
03.Architecture

CHAPTER 3 – Software Architecture
• Introduction

+ When, Why and What?
+ Functional vs. Non-functional
+ Coupling and Cohesion
+ Patterns

• Macro architecture
+ Layered Architecture
+ Pipes and Filters
+ Blackboard Architecture
+ Model-View-Controller

• Micro Architecture
+ Observer
+ Abstract Factory
+ Adapter (a.k.a. Wrapper)

• Other Patterns
+ Security, …
+ Microservices

• Conclusion
+ Architecture in UML
+ Architecture Assessment

- ATAM
+ Architecture in SCRUM

- Spike
- Architecture Runway
- GuardRails

+ Correctness & Traceability

1

03.Architecture

Literature (1/2)
Software Engineering Text Books
• [Somm05]: chapter “Architectural Design”
• [Pres00]: chapter “Architectural Design”

Books on Software Architecture
• [Shaw96] Software architecture: perspectives on an emerging discipline,

Mary Shaw, David Garlan, Prentice-Hall, 1996.
+ The book introducing software architecture.

• [Bass03] Software architecture in practice (2nd edition), Len Bass, Paul
Clements, Rick Kazman, Addison-Wesley, 2003.
+ A very deep and practical treatment of software architecture,

incl. ATAM. (The book received an award.)
Articles
• [Kruc95] Philippe Kruchten "The 4+1 View Model of Architecture ", IEEE

Software, November 1995 (Vol. 12, No. 6) pp. 42-50.
+ A paper that illustrates convincingly the need for various perspectives

on the design of a system.

2

03.Architecture

Literature (2/2)
Pattern Language

• [Foot97] Big Ball of Mud, Brian Foote, Joseph Yoder; Fourth Conference on Patterns
Languages of Programs (PLoP '97/EuroPLoP '97)
+ http://www.laputan.org/mud/mud.html; most popular architecture.

Pattern Catalogues
• [Busc98] Pattern-Oriented Software Architecture: A System of Patterns, Frank

Buschman, Regine Meunier, Hans Rohnert, Peter Somerlad, Michael Stal, Wiley and
Sons, 1996.
+ Introduces architectural styles in pattern form. Also covers some design patterns and

idioms.
> At architecture (= “macro-architecture”) level

• [Gamm95] Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, Addison-Wesley, 1995.
+ The classic; commonly referred to as the “Gang of Four (GOF)”

> At design (= “micro-architecture”) level
• [Shum06] Security Patterns: Integrating Security and Systems Engineering, Markus

Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, Peter
Sommerlad, Wiley & Sons, 2006.

3

03.Architecture

When Architecture?

4

Designing a software system requires course-grained decomposition
⇒ organize work in the development team

Conway’s law
Organizations which design systems are constrained to produce designs which are
copies of the communications structure of these organizations. [Conw68]

• If you have 4 groups working on a compiler; you’ll get a 4-pass compiler

03.Architecture

Why Architecture

5

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

Requirements
Specification

Functional
Requirements

Non-functional
Requirements

• functionality as demanded
by the end users

• constraints placed on the global
system or the development
process.

• quality attributes, such as
performance, user-friendliness,
maintainability, …

ARCHITECTURE
• map requirements onto system

structure
= map function onto form

SCALE ISSUE

03.Architecture

Characteristics of a Gothic Cathedral

6

Public Domain

O

03.Architecture

Architecture as a Metaphor

7

Parallels
• Architects are the technical interface

between the customer and the contractor.
• A poor architectural design cannot be

rescued by good construction technology.
• There are architectural styles or schools.

+ (e.g., “ghotic” in buildings;
“client-server” in software)

Differences
• Buildings are tangible, software is intangible.

> Software Architecture is often
expressed via metaphors.

• Buildings are rather static, software is quite flexible.
> The underlying architecture allows to anticipate changes.

• Building architecture is supposed to be aesthetic.
> Buildings avoid to mix styles; in software heterogeneity is considered good.

• A building architect carries legal responsibilities.
> Usually a building architect is not employed by the constructor.

