
10.Software Metrics

CHAPTER 10 – Software Metrics
• Introduction

+ When, Why and What?
- Measurement Theory
- GQM Paradigm

• Effort Estimation
+ Algorithmic Cost Modeling
+ COCOMO
+ Putnam’s model (SLIM)
+ Size Measures

- Lines of Code, Function Points
- Use case points
- Story Points

• Quality Control
+ Quantitative Quality Model
+ Sample Quality Metrics

• Conclusion
+ Metrics for Effort Estimation

& Quality Control

1

10.Software Metrics

Does this make sense?

2

New Slide

(Quizz)

O

10.Software Metrics

Literature
• [Ghez02] In particular, section 6.9 “Verifying Other Software Properties” and 8.2

“Project Planning”
• [Pres00] In particular, chapters “Software Process and Project Metrics” and “Software

Project Planning“
• [Somm05] In particular, chapters “Software Cost Estimation” and “Process

Improvement”

Other
• [Fent96] Norman E. Fenton, Shari l. Pfleeger, “Software Metrics: A rigorous & Practical

Approach”, Thompson Computer Press, 1996.
+ Thorough treatment of measurement theory with lots of advice to make it digestible.

• [Putn03] Lawrence H. Putnam and Ware Myers, “Five Core Metrics - The intelligence
behind Successful Software Management”, Dorset House Publishing, 2003.
+ Software estimation: Time and Effort are dependent variables !

• [Schn98] Applying Use Cases - a Practical Guide, Geri Schneider, Jason, P. Winters,
Addison-Wesley, 1998.
+ Chapter 8 describes early work on estimation based on use cases.

3

10.Software Metrics

Literature (bis)
Fingers in the air: a Gentle Introduction to Software Estimation

estimate vs. target vs. commitment
accuracy vs. precision
cone of uncertainty

4

New Slide

(Quizz)

O

10.Software Metrics

Why Metrics?

5

10.Software Metrics

When Metrics?

6

Requirement
Specification System

Effort (and Cost) Estimation
• Measure early in the life-cycle to

deduce later production efforts

Quality Assessment and Improvement
• Control software quality attributes during development
• Compare (and improve) software production processes

10.Software Metrics

Why (Software) Metrics?

7

You cannot control what you cannot measure [De Marco]

What is not measurable, make measurable [Galileo Galilei, 1564-1642]

• Measurement quantifies concepts
+ understand, control and improve

• Example:
+ historical advances in temperature measurement

Time Measurement Comment

2000 BC Rankings “hotter than” By touching objects, people could compare
temperature

1600 AD Thermometer “hotter
than”

A separate device is able to compare
temperature

1720 AD Fahrenheit scale Quantification allows to log temperature,
study trends, predict phenomena (weather
forecasting), ...1742 AD Celsius scale

1854 AD Kelvin scale Absolute zero allows for more precise
descriptions of physical phenomena

10.Software Metrics

What are Software Metrics?
Software metrics

• Any type of measurement which relates to a software system, process or related
documentation
+ Lines of code in a program
+ the Fog index (calculates readability of a piece of documentation)

- 0.4 *(# words / # sentences) + (percentage of words >= 3 syllables)
+ number of person-days required to implement a use-case

• According to measurement theory, Metric is an incorrect name for Measure
+ a Metric m is a function measuring distance between two objects such that

m(x,x) = 0; m(x,y) = m(y,x); m(x,z) <= m(x,y) + m(y,z)

Direct Measures
• Measured directly in terms of the observed attribute (usually by counting)

+ Length of source-code
+ Duration of process
+ Number of defects discovered

Indirect Measures
• Calculated from other direct and indirect measures

+ Module Defect Density = Number of defects discovered / Length of source
+ Temperature is usually derived from the length of a liquid or metal

8

10.Software Metrics

How to Lie with Statistics

9

A Misleading Graph Creating An Extreme Trend Where There is Only a Small Increase

© Will Koehrsen, “Lessons on How to Lie with Statistics”, Jul 28, 2019
[https://towardsdatascience.com/lessons-from-how-to-lie-with-statistics-57060c0d2f19]

https://towardsdatascience.com/lessons-from-how-to-lie-with-statistics-57060c0d2f19

10.Software Metrics

Possible Problems
Example:
Compare productivity of programmers in lines of code per time unit.

