
7.Formal Specifications

• Introduction

+ When, Why and What?

⇒ Design by contract & Testing

• Input/Output Specifications

+ Pre- and postconditions +

invariants

+ Theorem proving

+ Weakest Possible Precondition

- Statements, if-statements,
loops, function calls

+ Experience report: JDK sort
method

• State-Based Specifications

+ Statecharts

+ Guards, Nested states

+ Complete, Consistent,

Unambiguous

+ Deduce test cases

• Formal Verification in Practice

• Conclusion

+ Correctness & Traceability

CHAPTER 7 – Formal Specification

1

Chapter completely revised

7.Formal Specifications

Literature

2

Books

+ [Ghez02] In particular, chapters “Specification” and “Verification - Analysis”

+ [Somm05] In particular, chapters “Formal Specification” & “Verification and

Validation”

+ [Pres00] In particular chapters “Formal Methods” & “Cleanroom Software

Engineering“

Articles

+ D. Cofer et al., "A Formal Approach to Constructing Secure Air Vehicle Software," in

Computer, vol. 51, no. 11, pp. 14-23, Nov. 2018, doi: 10.1109/MC.2018.2876051.

+ de Gouw, S., de Boer, F.S., Bubel, R. et al. “Verifying OpenJDK’s Sort Method for
Generic Collections.” Journal of Automated Reasoning 62, 93–126 (2019). doi.org/
10.1007/s10817-017-9426-4

7.Formal Specifications

Your Opinion?
What was the most effective means to achieve “provably secure against cyberattacks”?

✓ 1. Modeling the system architecture and formal verification of its key security and safety
properties.

✓ 2. synthesis of software components using languages that guarantee important security
properties.

✓ 3. use of a formally verified micro-kernel to guarantee enforcement of communication
and separation constraints specified in the architecture.

✓ 4. automatically building the final system from the verified architecture model and
component specifications.

✓ 5. To assess the security of the software produced, we worked with a Red Team of
professional penetration testers who evaluated our software and attempted to identify
vulnerabilities.

3

O

7.Formal Specifications

When Formal Specification?

4

Mistakes are possible (likely!?)

• while transforming requirements into a system

Formal Specification is used for

• (detailed) design

+ specify and verify key properties of system under design

- e.g. State-based Specifications

• formal verification

+ mathematical proof: code is “correct”

- e.g. Input/output specifications

Correctness

• Are we building the right product? = VALIDATION

• Are we building the product right? = VERIFICATION

7.Formal Specifications

• Software projects rely more and more on “Buy” than on “Build”

+ Cheaper, more reliable, ...

+ Companies focus in-house development on core business

- Buy 3rd party components for functionality outside the core

+ 3rd party components evolve

- require well-specified interface

• Buy vs. Build

+ But if we buy we need to specify

- clearly

- unambiguously

- completely

⇒ Formally

Why Formal Specification?

5

7.Formal Specifications

Why do we Care?

6

It is possible to build high-quality products without formal specifications!

(And it is possible to build low-quality products with formal specifications)

• Fact

+ For most systems it is more cost effective to apply other techniques (reviews,

tests, ...)

- business systems, information systems, ...

- Most software development is in that area

• Fact

+ For some areas, the benefits more than outweigh the costs

- high-risk systems: human lives depend on the software

> (because reliability is such a big issue)

- embedded systems: software controlling hardware

> (because components evolve at different rates)

- standards: defining information exchange protocols

> (because the same specification is reused by a lot of implementations)

Sooner or later you will be confronted with one of these!

Cyber-Physical
Systems}

7.Formal Specifications

What are Formal Specifications?
• What is a ...

+ Specification. A description of desired system properties.

- Preferably the “what” and not the “how”

+ Informal specification. Specification in natural language.

- augmented with figures, tables, examples, scenarios

+ Semi-formal specification. Specification based on a notation with
precise syntax but loose semantics.

- e.g. UML class & sequence diagrams

+ Formal Specification. Specification based on a formal model with
precise syntax & semantics.

7

7.Formal Specifications

Testing and Design by Contract
Formal foundation: formal syntax + formal semantics

• Possible to mathematically prove that a given system satisfies the

specification

A system is correct with respect to its specification !

