
6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

1

6.Testing

Literature
• Books

+ [Ghez02] Chapter on “Software Verification” is quite good with plenty
of examples of the need for complementary testing techniques.
Terminology used here differs from [Pres00] and [Somm05]

+ [Pres00] Chapter on “Software Testing Techniques” is very good with
lots of concrete examples of the different techniques.

+ [Somm05] Chapter on “Verification and Validation” places Testing in a
broader context.

• Specific Books
+ [Jorg21] Software Testing: A Craftsman’s

Approach (5th edition)
- Master course on Software Testing

2

6.Testing

When to Test?

3

Mistakes are possible (likely!?)
• while transforming requirements into a system
• while system is changed during maintenance

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

6.Testing

The Verification Landscape

4

Are we building the product right?

Formal
Specifications

Simulation Testing

New slide

6.Testing

DutchGuilder Wikipedia

When to Test? The Unified Process

5

Testing is a risk reduction activity
• start as early as possible to assess & reduce risk towards the schedule
• repeat towards the end to assess & reduce risk towards reliability

6.Testing

SPECIFY & DESIGN WITH TESTABILITY IN MIND

When to Test? The V-model

6

Requirements
Documents

Deployed
System

System
Specification

Released
System

System
Design

System
Integration

Module
Specification

Module
Implementation

Acceptance Test

System
Test

Integration
Test

Unit TestPrepare tests here … … and run them here!

6.Testing

Why to Test?

7

• Perfect Excuse
+ We should not invest in testing: our system will contain defects

anyway

• Counter Arguments
+ The more you test, the less likely such defects will cause harm
+ The more you test, the more confidence you will have in the system

• Testing = Risk Management
+ Testing is a risk reduction activity!

- Result of testing is a risk report to project management
(Can we ship this product in good confidence?)

* Go / no-go decision

Program testing can be used to show the presence
of defects, but never their absence.

(E. W. Dijkstra)

6.Testing

What is Testing? (1/3)

8

Input System
Under
Test

Expected output
= Oracle

Software Testing is the process of executing a program or system
with the intent of finding errors.
(Myers, Glenford J., The art of software testing. Wiley, 1979)

New slide

6.Testing

What is Testing? (2/3)
• Testing should

+ verify the requirements (Are we building the product right?)
+ NOT validate the requirements (Are we building the right product?)

• Definitions
+ Testing

- Testing is the activity of executing a program with the intent of
finding a defect
> A successful test is one that finds defects!

+ Testing Techniques
- Techniques with a high probability of finding an as yet undiscovered

mistake
> Criterion: Coverage of the code/requirements/model/risks/…

+ Testing Strategies
- Tell you when you should perform which testing technique

> Criterion: Confidence that you can safely proceed
> Next activity = other testing until deployment

9

REMEMBER: Testing is a risk reduction activity!

6.Testing

What is Testing? (3/3)

10

Errors/Failures
= mismatch between
specification & system

(found with tests)

Surprises (e.g. security flaws)
(sometimes found with tests)

SYSTEM

SPECIFICATION

Omissions (e.g. implicit requirements)
(not found with tests)

6.Testing

Who should Test?

11

+ Programming is a constructive activity:
- try to make things work

+ Testing is a destructive activity:
- try to make things fail

Programmers are not necessarily the best testers!

• In practice
+ Testing is part of quality assurance

- done by developers when finishing a component (unit tests)
- done by a specialized test team when finishing a subsystem

(integration tests / system tests / acceptance tests)

6.Testing

Unit tests …
not sufficient

12

• Interesting Tweet:
All unit tests are passing

https://twitter.com/olafurw/status/
1578704185809244160?
s=11&t=mdYnxnMXgxYBEhH7anVCgQ

https://twitter.com/olafurw/status/1578704185809244160?s=11&t=mdYnxnMXgxYBEhH7anVCgQ

6.Testing

What is “Correct”?
• Correctness

+ A system is correct if it behaves according to its specification
> An absolute property

(i.e., a system cannot be “almost correct”)
> ... in theory and practice undecidable

• Reliability
+ The user may rely on the system behaving properly
+ The probability that the system will operate as expected over a

specified interval
> A relative property

(a system has a mean time between failure of 3 weeks)

• Robustness
+ A system is robust if it behaves reasonably even in circumstances that

were not specified
> A vague property (once you specify the abnormal circumstances

they become part of the requirements)

13

See [Ghez02] — Representative Qualities

6.Testing

Terminology (1/3)
• Avoid the term “Bug” (*)

