
5. Design by Contract

CHAPTER 5 – Design by Contract

1

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Literature

2

• [Ghez02], [Somm05], [Pres00]
+ Occurences of “contract”, “assertions”, “pre” and “postconditions”, via index

• [Meye97] Object-Oriented Software Construction, B. Meyer, Prentice Hall, Second Edn.,
1997.
+ An excellent treatment on the do’s and don’ts of object-oriented development.

Especially relevant are the chapters 6, 11-12

Copies of the following two articles are available from the course web-site.
• [Jeze97] “Put it in the contract: The lessons of Ariane”, Jean-Marc Jézéquel and Bertrand

Meyer, IEEE Computer, January 1997, Vol30, no. 2, pages 129-130. A slightly different
version of this article is available at http://www.irisa.fr/pampa/EPEE/Ariane5.html
+ A (heatedly debated) column arguing that Design by Contract would have prevented

the crash of the first Ariane5 missile.
• [Garl97] “Critique of ‘Put it in the contract: The lessons of Ariane’”, Ken Garlington. See

http://home.flash.net/~kennieg/ariane.html
+ An article providing counterarguments to the former. Yet by doing so gives an

excellent comparison with Testing and Code Inspection.

Modern applications - Testing REST API
+ "Simplifying Microservice testing with Pacts", Ron Holshausen.

https://dius.com.au/2014/05/19/simplifying-micro-service-testing-with-pacts/
- Tutorial: https://docs.pact.io

http://www.irisa.fr/pampa/EPEE/Ariane5.html
http://home.flash.net/~kennieg/ariane.html
https://dius.com.au/2014/05/19/simplifying-micro-service-testing-with-pacts/
https://docs.pact.io

5. Design by Contract

When Design by Contract?

3

Mistakes are possible (likely!?)
• while transforming requirements into a system
• while system is changed during maintenance

5. Design by Contract

Why Design By Contract?

4

• What’s the difference with Testing?
+ Testing tries to diagnose (and cure) defects after the facts.
+ Design by Contract tries to prevent certain types of defects.

> “Design by Contract” falls under Implementation/Design

• Design by Contract is particularly useful in an Object-Oriented context
- (Or component-oriented, service-oriented, …)

+ preventing errors in interfaces between classes, components, services
(incl. subclass and superclass via subcontracting)

+ preventing errors while reusing classes, components, services
(incl. evolving systems, thus incremental and iterative development)

* Example of the Ariane 5 crash

Use Design by Contract in combination with Testing!

5. Design by Contract

What is Design By Contract?

5

“View the relationship between two classes as a formal agreement, expressing each party’s
rights and obligations.” ([Meye97], Introduction to Chapter 11)

• Each party expects benefits (rights) and accepts obligations
• Usually, one party’s benefits are the other party’s obligations
• Contract is declarative: it is described so that both parties can understand what service

will be guaranteed without saying how.

• Example: Airline reservation

Obligations Rights

Customer
(Client Class)

- Be at Brussels airport at
least 1 hour before
scheduled departure time

- Bring acceptable baggage
- Pay ticket price

- Reach Chicago

Airline
(Supplier Class) - Bring customer to Chicago

- No need to carry passenger who
is late,

- has unacceptable baggage,
- or has not paid ticket

5. Design by Contract

pre-condition: {x >= 9} post-condition: {x >= 13}

Pre- and Post-conditions + Invariants

6

component: {x := x + 5}

obligations are expressed via pre- and post-conditions
“If you promise to call me with the precondition satisfied, then I, in return
promise to deliver a final state in which the postcondition is satisfied.”

