
1.Introduction

CHAPTER 1 – Introduction
• Software Engineering

+ Why & What
+ Product & Process
⇒ Correctness & Traceability

• Software Process
+ Activities
+ Iterative & Incremental Development
⇒ Risk

+ Sample Processes
- Unified Process
- Spiral model
- Agile Development

> Agile Manifesto, XP
⇒ Scrum

• Software Product
+ UML

1

CAPSTONE PROJECT
• (“Bachelor Eindwerk”)

+ assess the risk to your project
+ apply Scrum process

1.Introduction

Literature
• Other

+ [Brue00] Object-Oriented Software Engineering, B. Bruegge, A. Dutoit,
Prentice Hall, 2000.
- One of the first software engineering textbooks with a specific

object-oriented perspective
+ [Gold95] Succeeding with Objects: Decision Frameworks for Project

Management, A. Goldberg and K. Rubin, Addison-Wesley, 1995.
- Explains how to define your own project management strategy

• Papers
+ [Armo00] Phillip G. Armour, “The Five Orders of Ignorance”,

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10
- A very good explanation of the “known knowns”; “unknown knowns”

and “unknown unknowns” phenomenon
+ [Larm2003] Craig Larman and Victor R. Basili, ”Iterative and

Incremental Development: A Brief History", IEEE Computer, June 2003
- An overview of how we improved upon the naive waterfall

2

1.Introduction

Why Software Engineering?

3

A naive view on software development

Specification Final
Program

• But...
+ Where did the specification come from?
+ How do you know the specification corresponds to the user’s needs?
+ How did you decide how to structure your program?
+ How do you know the program actually meets the specification?
+ How do you know your program will always work correctly?
+ What do you do if the users’ needs change?
+ How do you divide tasks if you have more than a one-person team?

1.Introduction

What is Software Engineering?

4

• Some Definitions and Issues
+ “state of the art of developing quality software on time and within budget” [Brue00]

- Trade-off between perfection and physical constraints
> Software engineering has to deal with real-world issues

- State of the art!
> “best practice” is a moving target ⇒ life-long learning

+ “multi-person construction of multi-version programs” [Parn75]
- Team-work

> Scale issue + Communication Issue
- Successful software systems must evolve or perish

> Change is the norm, not the exception

+ “software engineering is different from other engineering disciplines” [Somm05]
- Not constrained by physical laws

> limit = human mind
- It is constrained by political forces

> balancing stake-holders

1.Introduction

Product and Process

5

Requirement
Specification System

Product
• = What is delivered to the customer
• [Requirements Specification + System (+ all documentation, manuals, ...)]

Process
• = Collection of activities that leads to (a part of) a product
• [During process we apply techniques]

1.Introduction

Evaluation Criteria

6

Requirement
Specification System

2 evaluation criteria to assess techniques applied during process

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

Traceability
• Can we deduce which product components will be affected by changes?

1.Introduction

Traceability

7

How to predict impact of changes?
Maintain relationship

• from component to requirement that caused its presence
• from requirement that must be changed when component is adapted

Comp 1 Comp 2 … … … … … Comp m

Req 1 x

Req 2 x x

…

… x

… x x

Req n x

This table is virtual: it is much too large to maintain explicitly!
⇒ A good process should help you deducing this relationship.

1.Introduction

Software Process Activities (i)

8

Requirement
Specification System

Requirement
Collection

Analysis

Design Maintenance

Implementation Testing

+ Quality
Assurance

+ Quality

Assurance

1.Introduction

Software Process Activities (ii)

9

• Requirements Collection (a.k.a. Requirements Elicitation)
+ Establish customer’s needs

• Analysis
+ Model and specify the requirements (“what”)

• Design
+ Model and specify a solution (“how”)
+ system design (architecture) + detailed design (object design, formal spec)

• Implementation
+ Construct a solution in software

• Testing
+ Verify the solution against the requirements

• Maintenance
+ Change a system after its been deployed
+ = Repair defects + adapt to new requirements

• Quality Assurance
+ Make sure all above goes well

= Deliver quality, on time and within budget

VALIDATION

VERIFICATION

1.Introduction

The Waterfall Software Lifecycle

10

The classical software life cycle
models the software development
as a step-by-step “waterfall”
between the various development
activities.