• Preciseness (a): Do we use the same units to compare?
+ What is a “line of code”? What exactly is a “time unit”?

• Preciseness (b): Is the context the same?
+ Were programmers familiar with the language?

• Representation Condition: Is “code size” really what we want to have?
+ What about code quality?

• Scale and Scale Types: How do we want to interpret results?
+ Average productivity of a programmer?
+ Programmer X is more productive than Y?
+ Programmer X is twice as productive as Y?

• GQM-paradigm: What do we want to do with the results?
+ Do you reward “productive” programmers?
+ Do you compare productivity of software processes?

Measurement theory will help us to answer these questions...

10

10.Software Metrics

Empirical Relations

11

Observe true/false relationships between (attributes of) real world entities
Empirical relations are complete, i.e. defined for all possible combinations

Example: empirical relationships between height attributes of persons

“is taller than” binary relationship “is tall” unary relationship

“is much taller than” binary relationship
“... is higher than ... + ...”

ternary relationship

Frank “is taller
than” Laura

Joe “is not taller
than” Laura

Frank
“is tall”

Laura
“is tall”

Joe “is
not tall”

Frank “is not much
taller than” Laura

Frank “is much taller
than” Joe

Frank “is not higher than”
Joe on Laura’s shoulders

10.Software Metrics

Measure & Measurement

12

• A measure is a function mapping
- an attribute of a real world entity

(= the domain)
+ onto

- a symbol in a set with known
mathematical relations (= the range).

• A measurement is then the symbol assigned
to the real world attribute by the measure.

• A metric is a measure with as range the real
numbers and which satisfies

- m(x,x) = 0
- m(x,y) = m(y,x)
- m(x,z) <= m(x,y) + m(y,z)

Purpose
• Manipulate symbol(s) in the range
⇒ draw conclusions about attribute(s) in the domain

Preciseness
• To be precise, the definition of the measure must specify

+ domain: do we measure people’s height or width?
+ range: do we measure height in centimeters or inches?
+ mapping rules: do we allow shoes to be worn?

Frank

Joe

Laura

1.80

1.65

1.73

Example: measure mapping
“height” attribute of person on a
number representing “height in
meters”.

10.Software Metrics

Representation Condition
To be valid …

• a measure must satisfy the representation condition
+ empirical relations (in domain) ⇔ mathematical relations (in range)

In general
• the more empirical relations, the more difficult it is to find a valid measure.

13

Frank

Joe

Laura

1.80

1.65

1.73

Frank

Joe

Laura

1.80

1.70

1.73M
e
a
su

re
 2

M
e
a
su

re
 1

Empirical Relation Measure 1 Measure 2

is-taller-than x > y ??? x > y ???

Frank, Laura TRUE 1.80 > 1.73 TRUE 1.80 > 1.73 TRUE

Joe, Laura FALSE 1.65 > 1.73 FALSE 1.70 > 1.73 FALSE

is-much-taller-than x > y + 0.10 x > y + 0.10

Frank, Laura FALSE 1.80 > 1.73 + 0.10 FALSE 1.80 > 1.73 + 0.10 FALSE

Frank, Joe TRUE 1.80 > 1.65 + 0.10 TRUE 1.80 > 1.70 + 0.10 FALSE

10.Software Metrics

Scale
Scale
• = the symbols in the range of a measure + the permitted manipulations

+ When choosing among valid measures, we prefer a richer scale
(i.e., one where we can apply more manipulations)

+ Classify scales according to permitted manipulations ⇒ Scale Type

Typical Manipulations on Scales
• Mapping:

+ Transform each symbol in one set into a symbol in another set
> {false, true} ➤ {0, 1}

• Arithmetic:
+ Add, Subtract, Multiply, Divide

> It will take us twice as long to implement
use-case X than use-case Y

• Statistics:
+ Averages, Standard Deviation, ...

