
8. Domain Modelling

CHAPTER 8 – Domain Modelling

1

• Introduction
+ When, Why, How, What

• CRC-Cards
+ Problem Decomposition

- Functional vs. Object-Oriented
- Classes, Responsibilities & Collaborations, Hierarchies

+ Group work
- Creative thinking
- Brainstorming & Role-playing

• Product Lines
+ Commonalities and Variations
+ Feature Diagrams
+ Linux as a product line
+ “clone and own”

- Benefits drawbacks
- Github

• Conclusion
+ Correctness & Traceability

8. Domain Modelling

Literature (1/2)

2

• Books
+ [Ghez02], [Somm05], [Pres00]

- Chapters on Specification / (OO)Analysis/ Requirements + Validation

• CRC Cards
+ [Booc94] Object-oriented analysis and design: with applications, Grady Booch,

Addison-Wesley, 1994
> A landmark book on what object-oriented decomposition is about.

+ [Bell97] The CRC Card Book, David Bellin and Susan Suchman Simone, Addison-
Wesley, 1997.
- An easy to read and practical guide on how apply CRC cards in brainstorm sessions

with end users.

• Product Lines
+ [Pohl2005] Software Product Line Engineering: Foundations,

Principles and Techniques, 2005. Klaus Pohl, Günter Böckle,
Frank J. van der Linden
- An overview of all aspects of product line engineering

(from domain modelling over testing to organisational aspects)

8. Domain Modelling

Literature (2/2)

3

• [Travis2019] “How the Boeing 737 Max Disaster Looks to a Software
Developer" Gregory Travis. IEEE Spectrum, April 2019.
+ A sad example on how various political forces around a product ultimately leads to

disastrous consequences

Product Lines
• “Product Line Hall of Fame”

+ http://splc.net/fame.html

• “Software Product Lines Online Tools”
+ http://www.splot-research.org/

• [She10] She, Steven; Lotufo, Rafael; Berger, Thorsten; Wasowski, Andrzej; Czarnecki,
Krzysztof. The Variability Model of The Linux Kernel. Workshop on Variability Modelling
of Software-intensive Systems (VAMOS 2010)
+ Illustrating large scale variability

http://splc.net/fame.html
http://www.splot-research.org/

8. Domain Modelling

When Domain Modeling?

4

A requirements specification must be validated
• Are we building the right system?

A requirements specification must be analyzed
• Did we understand the problem correctly?

= Are we modeling the problem domain adequately?

8. Domain Modelling

Why Domain Modeling?

5

The 30++ years of software development taught us one fundamental lesson...
• The customers don’t know what they want!
• And if they do, they will certainly change their mind.

Function

Time

User needs System
capability

t0 t1 t2 t3 t4

8. Domain Modelling

• Develop an information system for a
transportation company in 1860.
+ “Pony Express” Use Cases

- refresh horse
- replace whip
- clean pistol

• 100 years later, “Pony Express” is still
operating in the transportation business
…
+ How about the Use Cases?

- refresh horse
 ⇒ add fuel

- replace whip
 ⇒ perform repair

- clean pistol
 ⇒ include protection

Why Use Cases are not Sufficient?

6

8. Domain Modelling

Domain Models help to anticipate changes, are more robust.
• Focus on the what (goal), not on the how (procedure)!

How Domain Modeling?

7

How? Open door, break lock, …
… jump over the wall

What? Get on the other
side of wall.

8. Domain Modelling

What is Domain Modeling?

8

• Examples
+ CRC Cards

- Model the concepts in the problem domain in object-oriented terms.
> Classes and Inheritance

+ Feature Diagrams
- Model the requirements of a family of systems

> Commonalities and variations

Model of Problem Domain
• Requirements Model

+ Focus on WHAT

vs. Model of Solution Domain
• Design Model

+ Focus on HOW

8. Domain Modelling

CRC = Class-Responsibility-Collaborations

What are CRC Cards?