Public Domain

03.Architecture

What is Software Architecture?
Software Architecture

• A description of components and the connectors between them.
+ Typically specified in different views to show the relevant functional and non-

functional properties.

Component
• An encapsulated part of a software system with a designated interface.

+ Components may be represented as modules (packages), classes, objects or a set of
related functions. A component may also be a subsystem.

Subsystem
• A component that is a system in its own right, i.e. can operate independently

Connector (a.k.a. Relationships)
• A connection between components.

+ There are static connectors that appear directly in source code (e.g., use or import
keywords) and dynamic connectors that deal with temporal connections (e.g.,
method invocations).

View
• Represents a partial aspect of a software architecture that shows specific functional and

non-functional properties.

8

03.Architecture

Functional vs. Non-functional Properties
• See [Bush98]

Functional property
• Deals with a particular aspect of the system’s functionality. Usually in direct relationship

with a particular use case or conceptual class.

Non-functional property
• Denotes a a constraint placed on the global system or the development process.

Typically deals with quality attributes that cross-cut the whole system design and are
quite intangible.

• Typical non-functional properties
+ Changeability; systems must evolve or perish
+ Interoperability; interaction with other systems
+ Efficiency; use of resources such as computing time, memory, ...
+ Reliability; system will continue to function even in unexpected situations
+ Testability; feasibility to verify that requirements are covered
+ Reusability; ability to reuse parts of software system or process for constructing

other systems

Architecture is about tradeoffs

9

03.Architecture

Coupling and Cohesion
Coupling
• Measure of strength for a connector (i.e., how strongly is a component

connected with other components via this connector)
Cohesion
• Measure of how well the parts of a component belong together (i.e., how

much does the functioning of one part rely on the functioning of the
other parts)

> Coupling and cohesion are criteria that help us to evaluate
architecture tradeoffs.

> Minimize coupling and maximize cohesion

However …
• The perfect trade-off corresponds to a component that does nothing!
• Coupling at one level becomes cohesion at the next.

> More qualitative trade-off analysis is necessary

10

03.Architecture

Patterns
Pattern
• The essence of a solution to a recurring problem in a particular context.

+ Experts recall a similar solved problem and customize the solution.
+ Patterns document existing experience.
+ The context of a pattern states when (and when not) to apply the

solution.
+ A pattern lists the tradeoffs (a.k.a. forces) involved in applying the

solution.

Pattern Form
• Patterns are usually written down following a semi-structured template.

+ Patterns always have a name
+ Patterns allow experts to have deep design discussions in a few words!

11

03.Architecture

Layered Architecture in Networks

12

OSI Reference Model

TCP/IP Stack

Ethernet

FTP, HTTP, …

TCP

IP

Ethernet

IP

TCP

FTP, HTTP, …

Physical Connection

Presentation

Physical

Transport

Network

Data link

Application

Session

Data link

Network

Physical

Physical

Data link

Network

Transport

Session

Presentation

Application

Communications Medium

03.Architecture

3-Tiered Architecture

13

Application Layer
• Models the UI and application logic

Domain Layer
• Models the problem domain (usually

a set of classes)

Database Layer
• Provides data according to a certain

database paradigm (usually relational
database)

TabTabTab

Document Window

Lab

el

03.Architecture

Pattern: Layered Architecture
Context

• Requirements imply various levels of abstraction (low & high level)

Problem
• Need for portability and interoperability between abstraction levels

Solution
• Decompose system into layers;

each layer encapsulates issues at same level
• Layer n provides services to layer n + 1
• Layer n can only access services at layer n - 1

+ Call-backs may be used to communicate back to higher layers
+ Relaxed variant allows access to all lower layers

Tradeoffs
• How stable and precise can you make the interfaces for the layers?
• How independent are the teams developing the different layers?
• How often do you exchange components in one layer?
• How much performance overhead can you afford when crossing layers?