> The average air temperature in Antwerp this winter was 8oC

14

10.Software Metrics

Scale Types

15

Name Characteristics
 / Permitted Manipulations

Example
 / Forbidden Manipulations

Nominal - n different symbols
- no ordering

{true, false}
{design error, implementation error}

- all one-to-one transformations - no magnitude, no ordering
 - no median, no percentile

Ordinal - n different symbols
- ordering is implied

{trivial, simple, moderate, complex}
{superior, equal, inferior}

- order preserving transformations
- median, percentile

- no arithmetic
- no average, no deviation

Interval Difference between any pair is preserved
by measure Degrees in Celsius or Fahrenheit

- Addition (+), Subtraction (-)
- Averages, Standard Deviation
- Mapping have the form M = aM’ + b

 - no Multiplication (*) nor Division (/)
(“20oC is twice as hot as 10oC” is
forbidden as expression)

Ratio
 Difference and ratios between any pair is
preserved by measure. There is an
absolute zero.

Degrees in Kelvin
Length, size, …

- all arithmetic
- Mappings have the form M = aM’ nihil

10.Software Metrics

Scales

16

• What kind of measurement scale would you need to say
+ “A specification error is worse than a design error”?

• And what if we want to say
+ “A specification error is twice as bad as a design error?” O

10.Software Metrics

GQM

17

Goal - Question - Metrics approach
- V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"

in IEEE Transactions on Software Engineering, vol. SE-10, no. 6, pp. 728-738, Nov. 1984,
doi: 10.1109/TSE.1984.5010301.

• Define Goal
+ e.g., “How effective is the coding standard XYZ?”

• Break down into Questions
+ “Who is using XYZ?”
+ “What is productivity/quality with/without XYZ?”

• Pick suitable Metrics
+ Proportion of developers using XYZ
+ Their experience with XYZ ...
+ Resulting code size, complexity, robustness ...

10.Software Metrics

Effort Estimation — Cone of Uncertainty

18

© 2006 Steven C. McConnell

10.Software Metrics

Estimation techniques
Estimation Strategies

• Expert judgement: Consult experts and compare estimates
> Cheap and very accurate, but unpredictable

• Estimation by analogy: Compare with other projects in the same domain
> Cheap and quite accurate, but limited applicability

• Parkinson's Law: Work expands to fill the time available
> pessimistic management strategy

• Pricing to win: You do what you can with the budget available
> requires trust between parties

• Empirical Estimation: You estimate based on an empirical data

Empirical Estimation
• (“Decomposition” and “Algorithmic cost modeling” are used in combination)
• Decomposition: Estimate costs for components + integrating costs ...

> top-down or bottom-up estimation
• Algorithmic cost modeling: Exploit database of historical facts

to map component size on costs
> requires correlation data

19

10.Software Metrics

Algorithmic Cost Modeling
1) Choose system model

• Formula consisting of product and process attributes + parameters
+ product attributes

- requirements specification size:
typically some form of word count

- code size: typically in Lines of Code or Function Points
+ process attribute

- number of persons available
- complexity of project

2) Calibrate system model
• Choose values for parameters based on historical costing data

3) Measure (or estimate) attributes
• Some attributes are fixed, others may vary

> choose to fit project needs

4) Calculate Effort
• ... and iterate until satisfied

Examples
• COCOMO (Constructive Cost Model)
• Putnam’s model; the SLIM tool (Software Lifecycle Management)

20

10.Software Metrics

COCOMO Model (before calibration)

21

Model: Effort = C x PMS

• C is a complexity factor
• PM is a product size metric

+ size (lines of code)
+ functionality (function points)

• exponent S is close to 1, but increasing for difficult projects

Values for C and S?
• regression analysis against database of more than 60 projects

Effort

PM

10.Software Metrics

COCOMO Regression analysis

22

• Gather “time required” (E) and “number of source code instructions” (PM) for 60 projects
• Projects were classified as EASY, HARDER and HARD
• Afterwards regression analysis to find values for C and S in E = C x PMS

E(ffort)

P(roduct) M(etric)

Harder

Hard

Easy

x x
x

x

x

x

xx

x x

x

x

10.Software Metrics

COCOMO Model (with calibration)