+ Implies mistakes creeping into the software from the outside
+ imprecise because mixes various “mistakes”

14

https://commons.wikimedia.org/wiki/File:First_Computer_Bug,_1945.jpg

https://commons.wikimedia.org/wiki/File:First_Computer_Bug,_1945.jpg
https://commons.wikimedia.org/wiki/File:First_Computer_Bug,_1945.jpg

6.Testing

Terminology (2/3)
To be more precise (Terminology not standard!) : IEEE Glossary / ISTQB
• Defect / Fault (NL = DEFECT, GEBREK, NALATIGHEID)

+ A design or coding mistake that may cause abnormal behaviour
- abnormal behaviour = deviations from specification (incl. surprises!)

+ Faults by omission: something is missing in the design, model, code, …
+ Faults by commission: incorrect entry in design, model, code, …

• Failure (NL = MISLUKKING, FALING)
+ A deviation between the specification and the running system
+ A manifestation of a defect during system execution
+ Inability to perform required function within specified limits

• Error (NL = FOUT)
+ The input that causes a failure

- Transient occurs only with certain input combination
- Permanent occurs with all inputs of a given class

15

6.Testing

Bug Tracking Workflow

16

Error

Operator
Error

Defect Fault Fix

Usability Issue

Entered in Defect
Tracking System
(Bugzilla, Jira, …)

Root cause identified
Fault location known

Repair

Reject

Cannot Reproduce
Works for me
Feature request

Subtle deviations of terminology

Something went
wrong

6.Testing

Terminology (3/3)
• Component (Component under Test)

+ part of the system that can be isolated for testing
- an object, a group of objects, one or more subsystems

• Test Case
+ set of inputs and expected results that exercise a component with the purpose of

causing failures
- predicate that answers “true” when the component answers with the expected

results for the given input and “false” otherwise
> “expected results” includes exceptions, error codes,...

• Test Stub
+ partial implementation of components on which the tested component depends

- dummy code providing necessary input values and behaviour

• Test Driver
+ partial implementation of a component that depends on the tested component

- a “main()” function that executes a number of test cases

• Test Fixture
+ fixed state of software under test, baseline for running test

- all that is needed to set-up the appropriate test context

17

6.Testing

gTest Example: findLast
Find.cpp
#include <vector>

int findLast(std::vector<int> x, int y) {
 if (x.size() == 0)
 return -1;
 for (int i = x.size() - 1; i >= 0; i—)
 if (x[i] == y)
 return i;
 return -1;
}

Tests.cpp
#include <vector>
#include <gtest/gtest.h>

#include "find.cpp"

TEST(FindLastTests, noOccurrence) {
 EXPECT_EQ(-1, findLast({1, 2, 42, 42, 63}, 99));
}

TEST(FindLastTests, doubleOccurrence) {
 EXPECT_EQ(3, findLast({1, 2, 42, 42, 63}, 42));
}

TEST(FindLastTests, emptyVector) {
 EXPECT_EQ(-1, findLast({}, 3));
}

18

O
Are these tests sufficiently strong?
(Discuss with your neighbour)

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

19

6.Testing

White Box Testing
• a.k.a. Structural testing, Testing in the small

+ Treat a component as a
“white box”, i.e. you can
inspect its internal structure

+ Internal structure is also
design specs; e.g. sequence
diagrams, state charts, …

+ Derive test cases to
maximize coverage
of that structure, yet
minimize number of test cases

+ Coverage criteria
- every statement at least once
- all portions of control flow (= branches) at least once
- all possible values of compound conditions at least once
- all portions of data flow at least once
- all loops, iterated at least 0, once, and N times

20

Test Data

Test Output

Component

Code/Design

Derive test data

Run tests

Produce output

6.Testing

Basis Path Testing (1/2)
+ 1. Draw a control flow graph

- nodes = sequences of non branching statements (assignments, procedure calls)
- edges = control flow

Guiding principle: make sure that the control flow graphs stays as close as possible to
the actual source code. This allows for better traceability when demonstrating that the
test suite is well designed.
Clarification

+ Empty nodes (= an empty sequence of non-branching statement)
- Removing them graph does not affect the cyclomatic complexity
- But it hinders traceability

+ What with an if-then (without an else branch)
- Then you can remove the empty else branch

21

if-then-else

[cc = 2]

while

[cc = 2]

case-of

[cc = 3]

and/or

= if-then-else

[cc = 2]