14

03.Architecture

Pipes and Filters Examples
UNIX shells

• tar cf - .| gzip -cfbest| rsh hcoss dd

Many CGI-scripts for WWW-forms
• data source is some filled in web-form
• filters are written via a number of scripting languages (perl, python)
• data sink is generated web page

+ Example: wiki-web pages (http://c2.com/cgi/wiki)

Scanners & Parsers in Compilers

15

data source =
current directory

data sink =
remote host

filter =
compress

pipe pipe

char getchar ()

Input

token yylex()

Scanner

bool yyparse()

Parser

03.Architecture

Pattern: Pipes and Filters
Context

• Processing data streams

Problem
• Flexibility (and parallelism) is required

Solution
• Decompose system into filters, each with 1 input- and 1 output stream
• Connect output from one filter to input of another

> Need a data source and data sink
• Variants

+ Push filter: filter triggers next one by pushing data on the output
+ Pull filter: filter triggers previous one by pulling data from the input

Tradeoffs
• How often do you change the data processing?
• How well can you decompose data processing into independent filters?

+ Sharing data other than in/out streams must be avoided
• How much overhead (task switching, data transformation) can you afford?
• How much error-handling is required?

16

03.Architecture

Compilers as Blackboard Architecture

17

Abstract
syntax tree

Grammar
definition

Symbol
table

output
definition

repository / blackboard

code generator

optimizer

semantic
analyzer

syntax
analyzer

lexical
analyzer

pretty printer

editor

03.Architecture

Pattern: Blackboard (a.k.a. Repository)

18

Context
• Open problem domain with various partial solutions

Problem
• Flexible integration of partial solutions

Solution
• Decompose system in 1 blackboard, several knowledge sources and 1 control

+ Blackboard is common data structure
+ Knowledge sources independently fill and modify the blackboard contents
+ Control monitors changes and launches next knowledge sources

Tradeoffs
• How well can you specify the common data structure?
• How many partial solutions exist? How will this evolve?
• How well can you compose an overall solution from the partial solutions?
• Can you afford partial solutions that do not contribute the current task?

03.Architecture

Quizz

19

Why is a repository better suited
for an integrated development
environment than pipes and filters? O

LLVM CLION VisualStudio

03.Architecture

Interactive Applications

20

Document Window

0
12,5
25
37,5
50

Blue: 43%

Green: 39%

Yellow: 6%

Red: 10%

Purple: 2%

data

Document Window

Blue 43%

Green 39%

Yellow 6%

Red 10%

Purple 2%

03.Architecture

Pattern: Model-View-Controller

21

Context
• Interactive application where multiple widgets act on same data

Problem
• Ensure consistency between the various widgets

Solution
• Decompose system in a model, and several view-controller pairs
• Model: provides functional core (data)

+ registers dependent views/controllers
+ notifies dependent components about changes (send update)

• View: creates and initializes associated controller + displays information
+ responds to notification events (receive update)

• Controller: accepts user input events + translate events into requests to model and view
+ responds to notification events (receive update)

Tradeoffs
• How many widgets? How consistent? Should they be “plug able”?
• Increased complexity, especially without library of views/controllers
• Excessive number of updates if not carefully applied
• Close coupling between View-Controller;

average coupling from View-Controller to Model

03.Architecture

Problem: Circular Dependencies 1-N

22

Controller Model View

setData(…)
handleEvent

notify(…)

getData(…)
Circular

Dependency

03.Architecture

Solution: Observer

23

attach(Observer)
detach(Observer)
notify(…)

Subject

update(…)

Observer

getData(): …
setData(…)

Model

handleEvent(…)
update(…)

Controller

*1

11

for all o in observers {
 0->update()
}

update(…) {
 …
 model.getData();
 …
}

setData(…) {
 …
 self.notify();
 …
}

03.Architecture

Pattern: Observer

24

Context
• Change propagation: when one class changes (the subject) others should adapt (the

observers)

Problem
• Change propagation implies a circular dependency: (a) adapting requires the observers

to access the subject; (b) changing requires the subject to notify the observers

Solution
• Split the circular dependency; move one direction in new superclasses
• Force observers to register themselves on a subject before they will be notified
• Notification becomes anonymous and asymmetrical: subject notifies all observers

Tradeoffs
• Extra complexity: observers will receive more updates than necessary

+ extra program logic to filter the applicable notifications
• Restricts communication between subject and observer

