
11.Refactoring

CHAPTER 11 – Refactoring

1

• Introduction
+ When, Why, What?
+ Which Refactoring Tools?

• Demonstration: Internet Banking
+ Iterative Development Life-cycle
+ Prototype
+ Consolidation: design review
+ Expansion: concurrent access
+ Consolidation: more reuse

• Miscellaneous
+ Tool Support
+ Code Smells
+ Refactoring God Class

- An empirical study
+ Scrum: Technical Debt

• Conclusion
+ Correctness & Traceability

11.Refactoring

• [Somm05]: Chapter “Software Evolution”
• [Pres00], [Ghez02]: Chapters on Reengineering / Legacy Software

• [Fowl99] Refactoring, Improving the Design of Existing Code
by Martin Fowler, Addison-Wesley, 1999.
+ A practical book explaining when and how

to use refactorings to cure typical code-smells.

• [Deme02] Object-Oriented Reengineering
Patterns by Serge Demeyer, Stéphane
Ducasse and Oscar Nierstrasz,
Morgan Kaufmann, 2002.
+ A book describing how one can

reengineer object-oriented
legacy systems.

Web-Resources
• Following web-site lists a number of relevant code smells

(= symptoms in code where refactoring is probably worthwhile)
https://wiki.c2.com/?CodeSmell

Literature

2

https://wiki.c2.com/?CodeSmell

11.Refactoring

When Refactoring?

3

Any software system must be maintained
• The worst that can happen with a software system is that the people actually use it.

+ >> Users will request changes ...
+ >> Intangible nature of software

> … makes it hard for users to understand the impact of changes

11.Refactoring

Why Refactoring? (1/2)

4

requirements design coding testing maintenance

x 1 x 5 x 10
x 20

x 200

Relative Effort of Maintenance [Lien80]
• Between 50% and 75% of available effort is spent on

maintenance.

Relative Cost of Fixing Mistakes [Davi95]
⇒ Changes cost tremendously while your project proceeds

11.Refactoring

Why Refactoring? (2/2)

5

Perfective
(new functionality)

65%

Adaptive
(new environments)

18%

Corrective
(fixing errors)

17%

50-75% of maintenance
budget concerns
Perfective Maintenance
(= new functionality, which
you could not foresee when
you started)

⇒New category of maintenance

Preventive Maintenance

11.Refactoring

Why Refactoring in OO?

6

New or changing requirements will gradually degrade original design, ...
… unless extra development effort is spent to adapt the structure.

New functionality

Hack it
in …

First …
• refactor
• restructure
• reengineer

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

yes no

Take a loan on your software
(pay back via reengineering)

Investment for future adaptability
(paid back during maintenance)

Technical
Debt

11.Refactoring

What is Refactoring?

7

Two Definitions
• VERB: The process of changing a software system in such a way that it

does not alter the external behaviour of the code, yet improves its
internal structure [Fowl99]

• NOUN: A behaviour-preserving source-to-source program transformation
[Robe98]

> Primitive refactorings vs. Composite refactorings

Typical Primitive Refactorings
Class Refactorings Method Refactorings Attrute Refactorings

add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

pull up pull up

push down push down

add parameter to method create accessors

move method to component abstract variable

extract code in new method

11.Refactoring

Quizz

8

Can you explain why
+ add class
+ add method
+ add attribute

… are behaviour preserving? O

11.Refactoring

Tool support
Change Efficient

Refactoring
• Source-to-source program

transformation
• Behaviour preserving
⇒ improve the program structure

Programming Environment
• Fast edit-compile-run cycles
• Support small-scale reverse

engineering activities
⇒ convenient for “local” ameliorations

Failure Proof

Regression Testing
• Repeating past tests
• Tests require no user interaction
• Tests are deterministic

(Answer per test is yes / no)
⇒ improvements do not break anything

Configuration & Version Management
• keep track of versions that represent

project milestones
⇒ go back to previous version

9

11.Refactoring

Iterative Development Life-cycle

10

Change is the norm,

not th
e exception!