• going backward is possible but
should be an exception
(implies a mistake)

The waterfall model is popular for upper management, because
• Visible: it is easy to control project progress

> Very explicit in project bidding & contract negotiations!

The waterfall model is unrealistic for large projects, because
• Complete: a customer cannot state all requirements explicitly
• Idealistic: in real projects iteration occurs (but tools and organisation obstruct)
• Time: A working version of the system is only available late in the project
• Change: it is very difficult and costly to adapt to changes in the requirements

Requirement
Collection

Analysis

Design

Implementation

Testing

Maintenance

1.Introduction

Iterative and Incremental Development

11

• A good process must mix two principles (see [Gold95], p. 94-96)

• Iterative Development
+ Controlled reworking of a system part to make improvements

- We get things wrong before we get them right
(Software development is a learning experience)

• Incremental Development
+ Make progress in small steps to get early tangible results

- Always have a running version
(Control your learning via concrete intermediate steps)

1.Introduction

Knowns & Unknowns
[This is terminology used for planning military campaigns.]

Phillip G. Armour, “The Five Orders of Ignorance”, COMMUNICATIONS OF THE ACM October 2000

Known knowns
• = the things you know you know

You can safely make assumptions here during planning

Known unknowns
• = the things you know, you don’t know

You can prepare for these during planning

Unknown unknowns
• = the things you do not know, you don’t know

These you cannot prepare for during planning
… the best you can do is being aware and spot opportunities
+ do a thorough risk analysis

• software projects (compared to other engineering projects) have lots of “unknown
unknowns”
+ Not constrained by physical laws
+ Many stakeholders ⇒ strong political forces around project

12

1.Introduction

The Unified Process

13

How do you plan the number of iterations? How do you decide on
completion?

DutchGuilder Wikipedia

1.Introduction

Boehm’s Spiral Lifecycle

14

go, no-go decision

Stop?
After risk analysis

© Image adapted from Boehm, B. (1988) A Spiral Model of Software Development and Enhancement. IEEE Computer, 21 (5), 62-72.

1.Introduction

Risk Analyis (a.k.a. Risk Management)

15

Risk Identification
> Identify risk factors via “risk item checklist” (see [Pres00])

• Project Risks: e.g., staffing risk
• Technical Risks: e.g. “leading edge” technology
• Business Risks: e.g., market risk (building a product that nobody wants)

Risk Projection (Risk Estimation)
• For each risk factor, estimate the likelihood and the impact

+ 3 point likert scale:
- low - medium - high

+ 5 point likert scale
- [impact] insignificant - minor - moderate - major - catastrophic
- [likelihood] almost certain - likely - possible - unlikely - rare

• Prioritize the list

Risk Assessment
• For each “important” risk factor, take action to reduce risk

+ important? Depending on your risk appetite
• … or terminate project
• Examples

+ Staff does not have the right skills ⇒ Define training plan and hire extra staff

+ “Leading edge” technology ⇒ Build a prototype to evaluate benefits/drawbacks

+ Market risk ⇒ do a market study

1.Introduction

Risk Projection (refined)

16

Risk = impact * likelihood
impact

Low Medium High

High low medium high

Medium low medium medium

Low low low lowlik
el

ih
oo

d

impact

insignificant minor moderate major catastrophic

almost
certain moderate high high critical critical

likely moderate moderate high high critical

possible low moderate high high critical

unlikely low moderate moderate high high

rare low low moderate moderate high

lik
el

ih
oo

d

1.Introduction

Risk Projection (continued)

17

Risk = impact * likelihood * urgency

Sometimes a 3rd item is added to the equation

urgency = the time left before measures or responses would need to be implemented

less time available ⇒ risk becomes more critical

1.Introduction

Risk Assessment (example)

18

Risk?
 - probability: extremely unlikely
 (however, 3 independent e-mails)
 - urgency: extremely urgent
 (potential explosion within hours)
 - impact … infinite
 (potential life loss of students)

1.Introduction

Risk Projection (duo exercise)

19

impact

Low Medium High

High low medium high

Medium low medium medium

Low low low lowlik
el

ih
oo

d

O
What is the risk that you will postpone the weekly software
engineering assignments?