03.Architecture

Problem: Constructor Dependencies

25

Construct widgets
without knowing the

look-and-feel

Widget

Window Scrollbar

MacScrollbar

MotifScrollbar

MacWindow

MotifWindow

Client

These dependencies
must be avoided

03.Architecture

Solution: Abstract Factory

26

Introduce intermediate
factory class

Widget

Window Scrollbar

MacScrollbar

MotifScrollbar

MacWindow

MotifWindow

Client

createScrollBar(): Scrollbar

createWindow(): Window

WidgetFactory

createScrollBar(): Scrollbar

createWindow(): Window

MacWidgetFactory

createScrollBar(): Scrollbar

createWindow(): Window

MotifWidgetFactory

03.Architecture

Pattern: Abstract Factory

27

Context
• Class hierarchy with abstract roots representing a family of objects

+ concrete leaves representing particular configurations

Problem
• Invoking constructors implies tight coupling with concrete leaves instead of abstract

roots

Solution
• Create an abstract factory class with operations for creating

all abstract roots
• Create concrete factory classes for all possible configurations.

Tradeoffs
• How many members in the family? How many configurations?
• When do you switch configurations?
• How strict are the configurations?
• Can clients rely on the abstract interfaces?

03.Architecture

Problem: Interface Mismatch

28

• getExtent provides same
functionality as boundingBox,
but name mismatch

• showManipulator is not
available

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

Use class Textview as
a Shape, but interface

does not match

X

03.Architecture

Solution: Adapter

29

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

return _text.getExtent()
boundingBox():Rectangle

showManipulator()

_text: TextView

TextShape

man := new
 TextManipulator(this.boundingBox);
man.show();

1

1

A
d
a
p
ts

 ➤

Introduce intermediate
adapter class

Public Domain

03.Architecture

Pattern: Adapter (a.k.a.Wrapper)

30

Context
• Merge two separately developed class hierarchies

Problem
• Class provides (most of) needed functionality but interface does not match

Solution
• Create an adapter class with one attribute of adaptee class
• Adapter class translates required interface into adaptee class

Tradeoffs
• How much adapting is required?

+ For one class
+ For the whole hierarchy

• How will the separately developed classes evolve?
• Does the merging work in one direction or in both directions?
• How much overhead in performance and maintenance can you afford?

03.Architecture

Other Pattern Catalogues

31

Security

Testing

Reengineering

Microservices

*** Revised ***

(MicroServices)

03.Architecture

Context
• Provide access to a system for external clients
• Ensure not misused or damaged by external clients

Problem
• External access ⇒ system’s integrity in danger

• Complex inner structure ⇒ explosion of potential security breaches

Solution
• Define single access point; check legitimacy

Security Pattern (sample): Single Access Point

32

282 Chapter 9 System Access Control Architecture

Structure

The single access point can be represented by the following UML diagram.

However it is more intuitive to presented it as shown in the accompanying sketch,
since it is hard to show the boundary protection of the protected system. Boundary
protection is essential to make the single access point efficient in checking clients and
hindering intruders to access the system.

deny access to

enters system through

enterSystem
provides access to

protectsinteracts with

Client

Single Access Point

block access

Boundary Protection

Proctected System

System

Boundary

Access
point

Client

9.2 Single Access Point 283

Dynamics

The sequence diagram illustrates a regular scenario of an client entering the system.
The client logs in at the single access point and then uses the protected system. The
passive protection given by the boundary (the city wall) cannot be shown here.

Implementation

To implement the SINGLE ACCESS POINT (279), several tasks are required:

1. Define your security policy for the system at hand. Before you start securing
your system, you should know what you secure and why. Apply the patterns
from this book to obtain the security requirements for the system to be protect-
ed. The security policy must contain the trust relationship between the internal
subsystems. All of them need to trust the single access point and also each other.
Even if such trust can be established, it might be wise to apply the Defence in
Depth security principle (see Chapter 15, Supplementary Concepts) for extra-
sensitive subsystems.

