
12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Requirements
+ 3.Software Architecture
+ 4.Project Management
+ 5.Design by Contract
+ 6.Testing
+ 7.Formal Specification
+ 8.Domain Modeling
+ 9.Software Quality
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

1

12.Conclusion

Software Product & Process

2

• Software Process:
+ Requirements Collection + Analysis + Design + Implementation

+ Testing + Maintenance + Quality Assurance
• Software Product:

+ Requirements Specification (= functional & non-functional)
+ System (= executable + code + documentation)

Requirement
Specification System

Requirement
Collection

Analysis

Design
Maintenance

Implementation
Testing

+ Quality
Assurance

+ Quality

Assurance

12.Conclusion

Evaluation Criteria

3

Requirement
Specification System

2 evaluation criteria to assess techniques applied during process

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

Traceability
• Can we deduce which product components will be affected by changes?

12.Conclusion

Overview

4

Testing
Testing

Design by Contract
Implementation

Use Cases

Requirements
Collection

Domain Modeling
Analysis

Software Architecture
Formal Specifications

Design

Refactoring
Maintenance

Project Managament
Quality Control
Software Metrics

Quality Assurance

Use Cases & User Stories

12.Conclusion

Requirements
• Use Cases

+ = Specify expected system behavior as a set of generic scenarios
• User Stories

+ = Express expected functionality with the behaviour driven template
- As a <user role> I want to <goal> so that <benefit>.

• Are we building the system right?
+ Well specified scenarios help to verify system against requirements

• Are we building the right system?
+ Validation by means of CRC Cards and role playing.
+ Safety Critical ⇒ Failure Mode and Affect Analysis (FMEA)

• Traceability? Requirements ⇔ System

+ Via proper naming conventions

• Traceability? Requirements ⇔ Project Plan

+ Use cases & User stories form good milestones

5

12.Conclusion

Software Architecture
• Software Architecture

+ = Components & Connectors describing high-level view of a system.
+ Decomposition implies trade-offs expressed via coupling and cohesion.
+ Proven solutions to recurring problems are recorded as patterns.

• Architecture Tradeoff Analysis Method (ATAM)
+ Review: identify risks, non-risks, sensitivity points and trade-off points

• Are we building the system right?
+ For the non-functional parts of the requirements

• Traceability?
+ Extra level of abstraction may hinder traceability

6

12.Conclusion

Project Management
• Project Management

+ = plan the work and work the plan
+ PERT and Gantt charts with various options
+ Critical path analysis and monitoring

• Are we building the system right?
+ Deliver what’s required on time within budget
+ Calculate risk to the schedule via optimistic and pessimistic estimates
+ Monitor the critical path to detect delays early
+ Plan to re-plan to meet the deadline

• Traceability? Project Plan ⇔ Requirements & System

+ The purpose of a plan is to detect deviations as soon as possible
+ Small tasks + Milestones verifiable by customer

7

12.Conclusion

Design by Contract
• Contractual Obligations Explicitly recorded in Interface

+ pre-condition = obligation to be satisfied by invoking method
+ post-condition = obligation to be satisfied by method being invoked
+ class invariant = obligation to be satisfied by both parties

• Are we building the system right?
+ Recorded obligations prevent defects
+ and ... remain in effect during changes

• Consumer-driven contract testing
- Test distributed components in isolation via contractual obligations

• Traceability?
+ Obligations express key requirements in source code

• Liskov Substitution Principle?

8

stronger weaker equal

{I’} vs. {I} x

{P’} vs. {P} x x

{Q’} vs. {Q} x x

12.Conclusion

Testing
• Automated Regression Testing

+ = Deterministic tests (no user intervention), answering whether the
system did regress (red = failing tests) or not (green = all tests pass)

• Are we building the system right?
+ Tests only reveal the presence of defects, not their absence

yet ... Tests verify whether a system is as right as it was before
• Traceability?

+ Link from requirements specification to system source code

• Test techniques
+ Individual test are white box or black box tests

- White box: exploit knowledge of internal structure
> e.g., path testing, condition testing

- Black box: exploit knowledge about inputs/outputs
> e.g., input- and output partitioning + boundary conditions

+ Code Coverage to measure the strength of a test suite
- Line - statement - MC/DC - mutation

9

12.Conclusion

Formal Specifications
• Input/Output Specifications

+ = include logic assertions (pre- and postconditions + invariants) in
algorithm

> prove assertions via formal reasoning

• State-Based Specifications
+ = Specify acceptable message sequences by means of state machine

• Are we building the system right?
+ Makes verification easier

> generation of test cases
> deduction of contractual obligations

• Traceability?
+ Extra intermediate representation may hinder traceability

10

12.Conclusion

Domain Modeling
• CRC Cards

+ = Analyse system as a set of classes
- ... each of them having a few responsibilities
- ... and collaborating with other classes to fulfill these responsibilities

• Feature Model
+ a set of reusable and configurable requirements for specifying system

families (a.k.a. product line)

• Are we building the system right?
+ A robust domain model is easier to maintain

(= long-term reliability).
• Are we building the right system?