23

Organic mode
• Small teams, familiar environment, well-understood applications, no difficult non-

functional requirements (EASY)
> Effort = 2.4 (KDSI) 1.05 x M

[KDSI = Kilo Delivered Source Instructions]

Semi-detached mode.
• Project team may have experience mixture, system may have more significant non-

functional constraints, organization may have less familiarity with application (HARDER)
> Effort = 3 (KDSI) 1.12 x M

Embedded Hardware/software systems.
• Tight constraints, unusual for team to have deep application experience (HARD)

> Effort = 3.6 (KDSI) 1.2 x M

M (between 0.7-1.66) is calibration factor for fine-tuning
• taking into account quality attributes (reliability, performance)
• and project constraints (tool usage, fast to market)

10.Software Metrics

• Based on + 7.200 projects !

• Size: quantity of function; typically size (lines of code; function points)
- a product at a given defect rate (reliability is implicitly implied)

• Process Productivity: amount of functionality for time and effort expended
• Effort: the amount of work expended (in person-months)
• β: A calibration factor, close to 1.

- > 1: for large, complex projects with large teams
- < 1: for small, simple projects with small teams

• Time: the duration of the project (in calendar months)
 (in the right-hand side of the equation, this is the *scheduled* time for the project)

Putnam’s Model

24

Time

Size

Effort

Size

10.Software Metrics

- If you want to finish earlier (= decrease scheduled time), you should
> increase / decrease

- the effort
>a lot / a little .

Time & Effort are interdependent

25

O
increase a lot

decrease a little

don’t know don’t know

10.Software Metrics

Putnam’s Model: Deriving Productivity

26

Productivity is normally defined as Size / Effort

10.Software Metrics

Productivity is normally defined as Size / Effort

Conventional productivity (Size / Effort)
is dependent on (scheduled) Time !

• Time: is raised to the fourth power
+ increase scheduled time a little

> will increase productivity a lot !
+ decrease scheduled time a little

> will decrease productivity a lot !

• Process Productivity: is raised to the 3rd power
- having good people with good tools and process has a lot of impact

• Size: is raised to the 2nd power in denominator
- smaller projects have better productivity

Putnam’s Model: Productivity

27

10.Software Metrics

• Assume that the size and process productivity are given
(i.e. specification is complete; tools & process is defined)

• Time is raised to the power (4/3)
+ To finish earlier, you must invest MANY more man months
+ To decrease the cost, you must spend A LOT more time

- If you don’t: reliability (implicitly implied in Size) will adapt

Time & Effort are interdependent

28

Effort
(person
months)

Time
(months)

impractical

impos-
sible

β

10.Software Metrics

Time & Effort are interdependent

29

Effort
(person
months)

Time
(months)

impractical

impos-
sible

• size and process productivity are estimated

> degree of uncertainty (inherent in calibration factor β)
• Time is raised to the power (4/3)

+ Project bidding with reduced time: uncertainty has larger effect
+ Close to the “Impossible” region: risk of entering into it

β

10.Software Metrics

Size: Lines of code
Lines of Code (LOC) as a measure of system size?
• Counter intuitive for effort estimation

+ Once you know the lines of code, you have done the effort
+ Typically dealt with by “estimating” the lines of code needed

• Easy to measure; but not well-defined for modern languages
+ What's a line of code?
+ What modules should be counted as part of the system?

• Assumes linear relationship between system size and volume of
documentation
+ Documentation is part of the product too!

• A poor indicator of productivity
+ Ignores software reuse, code duplication, benefits of redesign
+ The lower level the language, the more productive the programmer
+ The more verbose the programmer, the higher the productivity

Yet, lines of code is the size metric that is used most often ...
because it is very tangible (representation condition)

30

10.Software Metrics

Size: Function points
Function Points (FP)
• Based on a combination of program characteristics:

+ external inputs (e.g., screens, files) and outputs (e.g., reports)
+ user interactions (inquiries)
+ external interfaces (e.g., API)
+ files used by the system (logical files, database tables, ...)