2. Define a prominent or well-known position for the single access point, or
make it transparent for its legitimate users. Christopher Alexander’s MAIN
ENTRANCE [AIS+77] gives some guideline about where to place your main
entrance, which SINGLE ACCESS POINT (279) definitely is. He writes, ‘There-
fore: place the main entrance of the building at a point where it can be seen
immediately from the main avenues of approach and give it a bold, visible
shape which stands out in front of the building.’ Microsoft Window’s classic

:Single Access
Point :Protected System

OK

log-in

:Client
«actor»

do something

check
client

do anything

03.Architecture

Context: (Train) App

33

Train
Connections

…

Flexible demand with sometimes
peak volume in transactions

… data feed from multiple sources
within the organisation

03.Architecture

Pattern: MicroServices

34

Context
• Distributed system (cloud) with multiple access points

+ Many read access - few write and update

Problem
• Elastic scaling of access points to deal with peak demand

Solution
• Microservices structure an application as a collection of small, loosely coupled and

independently deployable services.
+ Each of these services corresponds to a specific business functionality and can be

developed, deployed and scaled independently.
• Each service is independent and communicates with others via well-defined APIs and

protocols (REST-API)

Tradeoffs
• How much data sharing is needed?

+ Database per service (Database sharding — elastic split of database)
+ Event mechanism to notify updates

• How much communication needed?
- Each service deployed by separate DevOps team.
- Business transactions that span multiple services? (the Saga pattern)

• Resilience: what is a service is down?
+ Reroute calls to failing service (the Circuit breaker pattern)

5. Design by Contract

MicroService Example - Pet Store (REST API)

35

03.Architecture

UML: Package Diagram

36

Decompose system in packages (containing any other UML element, incl. packages)

Application Layer

Domain Layer

Database Layer

Processing
Orders

Customer
Management

Customer Order

query()

DBCustomer

03.Architecture

UML: Deployment Diagram

37

Shows physical lay-out of run-time components on hardware nodes.

:Safari

myMac: Macintosh

:IExplorer

aPC: PC

:WebServer

:UnixHost

:Database

:UnixHost

03.Architecture

Deployment Diagram vs Package Diagram

38

:Safari

myMac: Macintosh

:IExplorer

aPC: PC

:WebServer

:UnixHost

:Database

:UnixHost

Application Layer

Domain Layer

Database Layer

Processing
Orders

Customer
Management

Customer Order

query()

DBCustomer

O
• What’s the distinction between a package

diagram and a deployment diagram?
• Which one would you use in the 4+1

architectural views?
(logical view / development view /
process view / physical view)

03.Architecture

UML: Patterns

39

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

boundingBox():Rectangle

showManipulator()

_text: TextView

TextShape

1

1

A
d
a
p
ts

 ➤
Adapter

Adaptee

Adapter

03.Architecture

Architecture Assessment

40

Why?
• The earlier you find a problem in a software project, the better.

+ Identify and assess risks!
• An unsuitable architecture is a recipe for disaster.

+ A poor architectural design cannot be rescued by
good construction technology.

+ If you wait until the system is built, tackling architectural problems
comes at a great cost

Architecture evaluation is a cheap way to avoid disaster.
• Organize review early in the process

+ An architecture evaluation doesn’t tell you “yes” or “no” or “6,75 out of
10”.

> It tells you where the risks are.

03.Architecture

Architecture Tradeoff Analysis Method(ATAM)
• originated from Software Engineering Institute (SEI) at Carnegie Mellon

Answers to two kind of questions:
• Is the architecture suitable for the system for which is was designed?
• Which of two or more competing architectures is the most suitable one for the system at

hand?

41

03.Architecture

ATAM Terminology

42

Risks are potentially problematic
architectural decisions.

The rules for writing business logic modules
in the second tier of your three-tier client-
server style are not clearly articulated. This
could result in replication of functionality,
thereby compromising modifiability of the
third tier.

Nonrisks are good decisions that rely on
assumptions that are frequently implicit in
the architecture.

Assuming message arrival rates of once per
second, a processing time of less than 30
milliseconds, and the existence of one higher
priority process, then a one-second soft
deadline seems reasonable.