Note: faults (omissions!) in the specification are still possible

Testing

• Formal specifications ⇒ black-box testing 

test-cases: complete coverage, thus highest probability of finding
mistakes

Design by Contract

• Formal specifications ⇒ natural pre- and post conditions

8

7.Formal Specifications

Is this Valid? Output?

9

 <p>

 Hello World

 </p>

 <p>

 Hello World

 </p>

O

7.Formal Specifications

• include logic assertions (pre & post-conditions + invariants) inside an algorithm

•verify termination and correctness via stepwise formal reasoning

Example: Input/Output Specification for a binary search procedure

procedure Binary_search (Key : ELEM ; T: ELEM_ARRAY;
 Found : out BOOLEAN; L: out ELEM_INDEX) ;

Pre-condition
 T’LAST - T’FIRST ≥ 0 and -- not empty
 for_all i, -- universal qualifier
 T’FIRST ≤ i ≤ T’LAST-1, T (i) ≤ T (i + 1) --sorted

Post-condition
 (Found and T (L) = Key) or
 (not Found and
 not (exists i, -- existential qualifier
 T’FIRST ≤ i ≤ T’LAST, T (i) = Key))

A) Input/Output Specifications

10

7.Formal Specifications

Proving Correctness
Goal:

• mathematically prove that post-condition is always satisfied when pre-condition is true

Termination?

• While loop terminates if Found or Bott > Top

• If an element = key exists, Found is set true

• In a loop execution either Found := true, Bott >> or Top <<

• Initially, Top > Bott thus (if Found remains false) eventually Bott > Top

Correctness?

• Loop invariant is “true” on entry to the loop.

• Assertion 2 follows because of the successful test Key = Mid

• Assertion 3 follows because the array is ordered. If T (Mid) < Key all values up to T

(Mid) must also be less than the key

• Assertion 4 follows by substituting Bott-1 for Mid (if T(mid) != Key)

• Assertions 5 and 6. Similar argument to 3 and 4

• After loop execution, either the key has been found or there is no value in the array

which has been searched which matches the key. However, Bott > Top so all the array
has been searched

⇒ Therefore, the binary search routine code conforms to its specification

11

7.Formal Specifications

Intermediate Assertions
01. Bott := T’FIRST; Top := T’LAST ;
02. L := (T’FIRST + T’LAST) mod 2; Found := T(L) = Key;
03. -- 1 . ASSERT (Found and T(L) = Key) or ((not Found)
04. -- and (not Key in T(T’FIRST..Bott-1, Top+1..T’LAST)));
05. while Bott <= Top and not Found loop
06. Mid := (Top + Bott) / 2;
07. if T(Mid) = Key then
08. Found := true; L := Mid;
09. -- 2. ASSERT Key = T(Mid) and Found;
10. elsif T(Mid) < Key then
11. -- 3. ASSERT not Key in T(T’FIRST..Mid);
12. Bott := Mid + 1;
13. -- 4. ASSERT not Key in T(T’FIRST..Bott-1);
14. else
15. -- 5. ASSERT not Key in T(Mid..T’LAST);
16. Top := Mid - 1;
17. -- 6. ASSERT not Key in T(Top+1..T’LAST);
18. end if;
19. end loop;

12

7.Formal Specifications

Automated Theorem Provers

13

https://dafny.org/

Compiler support to prove that

when pre-condition is true post-condition will (should) always be satisfied.

(Sometimes counter examples when proof does not hold.)

ethereum

VeriFast
solidity

5. Design by Contract

Hoare Logic (revisited)

14

Let:

	 S series of statements

	 {P} and {Q} are properties

{P} is the precondition

{Q} is the postcondition

Then:

	 	 {P} S {Q}

	 is a Hoare Triple meaning

	 “Any execution of A starting in a state where P holds,

	 must should terminate in a state where Q holds”

Example:	∀ x positive Integer

	 	 {x = 5} x := x * 2 {x > 0}

Adapted
 fro

m

Chapter
 5. D

esi
gn by

Contra
ct

7.Formal Specifications

Partially Correct / Totally Correct
Then:

	 	 {P} S {Q}

	 is a Hoare Triple meaning

	 “Any execution of A starting in a state where P holds,

	 should terminate in a state where Q holds”

The implementation of S with respect to its specification is …

• Partially correct.

+ Assuming the precondition is true just before the function executes,

then if the function terminates, the postcondition is true.