• A weight is associated with each of these depending on complexity
• Function point count is sum, multiplied with complexity

31

Weighting Factor

Item Simple Average Complex

External Inputs ... x 3 = x 4 = x 6 = ... sum(left)

External Outputs ... x 4 = x 5 = x 7 = ... sum(left)

Inquiries ... x 3 = x 4 = x 6 = ... sum(left)

External Interfaces ... x 5 = x 7 = x 10 = ... sum(left)

Logical Files ... x 7 = x 10 = x 15 = ... sum(left)

Unadjusted Function Points sum(above)

Adjusted Function Points x Complexity factor (0.65...1.35)

10.Software Metrics

Function Points: Trade-offs
Points in Favor

• Can be measured after design
+ not after implementation

• Independent of implementation
language

• Measure functionality
+ customers willing to pay

• Works well for data-processing

Points Against
• Requires subjective expert judgement

• Cannnot be calculated automatically

Counter argument
• Requires fully specified design

+ not in the early life cycle
• Dependent on specification method
• Counterintuitive

+ 2000 FP is meaningless
• Other domains less accepted

Counter argument
• International Function Point Users

Group
+ publishes rule books

• Backfire LOC in FP via table of average
FP for a given implementation language

32

Conclusion
• To compare productivity, defect density, ...

+ Function Points are preferable over Lines of Code
• To estimate effort, Function Points come quite late in the life-cycle

10.Software Metrics

Size: Use Case Points
• (see [Schn98]; Chapter 8: Use Cases and the Project Plan)

Use CasePoints (UCP)
• Based on a combination of use case characteristics (actors & use cases)
• A weight is associated with each of these depending on complexity

+ Actors:
- API = simple; command line or protocol = average; GUI = complex

+ use cases
- number of transactions: <= 3 = simple; <= 7 average; > 7 complex
- or number of CRC-cards: <= 5 = simple; <= 10 average; > 10 complex

• sum = Unadjusted Use Case Points

33

Weighting Factor

Item Simple Average Complex Total

Actors ... x 1 = x 2 = x 3 = ... sum(left)

Use Cases ... x 5 = x 10 = x 15 = ... sum(left)

Unadjusted Use Case Points sum(above)

Adjusted Use Case Points x Technical Complexity factor [0.6 … 1.3]
x Environmental Complexity Factor [1.4 … 2.75] ...

10.Software Metrics

Use Case Points: Technical Complexity factor

34

Calculation of technical complexity factor.
Rate every complexity factor on a scale from 0 (irrelevant) to 5 (essential).

Complexity factor Rating (0 .. 5) Weight Total

Distributed system ... x 2 =

Performance objectives ... x 1 =

End-use efficiency ... x 1 =

Complex internal processing ... x 1 =

Code must be reusable ... x 1 =

Easy to install ... x 0.5 =

Easy to use ... x 0.5 =

Portable ... x 2=

Easy to change ... x 1 =

Concurrent ... x 1 =

Special security ... x 1 =

Direct access for 3rd parties ... x 1 =

Special user training ... x 1 =

Total Technical Complexity = sum(above)

Technical Complexity factor TCF = 0.60 + (Total Technical Complexity x 0.01)

Maximum
possible is 70

10.Software Metrics

Use Case Points: Environmental Complexity factor

35

Calculation of environmental complexity factor.
Rate every factor on a scale from 0 (no experience) to 5 (expert).

Complexity factor Rating (0 .. 5) Weight Total

Familiarity with development process
used

... x 1.5 =

Application experience ... x 0.5 =

Object-oriented experience of team ... x 1 =

Lead analyst capability ... x 0.5 =

Motivation of the team ... x 1 =

Stability of requirements ... x 2 =

Part-time staff ... x -1 =

Difficult programming language ... x -1=

Total Environmental Complexity = sum(above)

Environmental Complexity factor ECF = 1.4 + (Total Environmental Complexity x -0.03)

Maximum
possible is 22,5

10.Software Metrics

Story Points (Planning Poker)

36

1/2 1 2 3 5 8 13 20 40 100 ♾

• Choose one representative item of size 1.
• Compare items against representative.
• Put in the corresponding bin.
• Bins are classified according to the fibonacci series.
• Group game with physical cards.