... and invariants
“For all calls you make to me, I will make sure the invariant remains
satisfied.”

pre-condition: {x > 0, y > 0}

component: {x := x - y}

pre-condition: {x > 0, y < 0}

component: {x := x + y}

invariant: {x >= y}

Quiz: Whose fault is it when a pre-condition is NOT satisfied?O

5. Design by Contract

Given
A stream of characters, length unknown

Requested
Produce a stream containing the same characters but in reverse order
Specify the necessary intermediate abstract data structure

while (! inStream.atEnd())
{
 stack.push (
 inStream.next());
}

while (! stack.isEmpty())
{
 system.out.print (
 stack.pop());
}

Example: Stack

7

Hello olleH

H

e

l

l

o

5. Design by Contract

class stack
 invariant: (isEmpty (this)) or
 (! isEmpty (this))

 public char pop ()
 require: ! isEmpty (this)
 ensure: true

 public void push (char)
 require: true
 ensure: (! isEmpty (this))
 and (top (this) = char)

 public void top (char) : char
 require: ...
 ensure: ...
 public void isEmpty () : boolean
 require: ...
 ensure: ...

Example: Stack Specification

8

Implementors of stack promise
that invariant will be true after
all methods return (incl.
constructors)

Clients of stack promise
precondition will be true before
calling pop()

Implementors of stack promise
postcondition will be true after
push() returns

Left as an exercise

O

5. Design by Contract

So what: isn’t this pure documentation?
Who will

(a) Register these contracts for later reference (the book of laws)?
(b) Verify that the parties satisfy their contracts (the police)?

Answer
(a) The source code
(b) The running system

 Quiz: What happens when a pre-condition is NOT satisfied?

Design by Contract in UML

9

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack

<<invariant>>

(isEmpty (this)) or

(! isEmpty (this))

<<precondition>>

(! isEmpty (this))

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)

O

5. Design by Contract

CHAPTER 6 – Design by Contract

10

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Redundant Checks Considered Harmful
• Extra complexity

Due to extra (possibly duplicated) code
... which must be verified as well.

• Performance penalty
Redundant checks cost extra execution time.

• Wrong context
How severe is the fault? How to remedy the situation? A service
provider cannot asses the situation, only the consumer can.

Redundant Checks

11

public char pop () {
 if (isEmpty (this)) {
 ... //Error-handling
} else {
 ...}

This is redundant code: it is the
responsibility of the client to
ensure the pre-condition!

Redundant checks: naive way for including contracts in the source code

5. Design by Contract

Assertions

12

+ assertion = any boolean expression we expect to be true at some point.

• Assertions …
+ Help in writing correct software

* formalizing invariants, and pre- and post-conditions
+ Aid in maintenance of documentation

* specifying contracts IN THE SOURCE CODE
* tools to extract interfaces and contracts from source code

+ Serve as test coverage criterion
* Generate test cases that falsify assertions at run-time

+ Should be configured at compile-time
* to avoid performance penalties with trusted parties
* What happens if the contract is not satisfied?

Quiz: What happens when a pre-condition is NOT satisfied?
> = What should an object do if an assertion does not hold?

* Throw an exception.O

5. Design by Contract

public char pop() throws AssertionException {
 char tempResult;
 my_assert(!this.isEmpty());
 tempresult = _store[_size--];
 my_assert(invariant());
 my_assert(true); //empty postcondition
 return tempResult;

}

private boolean invariant() {
 return (_size >= 0) && (_size <= _capacity);}

private void my_assert(boolean assertion)
 throws AssertionException {
 if (!assertion) {
 throw new AssertionException
 ("Assertion failed");}
}

Assertions in Source Code

13

Should be turned on/off via
compilation option

5. Design by Contract

public class AssertionException extends Exception {
 AssertionException() { super(); }
 AssertionException(String s) { super(s); }
}

static public boolean testEmptyStack() {
 ArrayStack stack = new();
 try {
 // pop() will raise an exception
 stack.pop();

 } catch(AssertionException err) {
 // we should get here!
 return true;
 };

 return false;
}

Exception Handling

14

If an ‘AssertionException’ is
raised within the try block ...

... we will fall into the ‘catch’
block

5. Design by Contract

Assertions are not...

