* installation necessary, but it requires a GitHub account. This tool's integration

with GitHub allows it to visualise your repositories. The Technical Debt part shows refactoring
targets. The Code Biomarkers show a more detailed analysis of smells, but it is only available to
paid subscribers.

● SonarQube is a tool/platform that performs static analysis on source code. Download the free
community edition or run its Docker container.

Setup / Preparation

1. You can read the slides here.

2. Fork the repository above.
3. If you have not already, download the book for this course "Object-Oriented Reengineering Patterns"

(Note: OORP, p.xx refers to a page in the pdf version of this book)

Task 1: Django-CMS on CodeScene

For our first task, we will use CodeScene to suggest which artefacts need refactoring.
To do this, select the "Code" menu on the left side, and then the "Hotspots" submenu. In this
visualisation, the hotspots are artefacts with a lot of commit activity (i.e., they change a lot during the
software evolution and maintenance).
On that visualisation, you can check the tab on Refactoring Targets. Look at the recommended
refactoring targets.

If you select a specific file in this visualisation (or the hotspots visualisation), on the right, it will display
more details. When you scroll down to the details section, you can see a few actions. They include
Review, Source code, and X-ray. Check out these options and see for yourself what information
CodeScene can provide.

Also, notice that, for some files, CodeScene highlights other coupled files. Explore these code couplings
as well.

Questions:

1. Did the CodeScene visualisation help you identify possible targets for refactoring?
2. Did CodeScene give you hints or clues about how to refactor the proposed targets?
3. Did CodeScene help you visualise the extent of the refactoring activity?

https://github.com/django-cms/django-cms
https://www.jetbrains.com/pycharm/
https://github.com/hscrocha/jpacman
https://codescene.io/
https://www.sonarqube.org/
https://ansymore.uantwerpen.be/system/files/uploads/courses/Reengineering/Sessions/RefactoringAssistants/SR-Refactoring2021-widescreen.pdf
http://scg.unibe.ch/download/oorp/

Task 2: Django-CMS on SonarQube

For the second task, we will use a more complex and dedicated tool to find refactoring targets. Follow the
instructions in the documentation to install and run SonarQube. You may either install it locally or run it
in a Docker container.

If you are successful, you should be able to run an analysis of your local clone of Django-CMS.

Click on the "Code Smells" and analyse the detected smells. You should see that SonarQube also explains
the smells ("Why is this an issue?").

Questions:

1. Which one is more useful when locating refactoring targets: CodeScene or SonarQube?
2. Which tool provides better reasoning/explanation for the possible refactoring targets:

CodeScene or SonarQube?
3. Have you found many common artefacts in the Code Smells in SonarQube and Refactoring

targets in CodeScene?

Task 3: Django-CMS Strategic Refactoring

For the Reengineering Course, we value the concept of Strategic Refactoring, which is refactoring with a
goal. Tools can help identify artefacts with smells that could lead to potential issues. However, only a
developer can identify the necessary artefacts for a specific goal. Let's do that for Django-CMS.

Browse through the issue tracker of Django-CMS and search for issues with the following keywords
“is:open label:"kind: enhancement"”. You will notice there are some issues which require a patch.

Choose a few issues and plan the necessary refactoring task(s) to support them. You can start with the
simplest refactoring tasks to avoid "breaking" the code or go big according to the pattern "Most
Valuable First". There is no wrong path. Do whichever you find easier or most logical for you. Please
note, you need only to "plan" the refactoring activities for this lab session, there is no need to implement
the refactoring tasks (of course, if you want to do it, go ahead --- just remember that planning is the
important part here).

Questions:

1. What were your strategies and reengineering patterns for planning this refactoring?
2. Why did you consider these refactoring tasks important for your goal?
3. Did the previous tools (CodeScene or SonarQube) identify the refactoring targets you deemed

necessary for this goal?
4. Do you prefer to refactor to improve code quality or to refactor with a goal?

Optional Task 1: Django-CMS Strategic Refactoring (Part 2)

To complete this optional task, you should implement the planned refactoring tasks. Remember to ensure
that your refactoring change is not breaking the application.

Optional Task 2: Duplicate Code Detection on SonarQube

For this optional task, let's remind ourselves of the previous lab session on Duplicate Code. If you looked
over the SonarQube analysis on Django-CMS, you may have noticed this tool also detects duplicated
code. Check out how SonarQube presents the duplicated code it found.

Did you like SonarQube visualisation of duplicated code snippets? Or do you prefer another tool? Why
do you like your chosen tool?

https://docs.sonarsource.com/sonarqube/latest/try-out-sonarqube/
https://github.com/django-cms/django-cms/issues

Additional Reading Material

To dive deeper into refactoring, you may read the materials below:

● M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of
Existing Code. Object Technology Series. Addison-Wesley, 1 edition, June 1999.

● M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice - Using Software Metrics to
Characterise, Evaluate, and Improve the Design of Object-Oriented Systems. Springer, 2006.

● M. Fowler and J. Kerievsky. Smells to refactorings quick reference guide. Reference sheet, 2005.:
http://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

● F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol. An exploratory study of the impact
of antipatterns on class change- and fault-proneness. Empirical Softw. Engg., 17(3):243–275,
June 2012. http://link.springer.com/article/10.1007%2Fs10664-011-9171-y

http://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/
http://link.springer.com/article/10.1007%2Fs10664-011-9171-y

	Sample Project
	Materials & Tools
	Task 1: Django-CMS on CodeScene
	Task 2: Django-CMS on SonarQube
	Task 3: Django-CMS Strategic Refactoring
	Optional Task 1: Django-CMS Strategic Refactoring (Part 2)
	Optional Task 2: Duplicate Code Detection on SonarQube
	Additional Reading Material