Public Domain

CAPSTONE PROJECT

10.Software Metrics

Velocity

37

= Amount of business value created for a given time interval
Typically: amount of story points for a sprint

Relative measure
• Absolute values are meaningless but trends are important
• Do not compare across teams!

0

5,25

10,5

15,75

21

Sprint 1 Sprint 2 Sprint 3 Sprint 4

10.Software Metrics

Steps (Repeat every day)
• 1. Calculate remaining effort

> # days + # work hours per day
• 2. Track daily progress

> # story points completed per work day
• 3. Calculate remaining effort

> # unfinished story points * velocity per work hour

BurnDown Charts

38

Pablo Straub Wikipedia

10.Software Metrics

Quizz

39

Give three metrics for measuring size of a software product. O
Product =System
• Lines of code

Product = Requirements
• Function Points
• Use case points
• Story points

Requirement
Specification

System

10.Software Metrics

Quantitative Quality Model

40

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

Error tolerance

Accuracy

Consistency

Simplicity

Modularity

defect density
=#defects / size

correction
time

correction impact
= #components

changed

ISO 9126 Quality
Factor

Quality
Characteristic Metric

Quality according to ISO 9126 standard
• Divide-and conquer approach via “hierarchical quality model”
• Leaves are simple metrics, measuring basic attributes

10.Software Metrics

“Define your own” Quality Model
• Define the quality model with the development team

+ Team chooses the characteristics, design principles, metrics...
+ ... and the thresholds

41

Maintainability Modularity

design class as
an abstract
data-type

encapsulate all
attributes

avoid complex
interfaces

Quality
Factor

Quality
Characteristic

Design
Principle

#private attributes
]2, 10[

#public attributes
[0, 0[

Metric

#public methods
]5, 30[

average number of
arguments [0, 4[

10.Software Metrics

Sample Size Metrics

42

Class

AttributeMethod acess

belongsTo

inherits

invokes

Inheritance Metrics
• hierarchy nesting level (HNL)
• # immediate children (NOC)
• # inherited methods, unmodified (NMI)
• #overridden methods (NMO)

Class Size Metrics
• # methods (NOM)
• # attributes, instance/class (NIA, NCA)
• # ∑ of method size (WMC)

Method Size Metrics
• # invocations (NOI)
• # statements (NOS)
• # lines of code (LOC)
• # arguments (NOA)

These are Internal Product Metrics

10.Software Metrics

These are Internal Product Metrics

+ Following definitions stem from
- S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," in

IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, June
1994, doi: 10.1109/32.295895.

Coupling Between Objects (CBO)
• CBO = number of other class to which given class is coupled

+ Interpret as “number of other classes required to compile”

Lack of Cohesion in Methods (LCOM)
• collect local methods not accessing same attribute
• LCOM = number of disjoint sets

Beware
• Disagreement whether coupling/cohesion metrics satisfy the representation condition

+ Classes that are observed to be cohesive may have a high LCOM value
- due to accessor methods

+ Classes that are not much coupled may have high CBO value
- no distinction between data, method or inheritance coupling

Sample Coupling & Cohesion Metrics

43

10.Software Metrics

Sample External Quality Metrics
Correctness (Product Metric)

• a system is correct or not, so one cannot measure correctness
• Proxy metric: defect density = # known defects / product size

+ product size in LOC or FP
+ # known defects is a time based count!

• do NOT compare across projects unless you’re data collection is sound!

Maintainability (Product Metric)
• #time to repair certain categories of changes

+ “average time to repair”
• beware for the units

+ categories of changes is subjective
+ measuring time precisely is difficult

- problem recognition time + administrative delay time +
problem analysis time + change time + testing & reviewing time

Productivity (Process Metric)
• functionality / time
• functionality in LOC or FP; time in hours, weeks, months
• be careful to compare: the same unit does not always represent the same concept
• Does not take into account the quality of the functionality!