15

• Assertions look strikingly similar yet are different from …

+ Redundant Checks
- Assertions become part of a class interface
- Compilation option to turn on/off

+ Checking End User Input
- Assertions check software-to-software communication,

not software-to-human

+ Control Structure
- Raising an exception is a control structure mechanism
- … violating an assertion is a fault

> precondition violation: responsibility of the client of the class
> postcondition violation: responsibility of the supplier of the class

* Only turn off assertions with trusted parties
* Tests must verify whether exceptions are thrown

5. Design by Contract

Programming Language Support

16

• Eiffel
+ Eiffel is designed as such … but only used in limited cases

• C++
+ assert() in C++ assert.h does not throw an exception
+ It’s possible to mimic assertions (incl. compilation option) in C++
+ Documentation extraction is more difficult but feasible

• Java
+ ASSERT is standard since Java 1.4

... however limited “design by contract” only; acknowledged by Java
designers
- https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

+ Documentation extraction using JavaDoc annotations

• … Other languages
+ Possible to mimic; compilation option requires language idioms
+ Documentation extraction is possible (style Javadoc)

https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

5. Design by Contract

• 1) The use of ‘previous’ or ‘old’ state
+ sometimes postconditions compare exit state with starting state

+ Eiffel has a pseudo variable ‘old’
+ Mimicking assertions in other languages?

- store ‘old’ state in temporary variables

• 2) Invoking operations within assertions
+ Assertions may invoke operations with pre- and postconditions

- overhead + cycles lead to infinite loops
+ Eiffel switches off assertions when checking assertions
+ Mimicking assertions in other languages?

- Cumbersome using language idioms and class variable
… best to avoid cycles

Two Implementation Issues

17

public char pop ()
 require: ! isEmpty (this)
 ensure: (top (old) = char)
 and (size (old) = size (this) + 1)

Use ‘old’ as a way to refer
to the starting state of the

receiver

5. Design by Contract

+ Pre- and post-conditions are part of the interface of a component.
- Part of black-box testing, not white-box testing

> Do not include assertions in basis-path testing
> Borderline case: include assertions in condition testing

+ Example

+ basis-path testing: cyclomatic complexity = 1; 1 path can cover the control-flow
- (test case 1 = non-empty stack / value on the top)

+ condition testing: 2 inputs cover all conditions
- (test case 1 = non-empty stack / value on the top
- (test case 2 = empty stack / assertion exception)

Testing Issues

18

public char pop() throws AssertionException {
assert(!this.isEmpty());
return _store[_size--];

}

See
Next

 Week

(Chapter
 6. Te

stin
g)

5. Design by Contract

How much assertion monitoring is needed?

• Rule of thumb
+ *** At least monitor the pre-conditions.

- Make sure that verifying pre-conditions is fast!
- Do not rely on switching off monitoring to gain efficiency
- Profile performance to see where you loose efficiency

> First do it, then do it right, then do it fast!

Compiler Checks?

19

All
Especially during development
Too costly during production runs

None
Fully trusted system
Metaphor “sailing without life-jacket”

5. Design by Contract

CHAPTER 6 – Design by Contract

20

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Correctness Formula

21

a.k.a. Hoare triples
Let:
 A be an operation (defined on a class C)
 {P} and {Q} are properties (expressed via predicates, i.e
 functions returning a boolean)

Then:
 {P} A {Q}
 is a Correctness Formula meaning
 “Any execution of A starting in a state where P holds,
 will terminate in a state where Q holds”

Example: ∀ x positive Integer
 {x >= 9} x := x + 5 {x >=13}

See
within 2 week

s

(Chapter
 7. Fo

rm
al

Speci
fica

tion
)

5. Design by Contract

• (Note: “weaker” and “stronger” follow from logic theory)

• Let {P1} and {P2} be conditions expressed via predicates
+ {P1} is stronger then {P2} iff

- {P1} <> {P2}
- {P1} ⇒ {P2}

+ example
- {x >= 9} is stronger then {x >= 3}

+ {false} is the strongest possible condition
[(not {false}) or {X} is always true]

+ {true} is the weakest possible condition
[(not {X}) or {true} is always true]