• If risk is medium, what mitigation actions will you take?
• If risk is high, what mitigation actions will you take?

New

1.Introduction

Failure Mode and Effects Analysis (FMEA)
• A step-by-step approach for identifying all possible failures in a design, a

manufacturing or assembly process, or a product or service.

+ “Failure modes”
- means the ways, or modes, in which something might fail. Failures

are any errors or defects, especially ones that affect the customer,
and can be potential or actual.

+ "Effects analysis”
- refers to studying the consequences of those failures.

FMECA: Failure Mode, Effect and Criticality Analyses
+ “Criticality Analysis”

- used to chart the probability of failure modes against the severity of
their consequences

- mainly when systems are already in operation

20

1.Introduction

Failure Mode and Effects Analysis (Example)

21

Potential Failure
Mode

Potential Effects of
Failures

Se
ve
rit
y

Potential Causes of
Failures

Current
Process Control

Occurrence
(± Likelihood)

Detection
(± Urgency)

Critical
(± Impact)

Risk Priority
Number

Recommended
Actions

Function: Dispense Fuel

Does not dispense
fuel

- Customer Dissatisfied
- Discrepancy in
bookkeeping

8
- Out of fuel
- Machine jams
- Power failure

- Out of fuel alert
- Machine jam
alert
- none

Dispense too much
fuel

- Company loses money
- Discrepancy in
bookkeeping

8 - Sensor defect
- Leakage

- none
- pressure sensor

Takes too long to
dispense fuel - Customer annoyed 3 - Power outage

- Pump disrupted
- none
- none

1.Introduction

Failure Mode and Effects Analysis (exercise)

22

Potential Failure
Mode

Potential Effects of
Failures

Se
ve
rit
y

Potential Causes of
Failures

Current
Process Control

Occurrence
(± Likelihood)

Detection
(± Urgency)

Critical
(± Impact)

Risk Priority
Number

Recommended
Actions

Function: Dispense Fuel

Does not dispense
fuel

- Customer Dissatisfied
- Discrepancy in
bookkeeping

8
- Out of fuel
- Machine jams
- Power failure

- Out of fuel alert
- Machine jam
alert
- none

O Assess the risk for the “Does not Dispense Fuel” function (low - medium - high)
• What mitigation actions do you recommend?

New

https://www.vrt.be/vrtnws/nl/2023/09/13/waarom-je-niet-even-in-je-auto-mag-gaan-zitten-tijdens-het-tanke/

https://www.vrt.be/vrtnws/nl/2023/09/13/waarom-je-niet-even-in-je-auto-mag-gaan-zitten-tijdens-het-tanke/

1.Introduction

Prototyping

23

A prototype is a software program developed to test, explore or validate a
hypothesis, i.e. to reduce risks.

*** proof-of-concept

An exploratory prototype, also known as a throwaway prototype, is intended to
validate requirements or explore design choices.

• UI prototype — validate user requirements
• rapid prototype — validate functional requirements
• experimental prototype — validate technical feasibility

An evolutionary prototype is intended to evolve in steps into a finished product
• grow, don’t build [Broo87]: “grow” the system redesigning and refactoring

along the way
• combines incremental and iterative development

*** First do it, then do it right, then do it fast.

1.Introduction

Manifesto for Agile Software Development

24

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

© 2001, the above authors this declaration may be freely copied in any form, but only in its entirety through this notice.

http://agilemanifesto.org/

1.Introduction

Lean Manufacturing

25

Eliminate Waste
(e.g. Spaghetti Diagrams)

© Christoph Roser on AllAboutLean.com By Dr Ian Mitchell - Own work©

Smooth Flow
(e.g. KanBan Boards)

1.Introduction

eXtreme Programming (XP)

26

• Fine scale feedback
+ Pair programming
+ Planning game
+ Test-driven development
+ Whole team