6.Testing

Basis Path Testing (2/2)
+ …
+ 2. Compute the Cyclomatic Complexity

= #(edges) - #(nodes) + 2
= number of binary conditions + 1
= # regions

+ 3. Determine a set of independent paths (= at least one new edge in every path)
[name independent stems from a mathematical vector basis for the complete graph]
- Several possibilities: upper bound = Cyclomatic Complexity

+ 4. Prepare test cases that force each of these paths
- Choose values for all variables that control the branches.
- Predict the result in terms of values and/or exceptions raised

+ 5. Write test driver for each test case

22

6.Testing

Example - Code
public boolean find(int key) { //Binary Search
int bottom = 0; // (1)
int top = _elements.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == _elements[lastIndex];
while ((bottom <= top) && !found) { // (2) (3)

mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) { // (5)

lastIndex = mid; // (6)
} else {

if (_elements[mid] < key) { // (7)
bottom = mid + 1; // (8)

} else {
top = mid - 1; } // (9)

} // (10) (11)
} // (4) (12)
return found; // (13)

}

23

(*) (4) and (12) are needed to close the control flow path because the condition in (2) and (3)
must be split up in two primitive conditions: (2) (bottom <= top) and (3) !found.
Remember: A boolean expression involving an “and” or “or” is equivalent to an if statement.

6.Testing

Example - Flow Graph
set of independent paths of a flow graph ⇒ try to cover all the edges in the graph.

Heuristic for constructing such a set
• upper bound for size = 16 - 13 + 2 = 4 + 1 = 5
• pick most simple entry/exit path: {1,2,12,13}
• add new paths until upper bound;

each addition includes an extra edge

• possible set of independent paths
+ {1, 2, 3, 4, 12,13}
+ {1,2,3,5,6,11,2,12,13}
+ {1,2,3,5,7,8,10,11,2,12,13}
+ {1,2,3,5,7,9,10,11,2,12,13}

24

4

5

12

1

2

3

(bottom <= top)

6

7

8 9

10

11

13

!found

(key == _elements[mid]

_elements[mid] < key

6.Testing

Example - Test Cases

25

Path Input Output

{1,2,12,13} _elements = []; key = 5 false / index out of bounds

{1,2,3,4,12,13} _elements = [1, 5, 9]; key = 5 TRUE

{1,2,3,5,6,11,2,12,13}
{1,2,3,5,7,9,10,11,2,3,
5,6,11,2,12,13}

_elements = [1, 5, 9]; key = 1
actual path is not intended path(*) TRUE

{1,2,3,5,7,8,10,11,2,12,13} _elements = [5]; key = 9 FALSE

{1,2,3,5,7,9,10,11,2,12,13} _elements = [5]; key = 1 FALSE

(*) The intended path resulting from the heuristic is {1,2,3,5,6,11,2,12,13}.
However, this path can never be forced by any input value.
Therefore the actual path is a little different and takes an extra cycle.

6.Testing

Basis Path Testing: Evaluation

26

• Pros
+ coverage = (most of the times) every statement + all portions of control flow

(branches)
* reasonable coverage for reasonable effort

+ tool support exists (computing cyclomatic complexity + drawing flow graph)
* possibility to estimate testing complexity

• Cons
+ construction is a heuristic: does not necessarily result in set of independent paths
+ it is possible to get the same coverage with less paths
+ it is sometimes not feasible to exercise all required paths
+ it does not necessarily cover all entry-exit paths

+ not all cc independent paths will cover all statements and all branches
(see “Summary”; Perform basis path with a nested conditional of 2 levels deep.)

For crucial code, complement basis path with condition and loop testing

if (x + y < 3)

 {x := 3} else {x := 5};

if (x + y < 3)

 {y := 3} else {y := 5};

• cc = 3 but 4 different

 entry-exit paths !

• Situation gets worse with

 nested conditionals

6.Testing

Condition Testing
• For complex boolean expressions, Basis Path Testing is not enough!

• Input
+ {x = 3, y=4, z = 4}, {x = 4, y=3, z = 3}, {x = 4, y=4, z = 3}
+ exercises all paths ...