• Remember: {P1} ⇒ {P2}

is the same as (not {P1}) or {P2}

Weak and Strong

22

P1 TRUE FALSE TRUE FALSE

P2 TRUE TRUE FALSE FALSE

{P1} ⇒ {P2} TRUE TRUE FALSE TRUE

(not {P1}) or {P2} TRUE TRUE FALSE TRUE

5. Design by Contract

Weak and Strong: Quiz

23

• {P} A {Q} is a specification for operation A
+ You, as a developer of A must guarantee that once {P} is satisfied and

A is invoked it will terminate in a situation where {Q} holds
+ If you are a lazy developer, would you prefer

- a weak or a strong precondition {P}?
- a weak or a strong postcondition {Q}?

weak strong don’t know

precondition {P}

postcondition {Q}

O

5. Design by Contract

Weak or Strong (Preconditions)

24

• Given correctness formula: {P} A {Q}

• If you are a lazy developer, would you prefer a weak or a strong precondition {P}?
+ weak {P} ⇒ the starting situation is not constrained

+ strong {P} ⇒ little cases to handle inside the operation

* The stronger the precondition, the easier it is to satisfy the postcondition
• Easiest Case

+ {false} A {...}
{false} ⇒ {X} is true for any X

[because (not {false}) or {X} is always true]
- if {...} does not hold after executing A, you can blame somebody else because the

precondition was not satisfied
- ... independent of what happens inside A

- Quiz: If you are client of that class, would you prefer a weak or strong
precondition?O

5. Design by Contract

Weak or Strong (Postconditions)

25

• Given correctness formula: {P} A {Q}

• If you are a lazy developer, would you prefer a weak or a strong postcondition {Q}?
+ weak {Q} ⇒ the final situation is not constrained

+ strong {Q} ⇒ you have to deliver a lot when implementing A

* The weaker the postcondition, the easier it is to satisfy that postcondition

• Easiest Case
+ {...} A {true}

{X} ⇒ {true} is true for any X

[because (not {X}) or {true} is always true]
- {true} will always hold after executing A
- ... given that A terminates in a finite time

- Quiz: If you are client of that class, would you prefer a weak or strong
postcondition?O

5. Design by Contract

Weak or Strong (Pre- vs. Post-conditions)

26

• Remember
+ {false} A {...} is easier to satisfy then {...} A {true}

- With the strong precondition you may go in an infinite loop
- The weak postcondition must be satisfied in finite time

5. Design by Contract

Invariants

27

• Invariants correspond to the general clauses in a legal contract, i.e.
properties that always must be true for a given domain.

• {I} is an invariant for class C
+ After invoking a constructor of C, {I} is satisfied

- Default constructors as well!
+ All public operations on C guarantee {I} when their preconditions are

satisfied

• Thus, for each operation A defined on class C with invariant {I}
+ {P} A {Q} should be read as {I and P} A {I and Q}

- strengthens the precondition ⇒ implementing A becomes easier

- strengthens the postcondition ⇒ implementing A becomes more

difficult

5. Design by Contract

Contracts and Inheritance

28

• class C with invariant {I}
+ and operations {Pi} mi {Qi} where i: 1 .. n

• class C’ extends C with invariant {I’}
+ and operations {Pi’} mi {Qi’} where i: 1 .. n

• [We ignore the case where C’ extends the interface of C]

• Quiz: What’s the relationship between the contract in C and the contract
in C’
+ Invariant: Is {I’} stronger, weaker or equal to {I}
+ Precondition: Is {P’} stronger, weaker or equal to {P}
+ Postcondition: Is {Q’} stronger, weaker or equal to {Q}

• Answer according to the Liskov Substitution Principle
+ *** You may substitute an instance of a subclass for any of its

superclasses.