More Reuse

New/Changing
Requirements

Initial Requirements

PROTOTYPING

EXPANSION

CONSOLIDATION

11.Refactoring

Example: Banking - Requirements

11

+ a bank has customers
+ customers own account(s) within a bank
+ with the accounts they own, customers may

- deposit / withdraw money
- transfer money
- see the balance

• Non-functional requirements
+ secure: only authorised users may access an account
+ reliable: all transactions must maintain consistent state

11.Refactoring

Example: Banking - Class Diagram

12

customerNr():int

customerNr : int

IBCustomer

accountNr (): int

getBalance():int

setBalance (amount:int)

accountNr : int

balance : int = 0

IBAccount

validCustomer(cust:IBCustomer) : boolean

createAccountForCustomer(cust:IBCustomer): int

customerMayAccess(cust:IBCustomer, account:int) : boolean

seeBalance(cust:IBCustomer, account:int) : int

transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)

checkSumAccounts() : boolean

IBBank

11.Refactoring

Example: Banking - Contracts

IBBank
invariant: checkSumAccounts()

IBBank::createAccountForCustomer(cust:IBCustomer): int
precondition: validCustomer(cust)
postcondition: customerMayAccess(cust, <<result>>)

IBBank::seeBalance(cust:IBCustomer, account:int) : int
precondition: (validCustomer(cust)) AND

(customerMayAccess(cust, account))
postcondition: true

IBBank::transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)
precondition: (validCustomer(cust))

AND (customerMayAccess(cust, fromAccount))
AND (customerMayAccess(cust, toAccount))

postcondition: true

13

Ensure the “secure” and “reliable”
requirements.

11.Refactoring

Example: Banking - CheckSum

14

Bookkeeping systems always maintain two extra accounts, “incoming” and “outgoing”
• ⇒ the sum of the amounts of all transactions is always 0 ⇒ consistency check

MyAccount

date amount

1/1/2000 +100

1/2/2000 +200

1/3/2000 -250

OutGoing

date amount

1/3/2000 +250

Incoming

date amount

1/1/2000 -100

1/2/2000 -200

11.Refactoring

Prototype Consolidation
Design Review (i.e., apply refactorings AND RUN THE TESTS!)

• Rename attribute
+ rename “_balance” into “_amountOfMoney” (run test!)
+ apply “rename attribute” refactoring to the above

> run test!
+ check the effect on source code

- comments + getter/setter methods
• Rename method

+ rename “get_balance” into “get_amountOfMoney”
> run test!

• Change Method Signature
+ change order of arguments for “transfer” (run test!)

• Rename class
+ check all references to “Customer”
+ apply “rename class” refactoring

> rename into “Client”
> run test!

+ check the effect on source code
- file name / makefiles / …
- CustomerTest >> ClientTest??

15

11.Refactoring

What is Refactoring?

16

Class Refactorings Method Refactorings Attrute Refactorings

add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

pull up pull up

push down push down

add parameter to method create accessors

move method to component abstract variable

extract code in new method

Can you give the pre-conditions for
a “rename method” refactoring? O

11.Refactoring

Expansion
Additional Requirement
• concurrent access of accounts

Add test case for
• Bank

+ testConcurrent: Launches 10 processes that simultaneously transfer
money between same accounts

> test fails!

17

Can you explain why
the test fails? O

11.Refactoring

…
Bank

…
…

Customer

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int, amount:int)
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int): boolean

accountNr : int
balance : int = 0
transactionId: int
workingbalance: int = 0

Account

Expanded Design: Class Diagram

18

1. add attribute(s)

2. add pa-
rameter(s)

3. add method(s)

4. expand
method bodies

5. expand tests!!

11.Refactoring

Expanded Design: Contracts

19

Account
invariant: (isLocked()) OR (NOT isLocked())

Account::get_balance(transaction:int): int
precondition: isLockedBy(transaction)
postcondition: true

Account::inc_balance(transaction:int, amount: int)
precondition: isLockedBy(transaction)

postcondition: peek_balance() = peek_balance() + amount

Account::lock(transaction:int)
precondition: notLocked()
postcondition: isLockedBy(transaction)

Account::commit(transaction:int)
precondition: isLockedBy(transaction)
postcondition: notLocked()

Account::abort(transaction:int)
precondition: isLockedBy(transaction)
postcondition: notLocked()

11.Refactoring

Expanded Implementation
Adapt implementation

• 1. Manually add attributes on Account
+ “transactionId” and “workingBalance”