44

10.Software Metrics

Developer Productivity: Multi-Faceted

Myths
1. Productivity is all about developer

activity
2. Productivity is only about

individual performance
3. One productivity metric can tell

us everything
4. Productivity Measures ARE useful

only for managers
5. Productivity is only about

engineering systems and
developer tools

Dimensions
1. Satisfaction
2. Performance
3. Activity
4. Communication and collaboration
5. Efficiency and flow

45

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck,
and Jenna Butler. 2021. The SPACE of developer productivity. Commun. ACM 64, 6 (June 2021),
46–53. https://doi.org/10.1145/3453928

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck,
and Jenna Butler. 2021. The SPACE of developer productivity. Commun. ACM 64, 6 (June 2021),
46–53. https://doi.org/10.1145/3453928

10.Software Metrics

Conclusion: Metrics for Effort Estimation
Question:
• Can metrics be used for effort estimation?

Yes, but...
• Come a bit too late in the life-cycle

+ Require a quite complete “Requirements Specification”
• Requires database of historical facts about projects

+ small numbers statistics is required if you do it yourself
+ or hire external estimation consultants (which have such database)

• Can never be the sole basis for estimating
+ models allow “trial and error” estimation
+ complement with “Expert Judgement” or “Estimate by Analogy”

However...
• Collecting historical data is a good idea anyway

+ Provides a basis for Quantitative analysis of processes
+ “Levels 4 & 5” of CMM

47

10.Software Metrics

Conclusion: Metrics for Quality Assurance (i)
Question:
• Can internal product metrics reveal which components

have good/poor quality?

Yes, but...
• Not reliable

+ false positives: “bad” measurements, yet good quality
+ false negatives: “good” measurements, yet poor quality

• Heavy weight approach
+ Requires team to develop/customize a quantitative quality model
+ Requires definition of thresholds (trial and error)

• Difficult to interpret
+ Requires complex combinations of simple metrics

However...
• Cheap once you have the quality model and the thresholds
• Good focus (± 20% of components are selected for further inspection)

+ Note: focus on the most complex components first

48

10.Software Metrics

Conclusion: Metrics for Quality Assurance (ii)
Question:
• Can external product/process metrics reveal quality?

Yes, ...
• More reliably then internal product metrics

However...
• Requires a finished product or process
• It is hard to achieve preciseness

+ even if measured in same units
+ beware to compare results from one project to another

49

10.Software Metrics

Summary (i)
You should know the answers to these questions

• Can you give three possible problems of metrics usage in software engineering? How
does the measurement theory address them?

• What’s the distinction between a measure and a metric?
• Can you give an example of a direct and an indirect measure?
• What kind of measurement scale would you need to say “A specification error is worse

than a design error”? And what if we want to say “A specification error is twice as bad as
a design error?”

• Explain the need for a calibration factor in Putnam’s model.
• Fill in the blanks in the following sentence. Explain briefly, based on the Putnam’s

model.
+ If you want to finish earlier (= decrease scheduled time), you should ... the effort

• Give three metrics for measuring size of a software product.
• Discuss the main advantages and disadvantages of Function Points.
• What does it mean for a coupling metric not to satisfy the representation condition?
• Can you give 3 examples of impreciseness in Lines of Code measurements?

You should be able to complete the following tasks
• Given a set of use cases (i.e. your project) calculate the use case points.
• Given a set of user stories, perform a poker planning session.

50

CAPSTONE PROJECT

10.Software Metrics

Summary (ii)
Can you answer the following questions?

• During which phases in a software project would you use metrics?
• Why is it so important to have “good” product size metrics?
• Can you explain the two levels of calibration in COCOMO (i.e. C & S vs. M)? How can

you derive actual values for these parameters?
• Can you motivate why in software engineering, productivity depends on the scheduled

time? Do you have an explanation for it?
• Can you explain the cone of uncertainty? And why is it so relevant to cost estimation in

software projects?
• How can you decrease the uncertainty of a project bid using Putnam’s model?
• Why do we prefer measuring Internal Product Attributes instead of External Product

Attributes during Quality Control? What is the main disadvantage of doing that?
• You are a project manager and you want to convince your project team to apply

algorithmic cost modeling. How would you explain the technique?
• Where would you fit coupling/cohesion metrics in a hierarchical quality model like ISO

9126?
• Why are coupling/cohesion metrics important? Why then are they so rarely used?
• Do you believe that “defect density” says something about the correctness of a

program? Motivate your answer?

51