- Infinite loops, raising exceptions, … is allowed

• Totally correct.

+ Again assuming the precondition is true before function executes, the

function is guaranteed to terminate and when it does, the
postcondition is true.

15

5. Design by Contract

Let {P1} and {P2} be conditions expressed via predicates

• {P1} is stronger then {P2} iff

+ {P1} ≠ {P2}

+ {P1} ⇒ {P2}

• {P1} is weaker then {P2} iff

+ {P1} ≠ {P2}

+ {P2} ⇒ {P1}

• example

+ {x = 5} x := x * 2 {x > 0}

+ {x = 5} x := x * 2 {x > 5 and X < 20}

- {x > 5 and X < 20} is stronger than {x > 0}

> stronger is better for a post-condition

(it is more precise about the outcome)

Stronger (and Weaker)

16

Adapted
 fro

m

Chapter
 5. D

esi
gn by

Contra
ct

5. Design by Contract

Consider the Hoare triple

{P} S {Q}

if ∀ Q’ such that {P} S {Q’}, Q ⇒ Q’

then Q is the strongest postcondition of S with respect to P

Denoted with sp(S, Q)

Strongest Postcondition

17

5. Design by Contract

• example

+ {x = 5} x := x * 2 {x > 0}

+ {x = 5} x := x * 2 {x > 5 and X < 20}

What is the strongest postcondition for this Hoare triple?

+ {x = 5} x := x * 2 {……………………}

Quizz

18

O

5. Design by Contract

Consider the Hoare triple

{P} S {Q}

When we know {P} and S we can deduce sp(S,P)

For assignment

{P} x:= E {x = E}

Assignment with operation

{x+y = 5} x := x + z {x’ + y = 5 and x = x’ + z}

x’ represents the “old” value of x, thus before S executes

Deducing the Strongest Postcondition

19

5. Design by Contract

Weakest Precondition
For proving correctness it makes more sense(*) to calculate the inverse:

• Given a statement S and a postcondition Q,

+ what is the weakest possible precondition?

Consider the Hoare triple

{P} S {Q}

If ∀ P’ such that {P’} S {Q}, P’ ⇒ P, then

P is the weakest precondition of S with respect to Q.

Denoted with wp(S, Q)

(*) Why does it make more sense to find the weakest possible precondition?

• It represents the least amount of work to prove correctness

• Too strong a pre-condition may imply that we cannot prove correctness

20

5. Design by Contract

Weakest Precondition (assignment)
Consider the Hoare triple

{P} x:= E {Q}

Then the weakest precondition means that we should

• replace each occurrence of x in Q with E

- denoted with [E/x] Q

• and then substitute in the precondition.

Thus {[E/x] Q} x := E; {Q}

21

O {………} x := x - 2; {x > 0}
Fill in the weakest

precondition for {………}

5. Design by Contract

Weakest Precondition (multiple statements)
Consider the Hoare triple

{P} S1; S2; … Sn {Q}

Then the weakest precondition is deduced backwards.

{P} = wp(S1; S2; … Sn, Q)

= wp(S1; S2; …Sn-1, wp(Sn, Q))

= wp(S1, wp(S2, wp(… wp(Sn, Q)…)))

22

{P} x:= z + 1; y:= x + y {y > 5}

 step 1: wp(y := x + y, y > 5)

[x + y / y] y > 5

(x + y > 5)

 step 2: wp(x := z + 1, x + y > 5)

[………… / …………] x + y > 5

(……………………… > 5)

O
Fill in the weakest

precondition for {P}

5. Design by Contract

Weakest Precondition (if statement)
Consider the Hoare triple

{P} if C then S else T; {Q}

Then the weakest precondition means that we should

• calculate the result depending on C being true or false

• and then substitute in S or T branch.

Thus wp (if C then S else T, Q)

= (c ⇒ wp(S, Q)) ⋀ (¬c ⇒ wp(T, Q))

= (c ⋀ wp(S, Q)) ⋁ (¬c ⋀ wp(T, Q))

23

O {………} if (x> y) then z := x else z := y; {z = max(x,y)}
Fill in the weakest

precondition for {………}

Legend

⋀ logical and

⋁ logical or

¬ negation (not)

5. Design by Contract

Loops
Consider the Hoare triple

{P} while C do S; {Q}

Proof by induction - introduce (i) loop invariant and (ii) loop variants

• (i) loop invariant I — what will ensure the postcondition?