• 2. apply “change method signature”
+ add “transaction”
+ to “get_balance()” and “inc_balance()”

• 3. apply “add method”
+ lock, commit, abort, isLocked, isLockedBy

• 4. expand method bodies (i.e. careful programming)
+ of “seeBalance()” and “transfer()”

> load “Banking12”

• 5. expand Tests
+ previous tests for “get_balance()” and “inc_balance()”

- should now fail
* adapt tests

+ new contracts, incl. commit and abort
* new tests

testConcurrent works!
> we can confidently ship a new release

20

11.Refactoring

Consolidation: Problem Detection
More Reuse

• A design review reveals that this
“transaction” stuff is a good idea and is
applied to Customer as well.

⇒ Code Smells

• duplicated code
+ lock, commit, abort
+ transactionId

• large classes
+ extra methods
+ extra attributes

⇒ Refactor

• “Lockable” should become a separate
component, to be reused in Customer
and Account

21

get_customerNr():int
getName(transaction : int):String
setName (transaction : int, name:String)
...
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
isLocked() : boolean
isLockedBy (transaction : int) : boolean

customerNr : int
name: String
address: String
password: String

transactionId: int
workingName: String
…

Customer

11.Refactoring

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int,
 amount:int)
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean

accountNr : int
balance : int = 0
transactionId: int = 0
workingbalance: int = 0

Account

lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean

transactionId: int = 0
Lockable

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int,
 amount:int)

accountNr : int
balance : int = 0
workingbalance: int = 0

Account

Consolidation: Refactored Class Diagram

22

Sp
lit

 C
la

ss

11.Refactoring

Refactoring Sequence: 1/4
Refactoring: Extract Superclass
• Position on Account

+ superclass name = Lockable
+ members: transactionId + notLocked + isLockedBy

- action = extract
• verify effect on code
• run the tests!

23

…
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean
…

accountNr : int
balance : int = 0
transactionId: int = 0
workingbalance: int = 0

Account

Lockable

11.Refactoring

Refactoring: Pull Up
• apply “pull up …” on “Account”

+ to move “lock / commit / transaction” onto lockable
+ apply “pull up” to “abort:”, “commit:”, “lock:”

> failure: why???

Refactoring Sequence: 2/4

24

…
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
…

Account

Lockable

O

11.Refactoring

Refactoring Sequence: 3/4
Refactoring: Extract Method
• apply “extract method” on

+ groups of accesses to “balance” and “WorkingBalance”

• similar for
+ “abort” (⇒ clearWorkingState) & “commit” (⇒ commitWorkingState)

25

public synchronized void lock(int transaction) {
this.require(this.notLocked(), "No other transaction ….”);
this._transactionId = transaction;
this._workingBalance = this._balance;
this.ensure(this.isLockedBy(transaction), "Lock must ….”);
}

public synchronized void lock(int transaction) {
this.require(this.notLocked(), "No other transaction ….”);
this._transactionId = transaction;
copyToWorkingState();
this.ensure(this.isLockedBy(transaction), "Lock must ….”);
}

protected void copyToWorkingState() {
 this._workingBalance = this._balance;
}

11.Refactoring

lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean
clearWorkingState ()
copyToWorkingState ()
commitWorkingState ()

transactionId: int = 0
Lockable

…
…

Account

Refactoring Sequence: 4/4
Refactoring “Pull up…” revisited
• apply “pull up …” on “Account”

+ members clearWorkingState / copyToWorkingState /
commitWorkingState
- action = declare abstract in destination

+ members “abort”, “commit”, “lock”
- action = pull up

Are we done?
• Run the tests ...
• Customer subclass of Lockable

+ expand functionality
to incorporate locking protocol

26

11.Refactoring

Tool Support
Refactoring Philosophy
• combine simple refactorings into

larger restructuring
(and eventually reengineering)

> improved design
> ready to add functionality

• Do not apply refactoring tools in isolation

27

Smalltalk C++ Java

refactoring + - (?) +

rapid edit-compile-run cycles + - +-

reverse engineering facilities +- +- +-

regression testing + + +

version & configuration management + + +

11.Refactoring

Know when is as important as know-how
• Refactored designs are more complex

> Introduce a lot of extra small classes/methods
• Use “code smells” as symptoms for refactoring opportunities

+ Duplicated code
+ Nested conditionals
+ Large classes/methods
+ Abusive inheritance

• Rule of the thumb:
+ All system logic must be stated Once and Only Once

> a piece of logic stated more than once implies refactoring

More about code smells and refactoring
• Wiki-web with discussion on code smells

+ https://wiki.c2.com/?CodeSmell

Code Smells

28

https://wiki.c2.com/?CodeSmell

11.Refactoring

Refactoring God Class: Optimal Decomposition?