* but several important conditions (assertions) are not triggered
(e.g. {x = 3, y=3, z=3})

• Condition Testing
+ Condition coverage: all true/false combinations for whole condition expressions
+ Multiple condition coverage: all true/false combinations for all simple conditions
+ Domain Testing: all combinations of true/false + almost “true/false”

for each occurrence of a < b, a <= b, a == b, a <> b, a >= b, 3 tests
* test cases {a < b; a == b; a > b}

27

1.public void helloWorld (int x, y, z) {
2. assert((x <> y) && (x <> z));
3. while (x > y) && (x > z) {
4. printf(‘’Hello World’’);
5. x = x - 1;
6. };
7. assert((x == y) || (x == z));
8.}

6.Testing

Condition Testing - Test Cases
Condition Coverage

line 2: (x <> y) && (x <> z): {x = 3, y=3, z = 3} and {x = 4, y=3, z = 3}
line 3: (x > y) && (x > z) and line 7: (x == y) || (x == z) are exercised by same values

Multiple Condition Coverage
line 2: {x = 3, y=3, z = 3}, {x = 4, y=3, z = 3}, {x = 4, y=4, z = 3},
{x = 2, y = 3, z = 4}
line 3 and line 7: are exercised by same values

Domain Testing

28

x = z x < z x > z

x = y x = 3, y = 3, z = 3 x = 2, y = 2, z = 3 x = 4, y = 4, z = 3

x < y x = 2, y = 3, z = 2 y = z: x = 2, y = 3, z = 3 y = z: --- not possible

y < z: x = 2, y = 3, z = 4 y < z: --- not possible

y > z: x = 2, y = 4, z = 3 y > z: x = 3, y = 4, z = 2

x > y x = 4, y = 3, z = 4 y = z: --- not possible y = z: x = 4, y = 3, z = 3

y < z: x = 3, y = 2, z = 4 y < z: x = 4, y =2, z = 3

y > z: --- not possible y > z: x = 4, y = 3, z = 2

6.Testing

Loop Testing

29

for all loops L, with n allowable passes:
• (i) skip the loop;
• (ii) 1 pass through the loop;
• (iii) 2 passes through the loop;
• (iv) m passes where 2 < m < n;
• (v) n-1, n, n+1 passes

Test cases for binary search: n = log2(size (_elements)) = log2(16) = 4

(*) The actual test cases are left as an exercise

Path Input Output (*)

skip the loop _elements = [1, 3, ..., 29, 31]; key = ...

1 pass through the loop _elements = [1, 3, ..., 29, 31]; key = ...

2 passes through the loop _elements = [1, 3, ..., 29, 31]; key = ...

m passes where 2 < m < n _elements = [1, 3, ..., 29, 31]; key = ...

n-1 _elements = [1, 3, ..., 29, 31]; key = ...

n passes _elements = [1, 3, ..., 29, 31]; key = ...

n+1 passes _elements = [1, 3, ..., 29, 31]; key = ...

6.Testing

White Box Testing and Objects (1/2)

30

Pure white box testing is less relevant in an object-oriented context.
• Internal structure embedded in object compositions and polymorphic method

invocations

generateHTML (tableSpec:

 String, outStream: Stream,

 renderer: HTMLRenderer)

fetchTable (tableSpec: String):

 Table {abstract}

Database

{abstract}

fetchTable (tableSpec: String): Table

PhoneDatabase

fetchTable (tableSpec: String): Table

ProjectDatabase

tbl = this.fetchTable(tableSpec);

renderer.renderHTML(tbl,

 outStream)

Number of paths, conditions, loops = 1
Yet, masks an important conditional

6.Testing

White Box Testing and Objects (2/2)

31

… but: sequence & collaboration diagrams may serve better

⇒ Identify polymorphic messages representing a conditional

⇒ plug-in instances of appropriate subclasses to exercise branches

The distinction between white-box and black-box testing is not that sharp.

: User d : Database

this.fetchTable ()

tbl: Table
tbl:= query()

renderHTML()

renderer
Represents a

conditional

Represents a

conditional

generate
HTML()

6.Testing

Question

32

White Box Testing
Techniques

Basis Path Testing

What are the differences and similarities between basis path testing,
condition testing and loop testing?

Condition Testing Loop Testing

Cover Control Flow

all portions of control
flow (= branches) at

least once

all possible values of
compound conditions

at least once

all loops, iterated at
least 0, once, and N

times

O

6.Testing

Code Coverage: Strength of a Test Suite

33

Input

New slide

Expected output
= Oracle

Code Coverage:
The degree to which code is exercised by a test

suite, expressed as a percentage.