5. Design by Contract

Contracts and Inheritance

29

• class C with invariant {I}
+ and operations {Pi} mi {Qi} where i: 1 .. n

• class C’ extends C with invariant {I’}
+ and operations {Pi’} mi {Qi’} where i: 1 .. n

• [We ignore the case where C’ extends the interface of C]

• Quiz: What’s the relationship between the contract in C and the contract
in C’
+ Invariant: Is {I’} stronger, weaker or equal to {I}
+ Precondition: Is {P’} stronger, weaker or equal to {P}
+ Postcondition: Is {Q’} stronger, weaker or equal to {Q}

VOTES stronger weaker equal don’t know

{I’} vs. {I}

{P’} vs. {P}

{Q’} vs. {Q}

O

5. Design by Contract

Sidetrack: ACM Turing Award Barbara Liskov

30

Press release — NEW YORK, March 10, 2009
– ACM, the Association for Computing Machinery

The ACM has named Barbara Liskov of the Massachusetts Institute
of Technology (MIT) the winner of the 2008 ACM A.M. Turing Award.
The award cites Liskov for her foundational innovations to designing
and building the pervasive computer system designs that power
daily life. Her achievements in programming language design
have made software more reliable and easier to maintain. They are
now the basis of every important programming language since 1975,
including Ada, C++, Java, and C#. The Turing Award, widely
considered the "Nobel Prize in Computing," is named for the British
mathematician Alan M. Turing. The award carries a $250,000 prize,
with financial support provided by Intel Corporation and Google Inc.

[…]

In another exceptional contribution, Liskov designed the CLU programming language, an object-
oriented language incorporating "clusters" to provide coherent, systematic handling of abstract data
types, which are comprised of a set of data and the set of operations that can be performed on the
data. She and her colleagues at MIT subsequently developed efficient CLU compiler implementations
on several different machines, an important step in demonstrating the practicality of her ideas. Data
abstraction is now a generally accepted fundamental method of software engineering that focuses on
data rather than processes, often identified as "modular" or "object-oriented" programming.

http://www.acm.org/
http://awards.acm.org/homepage.cfm?awd=140

5. Design by Contract

Liskov substitution principle revisited

31

Subtype
Relationship

“is-a”

If it swims like a duck and quacks like a duck, then it’s a duck
(i.e.: the interfaces of the subtype and the supertype are equivalent)

If it swims like a duck and quacks like a duck,
but … needs batteries then it is NOT a duck.

(i.e.: mismatch between the interface of the subtype and the supertype)

5. Design by Contract

+ A client of Stack assumes a “true” pre-condition on push()
- Any invocation on push() will deliver the post-condition

+ However, substituting a BoundedStack adds pre-condition
- “! isFull(this)”

+ BoundedStack requires more from its clients
- You cannot substitute a BoundedStack for a Stack

Contracts and Inheritance: Example (1/2)

32

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack<<precondition>>

true

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)

push (char)

isFull(): boolean

BoundedStack<<precondition>>

(! isFull (this))

5. Design by Contract

testStack (s: Stack) {
 push(s, 99);
 if empty(s) {
 error(postC)};
 if pop(s) <> 99 {
 error(postC)};
}

Contracts and Inheritance: Example (2/2)

33

BoundedStack s;
s= new BoundedStack(3);
push(s, 1);
push(s, 2);
push(s, 3);
testStack (s);

testStack should work for any
s: stack we pass !

testStack should work for
any s: stack we pass !

However, it runs into a pre-
condition error when we pass a
bounded stack that is almost full.

As an illustration of the unsatisfied substitution principle, assume the
following (test)code

⇒ substitution principle is not satisfied O
How to fix?

5. Design by Contract

What is the Fix?

34

OStack

pop (): char
push (char)
isEmpty (): boolean
top(): char
isFull(): boolean

<<invariant>>
! isFull (this)

isFull() …
 return false;
}

BoundedStack

isFull(): boolean

• Push the “isFull” method higher and include as pre-condition for all “push” operations
• “isFull” usually returns false, but a BoundedStack overrides

5. Design by Contract

Subclassing and Subcontracting

35

• Rule
+ A subclass is a subcontractor of its parent class: it must at least satisfy

the same contract
or

+ If you subcontract, you must be willing to do the job under the original
conditions, no less

• Thus
+ Invariant: {I’} = {I}

Invariant must remain equal (though may be expressed differently)
+ Precondition: {P’} is weaker or equal to {P}
+ Postcondition: {Q’} is stronger or equal to {Q}

• Implementation Issue
+ Eiffel has special syntax for extensions of pre- and postconditions

* Compile-time guarantee that the substitution principle holds
+ In other languages it is left to the programmer to ensure this rule