9

+ a short description of the purpose of the class on the back of the card

• CRC Cards
+ compact, easy to manipulate, easy to modify or discard!
+ easy to arrange, reorganize
+ easy to retrieve discarded classes

• Usually CRC cards are not maintained electronically
+ May be used by computer illiterates

Class: Name

superclass: list of superclasses
subclass: list of subclasses

responsibility 1
responsibility 2
…

collaborations required to achieve responsibility1
collaborations required to achieve responsibility2
…

8. Domain Modelling

Problem Decomposition (1/2)

10

Object-Oriented Decomposition Functional Decomposition

Decompose according to the objects a system
must manipulate.
⇒ several coupled “is-a” hierarchies

Decompose according to the functions a
system must perform.
⇒ single “subfunction-of” hierarchy

Example: Order-processing software for mail-order company

Order
 - place
 - price
 - cancel
Customer
 - name
 - address
LoyalCustomer
 - reduction

OrderProcessing
 - OrderMangement
 • placeOrder
 • computePrice
 • cancelOrder
 - CustomerMangement
 • add/delete/update

8. Domain Modelling

Problem Decomposition (2/2)

11

Object-Oriented Decomposition Functional Decomposition

 ⇒ distributed responsibilities ⇒ centralized responsibilities

Example: Order-processing software for mail-order company

Order::price(): Amount
 {sum := 0
 FORALL this.items do
 {sum := sum + item. price}
 sum:=sum-(sum*customer.reduction)
 RETURN sum
 }

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }Customer::reduction(): Amount

 { RETURN 0%}
LoyalCustomer::reduction(): Amount
 { RETURN 5%}

8. Domain Modelling

Quizz

12

Object-Oriented Decomposition Functional Decomposition

Example: Order-processing software for mail-order company

Order::price(): Amount
 {sum := 0
 FORALL this.items do
 {sum := sum + item. price}
 sum:=sum-(sum*customer.reduction)
 RETURN sum
 }

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }Customer::reduction(): Amount

 { RETURN 0%}
LoyalCustomer::reduction(): Amount
 { RETURN 5%}

O Which one do you prefer? Why?

8. Domain Modelling

• Functional Decomposition
+ Good with stable requirements or single function (i.e., “waterfall”)
+ Clear problem decomposition strategy
+ However

- Naive: Modern systems perform more than one function
> What about “produceQuarterlyTaxForm”?

- Maintainability: system functions evolve ⇒ cross-cuts whole system

> How to transform telephone ordering into web order-processing?
- Interoperability: interfacing with other system is difficult

> How to merge two systems maintaining customer addresses?

• Object-Oriented Decomposition
+ Better for complex and evolving systems
+ Encapsulation provides robustness against typical changes

Functional vs. Object-Oriented

13

How to find
the objects?

8. Domain Modelling

God Classes

14

getName
getAddress

Participant

isLoyalCustomer

Customer
Shipping
Company

placeOrder
computePrice
registerComplaint
cancelOrder
returnProduct
sendCatalogue

OrderManager

• ... or how to do functional decomposition with an object-oriented syntax

• Symptoms
+ Lots of tiny “provider” classes, mainly providing accessor operations

- most of operations have prefix “get”, “set”
+ Inheritance hierarchy is geared towards data and code-reuse

- “Top-heavy” inheritance hierarchies
+ Few large “god” classes doing the bulk of the work

- suffix “System”, “Subsystem”, “Manager”, “Driver”, “Controller”

8. Domain Modelling

Responsibility - driven Design in a Nutshell

15

• Responsibility-driven design is the analysis method using CRC Cards.

• How do you find objects and their responsibilities?
+ Use nouns & verbs in requirements as clues.

- Noun phrases lead to objects
- Verb phrases lead to responsibilities

+ Determine how objects collaborate to fulfill their responsibilities.
- To collaborate objects will play certain roles

+ Why is this important?
- Objects lead to classes
- Responsibilities lead to operations
- Collaborations & Roles lead to associations

+ Is it that simple?
- No requires creative thinking!

8. Domain Modelling

Good problem decomposition requires creative thinking.

Creative Thinking

16

2 string puzzle
Within one large empty room, there are two long ropes are
hanging from the ceiling. The ropes are too far away to reach
the one while holding the other. A woman comes in holding a
pair of scissors and she ties the ropes together.
How did she achieve this?