6.Testing

Code Coverage

34

c++

java

Tools to measure line coverage, statement coverage, function
coverage, branch coverage readily exist CAPSTONE PROJECT

6.Testing

Modified Condition/Decision Coverage (MC/DC)

• Condition ≈ Condition on Input to the function/component under test
• Decision ≈ Output of the function/component under test

MC/DC is required by most software standards for safety critical software.
(DO-178C: Avionics Safety Standard; ISO 26262: Road vehicles – Functional safety; ISO/IEC 62304: medical device software)

MC/DC requires all of the below during testing:
• Each entry and exit point is invoked.
• Each decision takes every possible outcome.
• Each condition in a decision takes every possible outcome.
• Each condition in a decision is shown to independently affect the

outcome of the decision.
+ Independence of a condition is shown by proving that only one

condition changes at a time.

35

6.Testing

MC/DC Example
int isReadyToTakeOff(int a, int b, int c, int d) {
if(((a == 1) ||(b == 1)) && ((c == 1) || (d == 1))) return 1; else return 0;

}
2 decisions: “return 1” or “return 0”

4 inputs: a, b, c, d
4 conditions: (a == 1) / (b == 1) / (c == 1) / (d == 1)

Decision Coverage
• 2 test cases, one for each decision

Condition Coverage
• 2 test cases, one for all conditions to be true, one for all conditions to be false

Condition/Decision Coverage
• 3 test cases, all decisions at least once + all conditions once true, once false

Modified Condition/Decision Coverage
• n + 1 test cases (for a decision with n conditions)

Multiple Condition Coverage
• 2n test cases (for a decision with n conditions)

+ Usually too large to handle

36

Condition/Decision Coverage

a==1
1

b==1 c==1 d==1 decision
FALSE TRUE TRUE TRUE return 1

FALSE FALSE FALSE TRUE return 0

TRUE FALSE FALSE FALSE return 0

Modified Condition/Decision Coverage

a==1
1

b==1 c==1 d==1 decision
TRUE FALSE TRUE FALSE return 1

+ row 4 shows effect of c

TRUE FALSE FALSE TRUE return 1

+ row 5 shows effect of a

FALSE TRUE FALSE TRUE return 1

+ row 5 shows effect of b

TRUE FALSE FALSE FALSE return 0

+ row 2 shows effect of d

FALSE FALSE FALSE TRUE return 0

6.Testing

Mutation Testing: Metaphor

37

© Brussels Airlines

© "The Good, the Bad and the Ugly: Evaluating Convolutional Neural Networks for Prohibited Item Detection
Using Real and Synthetically Composite X-ray Imagery” Neelanjan Bhowmik, Qian Wang, Yona Falinie A. Gaus,
Marcin Szarek, Toby P. Breckon

How to test the quality assurance?
Inject synthetic problematic items.

6.Testing

Code Coverage

38

100% line coverage
100% statement coverage
100% branch coverage
100% MC/DC coverage

… all tests passed

gTest Example: findLast

6.Testing

Inject Mutant (Survived - Live)

39

01 int findLast(std::vector<int> x, int y) {  
02 if (x.size() == 0)  
03 return -1;  
04 for (int i = x.size() - 1; i > 0; i--)  
05 if (x[i] == y)  
06 return i;  
07 return -1;  
08 }

[==========] 3 tests from 1 test suite ran. (0 ms total)
[PASSED] 3 tests.

Relational Operator Replacement (ROR)
“i >= 0” becomes “i > 0”

⇒ One of these tests should fail!
But all of them pass: the mutant survives.

6.Testing

Extra test kills the mutant
Find.cpp
#include <vector>

int findLast(std::vector<int> x, int y) {
 if (x.size() == 0)
 return -1;
 for (int i = x.size() - 1; i >= 0; i—)
 if (x[i] == y)
 return i;
 return -1;
}

Tests.cpp
#include <vector>
#include <gtest/gtest.h>

#include "find.cpp"

TEST(FindLastTests, noOccurrence) {
 EXPECT_EQ(-1, findLast({1, 2, 42, 42, 63}, 99));
}

TEST(FindLastTests, doubleOccurrence) {
 EXPECT_EQ(3, findLast({1, 2, 42, 42, 63}, 42));
}

TEST(FindLastTests, emptyVector) {
 EXPECT_EQ(-1, findLast({}, 3));
}

40

TEST(FindLastTests, occurrenceOnBoundary) {
 EXPECT_EQ(0, findLast({1, 2, 42, 42, 63}, 1));
}

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

41

6.Testing

Black Box Testing

42

• a.k.a. Functional testing, Testing
in the large
+ Treat a component as a a

“black box” whose behaviour
can be determined only by
studying its inputs and
outputs.