5. Design by Contract

Behavioural Subtyping

36

Rectangle

Square <<invariant>>
width == height

testRectangle(Rectangle r) {
r.setWidth(2);
r.setHeight(3);
assert r.getWidth() == 2;
assert r.getHeight() == 3;

}

Square s;
s = new Square(3);
testRectangle(s);

• a square “is a” rectangle
+ all square are rectangles; not all rectangles are squares

> a square is a subtype of a rectangle
• but a square is not a behavioural subtype of a rectangle

> a square does not respect the contractual obligations of rectangle
> rectangle explicitly allows height and width to differ

O
How to fix?

5. Design by Contract

What is the Fix?

37

Shape

SquareRectangle

setWidth()
setHeight()
…

setSize()
…

Rectangles and Square become siblings in an inheritance hierarchy

5. Design by Contract

Exam Question

38

Liskov Substitution
Principle

What’s the Liskov substitution principle?
Why is it important in OO development?

Why is it Important?

*** You may substitute an instance of a subclass for any of its superclasses.

It tells us what a subclass may do with pre- and post-conditions and invariants.

• Invariant: {I’} = {I}
+ Invariant must remain equal (though may be expressed differently)

• Precondition: {P’} is weaker or equal to {P}
• Postcondition: {Q’} is stronger or equal to {Q}

5. Design by Contract

CHAPTER 6 – Design by Contract

39

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

How Detailed Should the Contract Be?

40

• Given correctness formula: {P} A {Q} for operation A
+ P := {false} is not desirable; nobody will invoke an operation like that
+ P := {true} looks promising... at first sight

- A will do some computation + check for abnormal cases + take corrective actions
and notify clients + produce a result anyway

* It will be difficult to implement A correctly
* It will be difficult to reuse A

*** Strong preconditions make a component more reusable

• Reasonable precondition: When designing a component with preconditions
+ It must be possible to justify the need for the precondition in terms of the

requirements specification only
+ Clients should be able to satisfy and check the precondition

- All operations used inside the precondition should be declared public

cfr. Question on slide — 24. Weak or Strong (Preconditions)
If you are client of that class, would you prefer a weak precondition?
> We want a reasonable preconditionO

Data mining algorithms
applied on software

engineering problems

5. Design by Contract

REST API — History

42

© API styles over time, Source: Rob Crowley

5. Design by Contract

MicroService Example - Pet Store (REST API)

43

5. Design by Contract

Test Strategies for Micro-Services

44

Lehvä, J., Mäkitalo, N., Mikkonen, T. (2019). Consumer-Driven Contract Tests for Microservices: A Case Study. In: Franch, X.,
Männistö, T., Martínez-Fernández, S. (eds) Product-Focused Software Process Improvement. PROFES 2019. Lecture Notes in
Computer Science(), vol 11915. Springer, Cham. https://doi.org/10.1007/978-3-030-35333-9_35

Consumer

Provider

End-to-End
Tests

Consumer

Provider

Component
Tests

Test
Double

Consumer

Provider

Integration
Tests

Consumer

Provider

Consumer-Driven
Contract Testing

5. Design by Contract

• Consumer
+ Explicit delivery of the (part

of) the contract used.
+ Mocks the provider based on

the (part of the) contract.

• Provider
+ Replay consumer requests

against its API.
+ Verify responses against

contract.

Consumer-Driven Contract Testing

45

Consumer

Provider

Test micro-services in isolation, solely based on the contractual obligations.

Provider is aware which parts of the contract are actually used by consumers.
> Breaking contracts is explicitly under control.