29

 Controller

 Controller

 Filter1

 Filter2

 Controller

 Filter1

 Filter2

 MailHeader

 Controller

 Filter1

 Filter2

 MailHeader

 FilterAction

 Controller

 Filter1

 Filter2

 MailHeader

 FilterAction

 NameValuePair

A

B

C

D

E

11.Refactoring

Empirical Validation

30

Controlled experiment with 63 last-year master-level students (CS and ICT)

Independent Variables

Time

Experimental
Task

Institution

Decomposition

Accuracy

“Optimal decomposition” differs with respect to education
• Computer science: preference towards decentralized designs (C-E)
• ICT-electronics: preference towards centralized designs (A-C)

Advanced OO training can induce preference
• Consistent with [Arisholm et al. 2004]

Dependent Variables

11.Refactoring

Floss Refactoring vs. Root-Canal Refactoring

31

E. Murphy-Hill and A. P. Black, "Refactoring Tools: Fitness for Purpose," in IEEE
Software, vol. 25, no. 5, pp. 38-44, Sept.-Oct. 2008, doi: 10.1109/MS.2008.123.

11.Refactoring

Technical Debt

32

New functionality

Hack it
in …

Repay Accrue

yes no

Technical
Debt

0

40

80

Sprint3 Sprint4 Sprint5 Sprint6 Sprint7 Sprint8 Sprint9

11.Refactoring

DevOps: Monitor Technical Debt

33

CAPSTONE PROJECT

11.Refactoring

Correctness & Traceability

Correctness
• Are we building the system right?
• Assured via “behaviour preserving” nature & regression testing

> We are sure the system remains as “correct” as it was before

• Are we building the right system?
+ By improving the internal design we can cope with mismatches

> First refactor (= consolidate) …
> then new requirements (= expand)

Traceability
• Requirements <-> System?

+ Requires a lot of discipline ... thus extra effort!
+ But renaming is refactoring too

> Adjust code to adhere to naming conventions

34

11.Refactoring

Summary (i)
You should know the answers to these questions:

• Can you explain how refactoring differs from plain coding?
• Can you tell the difference between Corrective, Adaptive and Perfective maintenance?

And how about preventive maintenance?
• Can you name the three phases of the iterative development life-cycle? Which of the

three does refactoring support the best? Why do you say so?
• Can you give 4 symptoms for code that can be “cured” via refactoring?
• Can you explain why add class/add method/add attribute are behaviour preserving?
• Can you give the pre-conditions for a “rename method” refactoring?
• Which 4 activities should be supported by tools when refactoring?
• Why can’t we apply a “push up” to a method “x()” which accesses an attribute in the

class the method is defined upon (see Refactoring Sequence on page 27–31)?
You should be able to complete the following tasks

• Two classes A & B have a common parent class X. Class A defines a method a() and
class B a method b() and there is a large portion of duplicated code between the two
methods. Give a sequence of refactorings that moves the duplicated code in a separate
method x() defined on the common superclass X.

• What would you do in the above situation if the duplicated code in the methods a() and
b() are the same except for the name and type of a third object which they delegate
responsibilities too?

• Monitor the technical debt of you bachelor capstone project.

35

CAPSTONE PROJECT

11.Refactoring

Summary (ii)
Can you answer the following questions?

• Why would you use refactoring in combination with Design by Contract and Regression
Testing?

• Can you give an example of a sequence of refactorings that would improve a piece of
code with deeply nested conditionals?

• How would you refactor a large method? And a large class?
• Consider an inheritance relationship between a superclass “Square” and a subclass

“Rectangle”. How would you refactor these classes to end up with a true “is-a”
relationship? Can you generalise this procedure to any abusive inheritance relationship?

36