+ Test cases are derived from
the external specification of
the component

+ Derive test cases to maximize
coverage of elements in the
spec, yet minimize number of
test cases

+ Coverage criteria
⇒ all exceptions

Input
Values

Output
Values

Component

Outputs revealing
presence of defects

Ie

Oe

Inputs causing
anomalous
behaviour

6.Testing

Equivalence Partitioning
& Boundary Value Analysis

• 1. Divide input domain in classes of data, according to input condition.
Input condition may require:
+ a range ⇒ 1 valid (in the range) and 2 invalid equivalence classes

+ a value ⇒ 1 valid (= value) and 2 invalid equivalence classes

+ a set ⇒ 1 valid (in the set) and 1 invalid equivalence class

+ a boolean ⇒ 1 valid and 1 invalid equivalence class

• 2. Choose test data corresponding to each equivalence class
+ Normal equivalence partitioning chooses test data at random
+ Boundary Value Analysis choose values at the “edge” of the class, e.g., just above

and just below the minimum and maximum of a range
• 3. Predict the corresponding output and derive test case
• 4. Write test driver

You can partition the output domain as well and apply the same technique

43

6.Testing

Equivalence Partitioning : Example
• Example: Binary search

• Check input partitions:
+ Do the inputs satisfy the pre-conditions?
+ Is the key in the array?

* leads to (at least) 2x2 equivalence classes

• Check boundary conditions
+ Is the array of length 1?
+ Is the key at the start or end of the array?

* leads to further subdivisions
(not all combinations make sense)

44

private int[] _elements;
public boolean find(int key) { ... }
•pre-condition(s)

- Array has at least one element
- Array is sorted

•post-condition(s)
(The element is in _elements and the result is true)
or (The element is not in _elements and the result is false)

6.Testing

Equivalence Partitioning: Test Data

45

Generate test data that cover all meaningful equivalence partitions.

Test Cases Input Output

Array length 0 key = 17, elements = { } FALSE

Array not sorted key = 17, elements = { 33, 20, 17, 18 } exception

Array size 1, key in array key = 17, elements = { 17 } TRUE

Array size 1, key not in array key = 0, elements = { 17 } FALSE

Array size > 1, key is first element key = 17, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key is last element key = 33, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key is in middle key = 20, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key not in array key = 50, elements = { 17, 18, 20, 33 } FALSE

… … …

5. Design by Contract

+ Pre- and post-conditions are part of the interface of a component.
- Part of black-box testing, not white-box testing

> Do not include assertions in basis-path testing
> Borderline case: include assertions in condition testing

+ Example

+ Equivalence partition with boolean
- = condition testing: 2 inputs cover all conditions
- (test case 1 = non-empty stack / value on the top
- (test case 2 = empty stack / assertion exception)

Design by Contract — Tests

46

public char pop() throws AssertionException {
assert(!this.isEmpty());
return _store[_size--];

}

Repeat
 fro

m

(Chapter
 5. D

esi
gn by

Contra
ct)

6.Testing

Fuzz Testing

47

New slide

Crash / Freeze / …

Fuzz Testing:
A software testing technique used to discover security vulnerabilities

by inputting massive amounts of random data, called fuzz, to the
component or system.

6.Testing

Fuzz-Testing: Open Source Libraries

48

OSS-Fuzz: Continuous Fuzzing for Open Source Software

Trophies
As of August 2023, OSS-Fuzz has helped identify and fix over 10,000
vulnerabilities and 36,000 bugs across 1,000 projects.

https://github.com/google/oss-fuzz

New slide

6.Testing

Fuzz-Testing: REST-API

49

RESTler: first stateful REST API fuzzing tool
https://github.com/microsoft/restler-fuzzer

New slide

• Use-after-free rule. A resource that has been deleted must no
longer be accessible.

• Resource-hierarchy rule. A child resource of a parent
resource must not be accessible from another parent resource.

• …

In an Azure service, we found the following use-after-free violation.
 1) Create a new resource R (with a PUT request).
 2) Delete resource R (with a DELETE request).
 3) Create a new child resource of the deleted resource R
and of a specific type (with another PUT request).
This sequence of requests results in a “500 Internal Server Error”.

In an Office365 messaging service where users can post messages and then reply and edit these, the resource-hierarchy
checker detected the following bug.
 1) Create a first message msg-1 (with a request POST /api/posts/msg-1).
 2) Create a second message msg-2 (with a request POST /api/posts/msg-2).
 3) Create a reply reply-1 to the first message
 (with a request POST /api/posts/msg-1/replies/reply-1).
 4) Edit the reply reply-1 with a PUT request using msg-2 as message identifier
 (with a request PUT /api/posts/msg-2/replies/reply-1).
Surprisingly, the last request in Step 4 returns a “200 Allowed” response while it must have returned a “404 Not Found”
response.