5. Design by Contract

Example: Banking - Requirements

46

+ a bank has customers
+ customers own account(s) within a bank
+ with the accounts they own, customers may

- deposit / withdraw money
- transfer money
- see the balance

• Non-functional requirements
+ secure: only authorised users may access an account
+ reliable: all transactions must maintain consistent state

5. Design by Contract

Example: Banking - Class Diagram

47

customerNr():int

customerNr : int

IBCustomer

accountNr (): int

getBalance():int

setBalance (amount:int)

accountNr : int

balance : int = 0

IBAccount

validCustomer(cust:IBCustomer) : boolean

createAccountForCustomer(cust:IBCustomer): int

customerMayAccess(cust:IBCustomer, account:int) : boolean

seeBalance(cust:IBCustomer, account:int) : int

transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)

checkSumAccounts() : boolean

IBBank

5. Design by Contract

Example: Banking - Contracts

48

IBBank
invariant: checkSumAccounts()

IBBank::createAccountForCustomer(cust:IBCustomer): int
precondition: validCustomer(cust)
postcondition: customerMayAccess(cust, <<result>>)

IBBank::seeBalance(cust:IBCustomer, account:int) : int
precondition: (validCustomer(cust)) AND

(customerMayAccess(cust, account))
postcondition: true

IBBank::transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)
precondition: (validCustomer(cust))

AND (customerMayAccess(cust, fromAccount))
AND (customerMayAccess(cust, toAccount))

postcondition: true

Ensure the “secure” and “reliable”
requirements.

5. Design by Contract

Example: Banking - CheckSum

49

Bookkeeping systems always maintain two extra accounts, “incoming” and “outgoing”
• ⇒ the sum of the amounts of all transactions is always 0 ⇒ consistency check

MyAccount

date amount

1/1/2000 +100

1/2/2000 +200

1/3/2000 -250

OutGoing

date amount

1/3/2000 +250

Incoming

date amount

1/1/2000 -100

1/2/2000 -200

5. Design by Contract

• Design by contract prevents defects
• Testing detect defects

+ One of them should be sufficient!?

• Design by contract and testing are complementary
+ None of the two guarantee correctness ...

but the sum is more than the parts.
- Testing detects wide range of coding mistakes
- ... design by contract prevents specific mistakes

(due to incorrect assumptions between provider and client)
+ design by contract ⇒ black box testing techniques

- especially, equivalence partitioning & boundary value analysis
+ (condition) testing ⇒ verify whether parties satisfy their obligations

- especially, whether all assertions are satisfied
+ consumer-driven contract testing ⇒ test distributed components in isolation

• Design by contract (and Testing) support Traceability
+ Assertions are a way to record requirements in the source code
+ (Regression) tests map assertions back to the requirements

Correctness & Traceability

50

5. Design by Contract

Summary(i)

51

• You should know the answers to these questions
+ What is the distinction between Testing and Design by Contract? Why are they

complementary techniques?
+ What’s the weakest possible condition in logic terms? And the strongest?
+ If you have to implement an operation on a class, would you prefer weak or strong

conditions for pre- and postcondition? And what about the class invariant?
+ If a subclass overrides an operation, what is it allowed to do with the pre- and

postcondition? And what about the class invariant?
+ Compare Testing and Design by contract using the criteria “Correctness” and

“Traceability”.
+ What’s the Liskov substitution principle? Why is it important in OO development?
+ What is behavioral subtyping?
+ When is a pre-condition reasonable?

• You should be able to complete the following tasks
+ What would be the pre- and post-conditions for the methods top and isEmpty in the

Stack specification? How would I extend the contract if I added a method size to the
Stack interface?

+ Apply design by contract on a class Rectangle, with operations move() and resize().
+ Write consumer-driven contracts for a given REST-API .

5. Design by Contract

Summary(ii)
• Can you answer the following questions?

+ Why are redundant checks not a good way to support Design by Contract?
+ You’re a project manager for a weather forecasting system, where performance is a

real issue. Set-up some guidelines concerning assertion monitoring and argue your
choice.

+ If you have to buy a class from an outsourcer in India, would you prefer a strong
precondition over a weak one? And what about the postcondition?

+ Do you feel that design by contract yields software systems that are defect free? If
you do, argue why. If you don’t, argue why it is still useful.

+ How can you ensure the quality of the pre- and postconditions?
+ Why is (consumer-driven) contract testing so relevant in the context of micro-

services?
+ Assume you have an existing software system and you are a software quality

engineer assigned to apply design by contract. How would you start? What would you
do?

52