• Continuous process
+ Continuous integration
+ Refactoring or design improvement
+ Small releases

• Shared understanding
+ Coding standards
+ Collective code ownership
+ Simple design
+ System metaphor

• Programmer welfare
+ Sustainable pace

• Coding
+ The customer is always available
+ Code the Unit test first
+ Only one pair integrates code at a

time
+ Leave Optimization till last
+ No Overtime

• Testing
+ All code must have Unit tests
+ All code must pass all Unit tests

before it can be released.
+ When a Bug is found tests are

created before the bug is addressed
(a bug is not an error in logic, it is a
test you forgot to write)

+ Acceptance tests are run often and
the results are published

http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Planning_game
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Whole_team
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Small_releases
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Coding_standard
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Collective_code_ownership
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Simple_design
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#System_metaphor
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Sustainable_pace
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Optimization
http://en.wikipedia.org/wiki/Overtime
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Acceptance_tests

1.Introduction

Agile or not? There is no single truth …

27

Heavyweight Lightweight

1.Introduction

Scrum — Sprints

28

Sprint =
• 2-4 week period
• team creates a working (= potentially

shippable) product increment
• features in increment are chosen from

product backlog

Daily stand-up meeting!

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Rugby metaphor

By PierreSelim

©

1.Introduction

Scrum — Roles

29

Product Owner
Prioritize backlog

Scrum Master
Facilitator

Development Team
Responsible for increment
to be added to the product
• 5-9 individuals
• self organizing

1.Introduction

Scrum — Feedback Loop

30

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Sprint
Review

Sprint
Retrospective

1.Introduction

Scrum - Planning & Monitoring

31

Sprint
Backlog

Poker
Planning

Task Points Hours

Pablo Straub Wikipedia

1.Introduction

UML - History

32

• First generation:
+ Adaptation of existing notations (ER diagrams, state diagrams...):

* Booch, OMT, Shlaer and Mellor,...
+ Specialized techniques:

* CRC cards; use-cases; design by contract

• Second generation:
+ Combination of “proven” ideas

* Fusion: Booch + OMT + CRC + formal methods

• Third generation:
+ Unified Modeling Language:

* uniform notation: Booch + OMT + Use Cases + Statecharts
* complete lifecycle support (the Unified Process)
* adaptable: you can extend the notation, choose your own

process

1.Introduction

Static UML - Classes (i)

33

display (on: Surface)

rotate (angle: Integer)

erase ()

destroy ()

select (p: Point): Boolean

centre: Point

vertices: List of Point

borderColour: Colour

fillColour: Colour

Polygon
Polygon

ZWindows::Window

Class name, attributes and
operations:
(organized into compartments)

A collapsed class view.
(NB: attributes & operations
not shown, so don’t know
whether empty or not!)

Class with Package name:
(Optional, but useful for
large systems !)

Attributes and operations are also collectively called features.

1.Introduction

Static UML - Classes (ii)

34

+display ()

+hide ()

+create ()

-attachXWindow (xwin: Xwindow*)

+size: Area = (100, 100)

#visibility: Boolean = false

+default-size: Rectangle

#maximum-size: Rectangle

-xptr: XWindow*

<<user interface>>
Window

{abstract}

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)Stereotype

(what “kind” of class is it?)

•underlined features
have class scope

• italic features are
abstract

+ = “public”
= “protected”
- = “private”
(interpretation is open)

• Attributes are specified as: name: type = initialValue { property string }
• Operations are specified as: name (param: type = defaultValue, ...) : resultType

1.Introduction

Static UML - Associations

35

name
address

Company
name
AHV nr
address

Person

**
employer employee

Employs ➤

Works-for

➤

0..1

0..1

Married-to

0..1

*

boss

worker

➤

Manages

Associations
•denoted by a solid line.
• represents structural relationships between objects of different classes.