+ The invariant is initially true (base case): P ⇒ I

+ Each loop step preserves the invariant (inductive step): {I ⋀ C} S {I}

+ After the loop terminates the postcondition is true: {¬C ⋀ I) ⇒ Q

• (ii) loop variant — what guarantees that the loop terminates?

= a monotonically decreasing function integer-value function v

+ a strictly decreasing with every step: {I ⋀ C ⋀ v = V} S {I ⋀ v < V}

+ when v reaches zero the loop terminates: {I ⋀ v ≤ 0} ⇒ ¬C

24

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

in pseudo code

function int useless_loop(x int) {

 require (………………);

 while (x > 0)do x := x - 1;

 ensure (x == 0);

}

Quizz

25

O

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

• establish loop invariant I where {I ⋀ C} S {I}

+ {I ⋀ (x > 0)} x := x -1 {I}

• look for the weakest pre-condition

+ I ⋀ (x > 0) = wp(x := x -1, I)

+ I ⋀ (x > 0) = [x - 1 / x] I

• Which I would resolve the above?

+ I = …………………

+ ………………

• Does it terminate the loop? {¬C ⋀ I) ⇒ Q

+ {¬C ⋀ ……………) ⇒ x = 0

Quizz — step 1 - loop invariant

26

O

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

• establish loop variant so that {I ⋀ C ⋀ v = V} S {I ⋀ v < V}

+ {(x ≥ 0) ⋀ (x > 0) ⋀ v = V} x := x-1; {x ≥ 0 ⋀ v < V}

• choose x for v

+ {(x ≥ 0) ⋀ (x > 0) ⋀ x = V} x := x-1; {x ≥ 0 ⋀ x < V}

• substitute x-1 for x in the postcondition; always true?

+ ……………………

+ ……………………

• when v reaches zero the loop terminates: {I ⋀ v ≤ 0} ⇒ ¬C

+ {(x ≥ 0) ⋀ x ≤ 0} ⇒ ¬(x > 0)

+ …………………

+ …………………

Quizz — step 2 - loop variant

27

O

5. Design by Contract

Function (Procedure) Calls
Consider the Hoare triple

{P} Sprev; F(…); Snext; {Q}

where F is a function call / procedure call / method invocation / …

> F is considered a black box

> We need a pre- and postcondition for F

* Must be provided by the developer of F

Postcondition for F? = weakest precondition for Snext.

Postcondition for Sprev? = strongest precondition for F.

28

7.Formal Specifications

Example

29

7.Formal Specifications

Your Opinion?
What do you think happened with the bug report on the broken 
Java.utils.Collection.sort ()?

The suggested fix was correctly incorporated; the sort method now is
provably correct.

They fixed the symptom and not the root cause; the risk is reduced but
still not correct.

The bug report was ignored because the fault could not be reproduced
(i.e. "Works for me”).

The bug report was closed without fix, because it was a low risk bug.

30

O

7.Formal Specifications

What actually happened …
We favored the second suggestion which is to formalize the invariant as originally intended
and to fix the code of the method mergeCollapse that is responsible for reestablishing the
invariant. We were able to formally and mechanically prove that this fixed version of the
algorithm is correct in the sense that the stack lengths are sufficient and no
ArrayIndexOutOfBoundsException is thrown. We describe this fix and its verification in Sect.
4.3 below.

In the aftermath of our discovery, it turned out that the bug was present in several
implementations of TimSort. Besides in (Open)JDK, the bug was present in

(1) its original Python implementation,

(2) Android,

(3) an independent Java implementation used by Apache Lucene, as well as

(4) a Haskell implementation.

All of these projects fixed the bug within a short time frame. The OpenJDK project was the
only one where the bug was fixed by just increasing the allocated array lengths, which is in
our opinion sub-optimal, and there is no machine checked proof of that fix. All other
projects implemented our second suggestion and fixed the underlying problem.