See Communications of the ACM, Vol. 43(7), July 2000, p. 113

O

8. Domain Modelling

Identifying Objects

17

+ Start with requirements specification/scope description/....
+ 1. Look for noun phrases:

- separate into obvious classes, uncertain candidates, and nonsense
+ 2. Refine to a list of candidate classes. Some guidelines are:

- Model physical objects — e.g. disks, printers
- Model conceptual entities — e.g. windows, files
- Choose one word for one concept —

what does it mean within the domain?
- Be wary of adjectives — does it really signal a separate class?
- Be wary of missing or misleading subjects — rephrase in active

voice
- Model categories of classes — delay modeling of inheritance
- Model interfaces to the system — e.g., user interface, program

interfaces
- Model attribute values, not attributes —

e.g., Customer vs. Customer Address

8. Domain Modelling

Identifying Objects: Example (1/2)

18

“We are developing order-processing software for a mail-order
company called National Widgets, which is a reseller of products
purchased from various suppliers.
• Twice a year the company publishes a catalogue of products,

which is mailed to customers and other interested people.
• Customers purchase products by submitting a list of

products with payment to National Widgets. National Widgets
fills the order and ships the products to the customer’s
address.

• The order-processing software will track the order from the
time it is received until the product is shipped.

• National Widgets will provide quick service. They should be
able to ship a customer’s order by the fastest, most efficient
means possible.”

8. Domain Modelling

Identifying Objects: Candidate Classes (2/2)

19

Nouns & Synonyms Candidate Class Name

software -: don’t model the system

mail-order company, company, reseller Company (?: model ourselves)

products Product (+: core concept)

suppliers Supplier (+: core concept)

catalogue of products Catalogue (+: core concept)

customers, interested people Customer (+: core concept)

list of products, order, customer’s order Order (+: core concept)

payment Payment (+: core concept)

customer’s address Address (?: customer’s attribute)

time it is received -: attribute of Order

time product is shipped -: attribute of Order

quick service -: attribute of Company

*** Expect the list to evolve as analysis proceeds.
• Record why you decided to include/reject candidates
• Candidate Class list follows configuration management & version control

8. Domain Modelling

Responsibilities/Collaborations

20

• What are responsibilities?
+ The public services an object may provide to other objects,

- the knowledge an object maintains and provides
- the actions it can perform

+ ... not the way in which those services may be implemented
- specify what an object does, not how it does it
- don’t describe the interface yet, only conceptual responsibilities

• What are collaborations?
+ other objects necessary to fulfill a responsibility

- when collaborating these other objects play a role
- to play this role, other objects must have certain responsibilities

+ empty collaborations are possible
- can you argue this responsibility in terms of the class description?

8. Domain Modelling

• To identify responsibilities (and the associated collaborations):
+ Scenarios and Role Play.

- Perform scenario walk-throughs of the system where different persons “play” the
classes, thinking aloud about how they will delegate to other objects.

+ Verb phrase identification.
- Similar to noun phrase identification, except verb phrases are candidate

responsibilities.
+ Class Enumeration.

- Enumerate all candidate classes and come up with an initial set of responsibilities.
+ Hierarchy Enumeration.

- Enumerate all classes in a hierarchy and compare how they fulfill responsibilities.

• Design guideline(s)
+ *** Distribute responsibilities uniformly over classes

(Classes with more than 12 responsibilities are suspicious)
+ *** A class should have few collaborators

(Classes with more than 8 collaborators are suspicious)

Identifying Responsibilities

21

8. Domain Modelling

Hierarchies

22

+ Look for “kind-of” relationships
- Liskov Substitution principle:

You may substitute an instance of a subclass for any of its superclasses.
- Does the statement “every subclass is a superclass” make sense

> “Every Rectangle is a Square” vs. “Every Square is a Rectangle”
+ Factor out common responsibilities

- Classes with similar responsibilities may have a common superclass
+ “kind-of” hierarchies are different from “part-of” relationships

- Often, the whole will share responsibilities with its part
(suggesting “kind-of” instead of “part-of”)

+ Name key abstractions
- Not finding a proper name for the root is a symptom for an improper “kind-of”

hierarchy Design guideline(s)