CAPSTONE PROJECT

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

50

6.Testing

Unit Testing

51

+ Why?
- Identify local defects (= within a unit) fast

+ Who?
- Person developing the unit writes the tests.

+ When? At the latest when a unit is delivered to the rest of the team
- No test ⇒ no unit

- Test drivers & stubs are part of the system ⇒ configuration management

- Today fully automated

• *** Write the test first,
+ i.e. before writing the unit.
+ It will encourage you to design the component interface right

Unit under
Test Driver

StubStub Results
Test CasesTest CasesTest CasesTest Cases

Black- &
White-Box

Testing
techniques

6.Testing

Integration Testing

+ Why?
- The sum is more then its parts,

i.e. interfaces (and calls to them) may contain defects too.
+ Who?

- Person developing the module writes the tests.
+ When?

- Top-down: main module before constituting modules
- Bottom-up: constituting modules before integrated module
- In practice: a little bit of both

• ## The distinction between unit testing and integration testing is not that sharp!

52

Module
under Test Driver

ModuleStub Results
Test CasesTest CasesTest CasesTest Cases

Black- &
White-Box

Testing
techniques

Module

6.Testing

Regression Testing
Regression Testing ensures that all things that used to work still work after changes.

• Regression Test
+ = re-execution of some subset of tests to ensure that changes have not caused

unintended side effects
+ tests must avoid regression (= degradation of results)
+ Regression tests must be repeated often (after every change, every night, with each

new unit, with each fix,...)
+ Regression tests may be conducted manually

- Execution of crucial scenarios with verification of results
- Manual test process is slow and cumbersome

* preferably completely automated

• Advantages
+ Helps during iterative and incremental development

+ during maintenance
• Disadvantage

+ Up front investment in maintainability is difficult to sell to the customer

53

6.Testing

Acceptance Testing
• Acceptance Tests

+ conducted by the end-user (representatives)
+ check whether requirements are correctly implemented

- borderline between verification (“Are we building the system right?”)
and validation (“Are we building the right system?”)

• Alpha- & Beta Tests
+ acceptance tests for “off-the-shelves” software

(many unidentified users)
- Alpha Testing

> end-users are invited at the developer’s site
> testing is done in a controlled environment

- Beta Testing
> software is released to selected customers
> testing is done in “real world” setting,

without developers present

54

6.Testing

Question

55

Test Strategies

Unit Testing

What are the differences and similarities between
unit testing and regression testing?

Regression Testing

Optimal Fault Localisation
Automate as much as possible

Exercise small component
(“unit under test”)

Exercise complete system
(“no regressions”)

O
New slide

6.Testing

More Testing Strategies
• Recovery Testing / Resilience Testing

+ Test forces system to fail and checks whether it recovers properly
- For fault tolerant systems

• Stress Testing (Overload Testing)
+ Tests extreme conditions

- e.g., supply input data twice as fast and check whether system fails

• Performance Testing
+ Tests run-time performance of system

- e.g., time consumption, memory consumption
> first do it, then do it right, then do it fast

• Back-to-Back Testing
+ Compare test results from two different versions of the system

- requires N-version programming or prototypes

56

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

57

6.Testing

When to Stop?
When are we done testing? When do we have enough tests?

• Cynical Answers (sad but true)
+ You’re never done: each run of the system is a new test

> Each bug-fix should be accompanied by a new test
+ You’re done when you are out of time/money

> Include test in project plan
 AND DO NOT GIVE IN TO PRESSURE

> ... in the long run, tests SAVE time

• Statistical Testing
+ Test until you’ve reduced failure rate under risk threshold

* Testing is like an insurance company calculating risks

58

Test Time

Defects
per hour

6.Testing

Tool Support for Testing
• Test Harness

+ Deterministic tests without any user intervention
- all input is generated by stubs/all output is absorbed by stubs
- input/output behaviour is entirely predictable

+ A test-case is a predicate taking one parameter; an output stream
- Answers true (component passed test successfully) or false (component did not

pass the test + report on the output stream)
- For each change in requirements, for each bug report

> Adapt test cases
* Takes a lot of work: more test code than production code

• Code coverage tools
+ Instrument code to see which parts are (not) executed by a test suite

- More coverage ≠ revealing more defects
+ Mutation coverage

- Systematically inject faults and execute test suite

• Capture-playback tools
+ A tool records all UI-actions and their results
+ Possibility to replay recordings and verify results