Cited from … (with slight lay-out changes)

• de Gouw, S., de Boer, F.S., Bubel, R. et al. “Verifying OpenJDK’s Sort Method for Generic Collections.” Journal of Automated

Reasoning 62, 93–126 (2019). doi.org/10.1007/s10817-017-9426-4

31

(a) suggested fix was correctly incorporated
(b) fixed the symptom not the root cause

7.Formal Specifications

B) State-Based Specifications

32

Typically based on the notion of finite state machines

• describes the sequence of states a system is supposed to go through 

… in response to external stimuli (a.k.a. events)

StateCharts

• widely used: present in UML

• commonly used in real-time systems

• Definitions

+ state = a condition an object satisfies 

(i.e. a predicate computing its result with the 
attribute values of the object)

> The state can be observed from the outside !

+ transition = a change of state triggered by an event, condition or time

7.Formal Specifications

Sequence Diagrams

33

a) happy day scenario: pop of
a non-empty stack

• What are acceptable message sequences for a stack?

• What is the union of all possible scenarios?

⇒ A statechart allows to specify all valid (also all invalid) scenarios

b) secondary scenario: pop of
an empty stack

Stack

push(9)

isEmpty ()
pop()

9

Stack

isEmpty ()
pop()

exception

7.Formal Specifications

push(value)
empty loaded

error

pop()

Statechart for a Stack

34

start marker: 
object starts
in this state

when in
“empty” state,
only
acceptable
message is
“push”

by consuming
the “push()”
event, the
copy will
switch to
other state

⇒

postcondition
for push

when in
“empty” state,
pop returns an
error

⇒ precondition

for pop

no event
above
transition, thus
fires
automatically

termination

What about a pop() on a loaded stack?

7.Formal Specifications

Guarded Transition

35

2 pop() transitions
leaving from
“loaded”

⇒ Indeterministic?

What about destructors on empty/loaded state?

Deterministic because of
guard expressions
[size() ...]

Constructor
& Destructor

empty loaded

error

pop()

Stack()

~Stack()

push(value)

pop() [size()=1]

/ return top()

pop() [size()>1]

/ return top()

7.Formal Specifications

Nested State

36

State with Nested
States

shorthand for multiple
transitions with same
events and target
states

empty loaded

error

pop()

initialized

~Stack()

push(value)

pop() [size()=1]

/ return top()

pop() [size()>1]

/ return top()

Stack()

7.Formal Specifications

Quiz

37

switch-on

…………

red

greenyellow

O Complete the Traffic Light Statechart

…………

…………

…………

7.Formal Specifications

Consistent / Complete / Unambiguous

38

When is a state-based specification …

• Complete

+ every event/state pair has a transition

- Create table: events (incl. guards) x state 
one cell contains target state

- all cells should have a target state

• Consistent

+ every state is reachable from initial state 

& final state is reachable from every other state

- Breadth-first spanning tree; root is initial state

- all leaf nodes of the graph should be terminal state

• Unambiguous (= deterministic)

+ same event (incl. guard) does not appear on more than one transition

leaving any given state

- Verify using table created in completeness

7.Formal Specifications

Deducing Test Cases

39

Test cases

+ cover all state transitions at least once (*)

• define a predicate for each state,

+ which answers whether object is in that state

- (Thus initialized() — empty() — loaded() — error())

• test-cases must cover the breadth-first spanning tree

+ construct with same table used to verify completeness

- rows and columns = events (incl. guards) x state 
cell contains target state

(*) Stronger coverage is possible:

- cover all sequences of state transitions of length n

- force all guards

- force all guards with boundary values

- …

7.Formal Specifications

Test cases for Statechart “Stack” (1/2)

40

empty

error
error

initial

error

error

terminated~Stack terminatedterminated
error (??)errorpop() [size()>1] loaded

pop() [size()=1] error (??)error empty
loadedpush error (??)loaded

error
errorloaded (??)

loaded
empty (??)
empty

Stack()

Stack()
empty

~Stack()

error
pop()

loaded
push(1)

~Stack()

~Stack()

pop()

push(2)

push(2)

empty
~Stack()

loaded
~Stack()

loaded loaded
~Stack()pop()

7.Formal Specifications

Test cases for Statechart “Stack” (2/2)
s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

s.~Stack();

s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

pop(s);

assertTrue(error(s));

s.~Stack();

s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

push(s, 1);

assertTrue(loaded(s));

s.~Stack();

s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

push(s, 1);

assertTrue(loaded(s));

pop(s);

assertTrue(empty(s));

s.~Stack();

s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

push(s, 1);

assertTrue(loaded(s));

push(s, 2);

assertTrue(loaded(s));

s.~Stack();

s := Stack();

assertTrue(initialised(s));

assertTrue(empty(s));

push(s, 1);

assertTrue(loaded(s));

push(s, 2);

assertTrue(loaded(s));

pop(s);

assertTrue(loaded(s));

s.~Stack();