• Design guideline(s)
+ *** Avoid deep and narrow hierarchies

Classes with more than 6 superclasses are suspicious

8. Domain Modelling

Brainstorming

23

• Team
+ Keep small: five to six persons
+ Heterogeneous:

- 2 domain-experts (involved in day-to-day work; not management)
- 2 analysts (build connections, abstractions and metaphors)
- 1 experienced OO-designer (programmer ⇒ involvement)

- 1 facilitator (chairs the meeting)

• Tips
+ All ideas are potentially good (i.e., may trigger the creative thinking)
+ No censorship (even on yourself), no rejection
+ Think fast, ponder later
+ Produce as many ideas as possible
+ Give every voice a turn
+ round-robin (with an optional “pass” policy)

• Design Guideline(s)
 ** Use white-boards and paper CRC Cards for smooth communication.

8. Domain Modelling

Role-playing

24

• Role-playing is a way to achieve common understanding between all
parties involved (domain experts, analysts, ...)

• Basic Steps
+ 1. Create list of scenarios
+ 2. Assign Roles
+ 3. Each member receives a number of CRC Cards
+ 4. Repeat
+ 4.1 Rehearse Scenarios

- Script = Responsibilities on CRC Cards
+ 4.2 Correct CRC Cards and revise scenarios

- Rehearsals will make clear which parts are confusing
+ 4.3 Until scenarios are clear
+ 5. Perform final scenario

• Guideline(s)
*** For tips and techniques concerning role-play, see [Bell97]

8. Domain Modelling

Role-playing: Example

25

USE CASE 5 Place Order

Goal in Context Customer issues request by phone to National Widgets; expects goods
shipped and to be billed.

Class: Customer

provideInfo CustomerRep

Class: CustomerRep

acceptCall Customer

Class: Catalogue Class: Product

Class: …………………… Class: ………………

O

8. Domain Modelling

Use cases versus CRC-Cards

26

• Use cases are a requirements specification technique.
• CRC Cards are a requirements validation technique.

Use cases & CRC cards complement each other!

Use-Case

Goal

Use-Case

Scenario

CRC-Cards

8. Domain Modelling

Families of Systems

27

handcrafting
one-of-a-kind

solutions

assembling
components

using product lines

Single System System Families

Examples from “Product Line Hall of Fame”
(http://splc.net/fame.html)

• Mobile phones (Nokia) [1 new phone every day!]
• Television sets, medical systems (Philips)
• Gasoline Systems Engine Control (Bosch)
• Telephone switches (Philips, Lucent)
• …

8. Domain Modelling

Feature Models

28

• Feature
+ a prominent or distinctive user-visible aspect, quality, or characteristic of a software

system or system

• Feature Models:
+ define a set of reusable and configurable requirements for specifying the systems in a

domain
+ = a model that defines features and their dependencies, typically in the form

of a feature diagram
+ = defines the commonalities and variations between the members of a

software product line

• Feature Diagram
+ = a visual notation of a feature model, which is basically an and-or tree.

(Other extensions exist: cardinalities, feature cloning, feature attributes, …)

• Product Line
+ = a family of products designed to take advantage of their common aspects and

predicted variabilities

8. Domain Modelling

What is a Feature?

29

• Feature
+ a prominent or distinctive user-visible aspect, quality, or characteristic

of a software system or system

List the 3 most
important features of

your phone. O

8. Domain Modelling

Feature Diagram: Example

30

Car

Transmission Horsepower Air Conditioning

Manual Automatic

Mandatory
Features

Optional
Features

Alternative
Features

Composition Rule:
“Air Conditioning” requires

“horsepower” > 100

Rationale:
“Manual” more fuel efficient.

8. Domain Modelling

Linux as a Product Line

31

xconfig configurator

© [She10] She, Steven; Lotufo, Rafael; Berger, Thorsten; Wasowski, Andrzej; Czarnecki, Krzysztof. The Variability Model of
The Linux Kernel. Workshop on Variability Modelling of Software-intensive Systems (VAMOS 2010)

The 2.6.28.6 version of the kernel contains
more than 5000 features!

8. Domain Modelling

“clone and own”

32

Variant-1

Variant-2

Variant-3

Variant-4

Cloning an existing product variant, then modifying it to add and/or remove
some functionalities, in order to obtain a new product variant.