* Vulnerable to modifications in UI

59

6.Testing

Agile Testing (DevOps)

60

6.Testing

Flipping the V

61

Acceptance Tests
(GUI Tests)

System Tests
Integration Tests

Unit Tests

70%

20%

10%

10%

20%

70%

Test Automation

6.Testing

4 Quadrants

62

Su
pp

or
tin

g
Te

am

Functional Tests
Examples
Story Tests
Prototypes
Simulation

Exploratory Testing
Scenarios
Usability Testing
Acceptance Testing
Alpha / Beta

Unit Tests
Integration Tests

Performance Testing
Load Testing
Security Testing
“ility” Testing

Technology Facing

Business Facing

C
ritique Product

Automated & Manual Manual

Automated Tools

6.Testing

Definition of Done

63

As a <user role>
I want to <goal>
so that <benefit>.

• …
• …
• …

✔ Tested

✔ …

✔ Acceptance tested

Conditions of Satisfaction

Acceptance Test
Scenarios via FIT tables

6.Testing

FIT(*) Tables

64

Browse Music

Play Music

Browse Music

start eg.music.browser

enter library

check total songs 37

Browse Music

enter select 1

check title Akila

check artist Toure Kunda

enter select 2

check title American Tango

check artist Weather Report

check album Mysterious Traveller

check year 1974

Example: Acceptance Test Cases
http://fit.c2.com

Play Music

start eg.music.Realtime

press play

check status loading

pause 2

check status playing

(*) FIT = Framework for Integrated Testing

http://fit.c2.com

6.Testing

Tool Support

65

CAPSTONE PROJECT

6.Testing

Test Coverage ≠ Code Coverage

66

uncovered

Input Expected
output

covered
Code Coverage

line, statement, …,
MC/DC, mutation

Requirement Coverage
FIT-tables, FMEA-tables

Test Coverage
Test Plan

• How many of the planned test cases did we specify?
• How many of the specified test cases did we execute?

6.Testing

Conclusion: Correctness & Traceability & …
• Correctness

+ Obviously (are we building the product right)

Besides verifying that the implementation corresponds with
the specification, there are other good reasons to test

• Traceability
+ Naming conventions between tests and requirements

specification is a way to trace back from components
to the requirements that caused their presence

• Maintainability
+ Regression tests verify that post-delivery changes

do not break anything

• Understandability
+ If you are a newcomer to the system, reading the

test code is a good place to see what it actually does
+ Write the tests first, and you’ll be the first user of

your component interface, encouraging you to
make it very readable

67

6.Testing

Summary (i)
You should know the answers to these questions

• What is (a) Testing, (b) a Testing Technique, (c) a Testing Strategy
• What is the difference between an error, a failure and a defect?
• What is a test case? A test stub? A test driver? A test fixture?
• What are the differences and similarities between basis path testing, condition testing

and loop testing?
• How many tests should you write to achieve MC/DC coverage? And multiple condition

coverage?
• Where do you situate alpha/beta testing in the four quadrants model?
• What are the differences and similarities between unit testing and regression testing?
• How do you know when you tested enough?
• What is Alpha-testing and Beta-Testing? When is it used?
• What is the difference between stress-testing and performance testing?

You should be able to complete the following tasks
• Complete test cases for the Loop Testing example (Loop Testing on page 19).
• Rewrite the binary search so that basis path testing and loop testing becomes easier.
• Write a piece of code implementing a quicksort. Apply all testing techniques (basis path

testing, conditional testing [3 variants], loop testing, equivalence partitioning) to derive
appropriate test cases.

• Write FIT test cases for the user stories in you Bachelor Capstone Project
• Apply fuzz testing to the REST-API of your project

68

CAPSTONE PROJECT

6.Testing

Summary (ii)
Can you answer the following questions?

• You’re responsible for setting up a test program. To whom will you assign the
responsibility to write tests? Why?

• Why do we distinguish between several levels of testing in the V-model?
• Explain why basis path testing, condition testing and loop testing complement each

other.
• Why is mutation coverage a better criterion for assessing the strength of a test suite?
• Explain fuzzing (fuzz testing) in your own words.
• Explain what FIT tables are.
• When would you combine top-down testing with bottom-up testing? Why?
• When would you combine black-box testing with white-box testing? Why?
• Is it worthwhile to apply white-box testing in an OO context?
• What makes regression testing important?
• Is it acceptable to deliver a system that is not 100% reliable? Why (not)?
• Explain the subtle difference between code coverage and test coverage.

69