•optional name and direction
• (unique) role names and multiplicities at end-points

(BEWARE POSITION)
• traverse using navigation expressions

e.g., universityAntwerp.employee[name = “Demeyer”].wife

1.Introduction

Static UML - Aggregation & Composition

36

3..*1
Polygon Point

Contains ➤ {ordered}

fillPattern
linePattern

GraphicsBundle
1

1

Aggregation
• denoted by a hollow diamond
• whole-part relationship: part may exist without the whole

(i.e. whole owns a reference to the part)
Composition

• denoted by a solid diamond
• whole-part relationship: part must always exist with the whole

(i.e., whole owns the part)

1.Introduction

Static UML - Generalization

37

Generalization
• denoted with a hollow arrow from the specific to the general
• represents inheritance, is-a relationships, code reuse relationship

(philosophical debate: Square inherits from Rectangle or vice-versa)

display ()

colour

Figure
{abstract}

display ()

endpoints

Line

display ()

radius
start_angle
arc_angle

Arc

display ()

control_points

Spline

1.Introduction

Dynamic UML - Objects

38

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1: Polygon triangle1: Polygon

: Polygon

triangle1

Objects
• shown as rectangles with their name and type underlined in one compartment
• attribute values, optionally, in a second compartment
• the name of the object may be omitted (then colon must be kept with class name)
• the class of the object may be supressed (together with the colon) to represent an

anonymous object

1.Introduction

Dynamic UML - Sequence Diagrams

39

Sequence Diagrams
• Object at top, lifeline as dashed vertical line (time flows from top to bottom)
• Method execution as rectangle, message sends as arrow with message name
• Possibility to show concurrency via special arrowheads

: User : Store

: Item

request()
newItem(3)

i := query()

check(i)

destroy()

Async Message

Simple Message

Synchronous with Immediate Return

Synchronous

1.Introduction

Dynamic UML - Collaboration Diagrams

40

Collaboration Diagrams
• Objects with associations positioned freely in the diagram
• Messages with little arrows near to associations
• Message sequences follow from hierarchical numbering
• Expressibility is identical to sequence diagrams

+ ⇒Freedom in lay-out but message sequence difficult to follow

: User

: Store : Item

1: request()

1.1: newitem(3)

1.2: i := query()

1.4: destroy()

1.3: check(i)

1.Introduction

Summary (i)

41

• You should know the answers to these questions:
+ How does Software Engineering differ from programming?
+ Why is programming only a small part of the cost of a “real” software project ?
+ Give a definition for “traceability”.
+ What is the difference between analysis and design?
+ Explain verification and validation in simple terms.
+ Why is the “waterfall” model unrealistic? Why is it still used?
+ Can you explain the difference between iterative development and incremental

development?
+ How do you decide to stop in the spiral model?
+ How do you identify risk? How do you asses a risk? Which risks require action?
+ What is Failure Mode and Effects Analysis (FMEA)?
+ List the 6 principles of extreme programming.
+ What is a “sprint” in the SCRUM process?
+ Give the three principal roles in a scrum team. Explain their main responsibilities.
+ Draw a UML class diagram modelling marriages in cultures with monogamy (1 wife

marries 1 husband), polygamy (persons can be married with more than one other
person), polyandry (1 woman can be married to more than one man) and polygyny
(1 man can be married to more than one woman).

+ Draw a UML diagram that represents an object “o” which creates an account (balance
initially zero), deposits 100$ and then checks whether the balance is correct.

1.Introduction

Summary (ii)
• Can you answer the following questions?

+ What is your preferred definition of Software Engineering? Why?
+ Why do we choose “Correctness” & “Traceability” as evaluation criteria? Can you

imagine some others?
+ Why is “Maintenance” a strange word for what is done during the activity?
+ Why is risk analysis necessary during incremental development?
+ How can you validate that an analysis model captures users’ real needs?
+ When does analysis stop and design start?
+ When can implementation start?
+ Can you compare the Unified Process and the Spiral Model?
+ Can you explain the values behind the Agile Manifesto?
+ Can you identify some synergies between the techniques used during extreme

programming?
+ Can you explain how the different steps in the scrum process create a positive

feedback loop?
+ How does scrum reduce risk?
+ Is it possible to apply Agile Principles with the Unified Process?
+ Did the UML succeed in becoming the Universal Modeling Language? Motivate your

answer.

42