8. Domain Modelling

The good, the bad and the ugly

33

[Dubi13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czarnecki. 2013. An
Exploratory Study of Cloning in Industrial Software Product Lines. In Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering (CSMR '13). IEEE Computer Society, Washington, DC, USA, 25-34.

Advantages Disadvantages

Efficiency
- Saves time and reduces costs
- Provides independence
- Readily available

Overhead
- Propagating changes
- Adapting the clone is difficult
- Repetitive tasks are common

- Bug fixing
- Which variant to clone from?

Barriers

Short-Term Thinking
- Lack of Planning
- Lack of Resources
- Unawareness

(Lack of) Governance
- Lack of reuse tracking
- Lack of organizational roles and processes
- Lack of measurement

8. Domain Modelling

Social Coding Platforms (git based)

34

8. Domain Modelling

Social Forks versus Variant Forks

35

Social Fork

Social Fork

Original project

Social Forks Variant Forks

Variant 2

Original project

Variant 1

Social Fork

Social Fork

Pull
request

1. Fork is created
2. Modifications (branching)

+ Bug fix, security patch, new features
3. Pull request (merge in main branch)
4. Social fork ceases to be maintained

1. Fork(s) are created
2. Maintained separately

+ Via social forks
3. Duplicated effort

+ bug fixes, security patches

8. Domain Modelling

Master Student Work

36

Mined 8,323 patches from 364 source variants on GitHub
• Classify into

+ Missed Opportunity
- fix applied in one variant but not the other

+ Effort Duplication
- fix applied in both variants

+ …

8. Domain Modelling

2 examples

37

linkedin/kafka (fork)apache/kafka (upstream)

• MO – Missed opportunity
• ED – Effort duplication
• SP – Split Patch (Both buggy and patched lines)
• NI – Non Interesting
• CC – Unhandled programming language
• NE – Missing file in target
• EE – Error

NI

microsoft/azure-tools-for-java (upstream) JetBrains/azure-tools-for-intellij (fork)

NI

8. Domain Modelling

• Correctness
+ Are we building the system right?

- Good maintainability via a robust model
of the problem domain.
> Specifying the “what” not the “how”

• Are we building the right system?
+ Model the problem domain from the customer perspective
+ Role-playing scenarios helps to validate use cases

- Paper CRC Cards are easy to reorganize
+ Feature Diagrams focus on commonalities/variations

- Makes product differences (and choices) explicit

• Traceability
+ Requirements ⇔ System?

- Via proper naming conventions
- Especially names of classes and operations

Correctness & Traceability

38

8. Domain Modelling

Summary (i)

39

• You should know the answers to these questions
+ Why is it necessary to validate and analyze the requirements?
+ What’s the decomposition principle for functional and object-oriented decomposition?
+ Can you give the advantages and disadvantages for functional decomposition? What

about object-oriented decomposition?
+ How can you recognize “god classes”?
+ What is a responsibility? What is a collaboration?
+ Name 3 techniques to identify responsibilities.

+ What do feature models define?
+ Give two advantages and disadvantages of a “clone and own” approach
+ Explain the main difference between a social fork and a variant fork

+ How does domain modeling help to achieve correctness? Traceability?

• You should be able to complete the following tasks
+ Apply noun identification & verb identification to (a part of) a requirements

specification.
+ Create a feature model for a series of mobile phones.

8. Domain Modelling

Summary (ii)

40

• Can you answer the following questions?
+ How does domain modeling help to validate and analyze the requirements?
+ What’s the problem with “god classes”?
+ Why are many responsibilities, many collaborators and deep inheritance hierarchies

suspicious?
+ Can you explain how role-playing works? Do you think it helps in creative thinking?
+ Can you compare Use Cases and CRC Cards in terms of the requirements

specification process?
+ Do CRC cards yield the best possible class design? Why not?
+ Why are CRC cards maintained with paper and pencil instead of electronically?
+ What would be the main benefits for thinking in terms of “system families” instead of

“one-of-a-kind development? What would be the main disadvantages?
+ Can you apply scrum to develop a product line? Argue your case.