41

7.Formal Specifications

State-based Specifications Revisited

42

State-based Specifications

• Are particularly suitable for specifying “acceptable” message sequences

+ unify effect of all possible scenarios on one class in one statechart

+ “unacceptable” implies precondition

+ state change implies postconditions

> Design by Contract

• Specify acceptable message sequences as paths through a graph

> cover all paths

> Path Testing

7.Formal Specifications

Example (advanced): Traffic Light (1/2)

43

switch-on

switch-off

red

greenyellow
timer-event

(1,5 min)

timer-event

(0,5 min)

timer-event

(2 min)

O What is the starting state of this statechart?

Is this what you want?

7.Formal Specifications

Example (advanced): Traffic Light (2/2)

44

• safety: “something bad never happens”

• liveness: “something good eventually happens”

• fairness: “if something may happen frequently, it will happen” } formal verification

+ simulation

+ testing

7.Formal Specifications

Formal Verification in Practice (1/2)

45

SDV was applied later in the cycle after
all other tools, yet found 270 real bugs
in 140 WDM and WDF drivers.

A lightweight model of the C++ code and the Z specification of
the component was manually developed in the theorem prover
PVS. As a result, some essential mismatches between
specification and code were identified.

7.Formal Specifications

Formal Verification in Practice (2/2)

46

A tool to detect bugs in Java and C/C+
+/Objective-C code before it ships

We are committed to helping you achieve the highest levels
of security in the cloud. We’ve developed automated
reasoning tools that use mathematical logic to answer
critical questions about your infrastructure to detect
misconfigurations that could potentially expose your data.
We call this provable security because it provides higher
assurance in the security of the cloud and in the cloud.

6.Testing

The Verification Landscape

47

Are we building the product right?

Formal
Specifications

Simulation Testing

Copied

06.Software Testing

7.Formal Specifications

• Correctness

+ Are we building the system right?

- Formal specifications allow to verify presence of 
desired properties

* Mathematical proof

* Semi-automatic generation of test-cases

- Faults (omissions!) in the specification are still possible

+ Are we building the right system?

- (Some) formal specifications can be simulated / animated

* May play the role of a prototype

* Counterexamples to illustrate corner case behaviour

• Traceability

+ Requirements ⇔ System?

- Formal specification is an intermediate representation

* Traceability depends on usage and discipline

Correctness & Traceability

48

7.Formal Specifications

Summary(i)

49

You should know the answers to these questions

• Why is an UML class diagram a semi-formal specification?

• What is an automated theorem prover?

• What is the distinction between “partially correct” and “totally correct”?

• Give the mathematical definition for the weakest precondition of Hoare triple {P} S {Q}

• Why is it necessary to complement sequence diagrams with statecharts?

• What is the notation for the start and termination state on a state-chart? What is the

notation for a guard expression on an event?

• What does it mean for a statechart to be 

(a) consistent, (b) complete, and (c) unambiguous?

• How does a formal specification contribute to the correctness of a given system?

You should be able to complete the following tasks

• Use a theorem prover (Daphny) to prove that a given piece of code is correct.

• Create a statechart specification for a given problem.

• Given a statechart specification, derive a test model using path testing.

7.Formal Specifications

Summary(ii)
Can you answer the following questions?

• (Based on the article “A Formal Approach to Constructing Secure Air Vehicle Software”.)

+ What is according to you the most effective means to achieve “provably secure

against cyberattacks”?

• Why is it likely that you will encounter formal specifications?

• Explain why we need both the loop variant and the loop invariant for proving total

correctness of a loop?

• What do you think happened with the bug report on the broken Java.utils.Collection.sort

()? Why do you think this happened?

• Explain the relationship between “Design By Contract” on the one hand “State based

specifications” on the other hand.

• Explain the relationship between “Testing” on the one hand and “State based

specifications” on the other hand.

• You are part of a team build a fleet management system for drones transporting medical

goods between hospitals. You must secure the system against cyber-attacks. Your boss
asks you to look into formal specs; which ones would you advise and why?

50