A sensitivity point is a property of one or
more components (and/or component
relationships) that is critical for achieving a
particular quality attribute response.

The average number of person-days of effort
it takes to maintain the system might be
sensitive to the degree of encapsulation of its
communication protocols and file formats.

A trade-off point involves two (or more)
conflicting sensitivity points.

If the processing of a confidential message
has a hard real-time latency requirement
then the level of encryption could be a trade-
off point.

03.Architecture

Architecture in scrum?

43

CAPSTONE PROJECT

Spike (a.k.a. Knowledge Acquisition Stories / Proof-of-concept)

As a developer
I want to prototype two alternatives for
the … component
so that I know ….

• Run Speed Tests
• Run Load Tests
• Run Security Tests
• Write short memo comparing the

results

Conditions of SatisfactionSpike

03.Architecture

Architecture Runway

• Agile development avoids big design up-front
- emergent design—defining and extending the architecture only as

necessary to deliver the next increment of functionality.
- intentional architecture — requires some centralized planning and

cross-team coordination

44

While we must acknowledge emergence in design and
system development, a little planning can avoid much

waste. —James Coplien, Lean Architecture

© Scaled Agile, Inc.

*** New ***

03.Architecture

GuardRails

• rules, standards and best practices related to the development pipeline
+ coding, building, testing, release, design, …

• Staying behind the guardrails = proceed without consulting other teams
• Moving outside = additional discussion or approval needed

+ Changing existing guardrails?
+ Adopting new guardrails?

45

New Slide

*** New ***

03.Architecture

Beware

46

Patterns
• Patterns define the essence of the solution

> misinterpretation is common among people
• Patterns are “Expert” knowledge

> “hammer looking for a nail” syndrome
• Patterns introduce complexity (more classes, methods, ...)

> cost/benefit analysis

Architecture
• Architecture intends to tackle complexity

> say less with more
• Architecture implies tradeoffs

> a boxes and arrows diagram is not an architecture
(at least consider coupling/cohesion)

• Architectural erosion
> law of software entropy
> “Big ball of mud” is most often applied in practice

03.Architecture

Correctness & Traceability
Correctness
• Are we building the system right?

+ Architecture deals with non functional requirements
- Choosing the best architecture involves tradeoffs

+ Architecture allows to scale up
- Organize (testing) work in the team

• Are we building the right system?
+ Indifferent

Traceability
• Requirements ⇔ System?

+ Architecture implies extra abstraction level
+ Software architecture is intangible

- Traceability becomes more difficult

47

03.Architecture

Summary (i)
You should know the answers to these questions

• What’s the role of a software architecture?
• What is a component? And what’s a connector?
• What is coupling? What is cohesion? What should a good design do with them?
• What is a pattern? Why is it useful for describing architecture?
• Can you name the components in a 3-tiered architecture? And what about the

connectors?
• Why is a repository better suited for a compiler than pipes and filters?
• What’s the motivation to introduce an abstract factory?
• Can you give two reasons not to introduce an Adapter (Wrapper)?
• What problem does an abstract factory solve?
• List three tradeoffs for the Adapter pattern.
• How do you decide on two architectural alternatives in scrum?
• What’s the distinction between a package diagram and a deployment diagram?
• Define a sensitivity point and a tradeoff point from the ATAM terminology.

You should be able to complete the following tasks
• Take each of the patterns and identify the components and connectors. Then assess the

pattern in terms of coupling and cohesion. Compare this assessment with the tradeoffs.

48

03.Architecture

Summary (ii)
Can you answer the following questions?

• What do architects mean when they say “architecture maps function onto form”? And
what would the inverse “map form into function” mean?

• How does building architecture relate to software architecture? What’s the impact on the
corresponding production processes?

• Why are pipes and filters often applied in CGI-scripts?
• Why do views and controllers always act in pairs?
• Explain the sentence “Restricts communication between subject and observer” in the

Observer pattern
• Can you explain the difference between an architecture and a pattern?
• Explain the key steps of the ATAM method?
• How can you balance emergent design with intentional architecture?
• What happens when your team goes outside the boundaries of the guardrail?
• How would you organize an architecture assessment in your team?

49