+ CRC Cards and role playing validate use cases.
+ Feature diagrams make product differences (and choices) explicit

• Traceability?
+ Via proper naming conventions

11

12.Conclusion

Quality Control

• Quality Control
+ = include checkpoints in the process to verify quality attributes
+ Formal technical reviews are very effective and cost effective!

• Quality Standards (ISO9000 and CMM)
+ = Checklists to verify whether a quality system may be certified

• Are we building the system right?
Are we building the right system?
+ Quality Control eliminates coincidence.

• Traceability?
+ Only when part of the quality plan/system

12

Project Concern = Deliver on time and within budget

External (and Internal)
Product Attributes

Process
Attributes

12.Conclusion

Software Metrics
• Effort and Cost Estimation

+ = measure early products to estimate costs of later products
+ algorithmic cost modeling, i.e. estimate based on previous experience

• Correctness?
+ Algorithmic cost modeling provides reliable estimates (incl. risk factor)

• Traceability?
+ Quantification of estimates allows for negotiations

• Quality Assurance
+ = quantify the quality model
+ Via internal and external product metrics

• Correctness & Traceability?
+ Software metrics are too premature too assure reliable assessment

13

12.Conclusion

Refactoring
• Refactoring Operation

+ = Behaviour-preserving program transformation
+ e.g., rename, move methods and attributes up and down in the

hierarchy
• Refactoring Process

+ = Improve internal structure without altering external behaviour
• Code Smell

+ = Symptom of a not so good internal structure
+ e.g, complex conditionals, duplicated code

• Are we building the system right?
+ Behaviour preserving ⇒ as right as it was before (cfr. tests)

• Are we building the right system?
+ Improve internal structure ⇒ cope with requirements mismatches.

• Traceability?
+ Renaming may help to maintain naming conventions
+ Refactoring makes it (too) easy to alter the code without changing the

documentation

14

12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Requirements
+ 3.Software Architecture
+ 4.Project Management
+ 5.Design by Contract
+ 6.Testing
+ 7.Formal Specification
+ 8.Domain Modeling
+ 9.Software Quality
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

15

12.Conclusion

• Find and read both of the following articles.
Pick the one you liked the most, study it
carefully and compare the article with
the course contents.

• The Quest for the Silver Bullet
+ [Broo87] Frederick P. Brooks, Jr. “No Silver Bullet: Incidents and Accidents in

Software Engineering” IEEE Computer, April 1987.
+ See also [Broo95] Frederick P. Brooks, Jr. “The Mythical Man-Month (20th anniversary

edition)” Addison-Wesley.
- The article is more than 15 years old. Yet, it succeeds in explaining why there will

never be an easy solution for solving the problems involved in building large and
complex software systems.

• The Killer Robot Case
+ [Epst94] Richard G. Epstein, "The use of computer ethics scenarios in software

engineering education: the case of the killer robot.", Software Engineering Education:
Proceedings of the 7th SEI CSEE Conference
- The article is a faked series of newspaper articles concerning a robot which killed

its operators due to a software fault. The series of articles conveys the different
viewpoints one might have concerning the production of quality software.

Assignment: Study an Article of your Choice

16

12.Conclusion

Software Engineering & Society

17

Your personal future is
at stake (e.g., Y2K lawsuits)

Huge amounts of money
are at stake
(e.g., Ariane V crash)

Lives are at stake
(e.g., automatic pilot)

Corporate success or failure is at stake
(e.g., telephone billing,
VTM launching 2nd channel)

Software became Ubiquitous
Our society is vulnerable!
⇒ Deontology, Licensing, …

12.Conclusion

Code of Ethics
• Software Engineering Code of Ethics and Professional Practice

+ ACM-site: http://www.acm.org/serving/se/code.htm
+ IEEE-site: http://computer.org/tab/swecc/code.htm

• Recommended by
+ IEEE-CS (Institute of Electrical and Electronics Engineers - Computer

Society)
+ ACM (Association for Computing Machinery)

• “Software Engineering Code of Ethics is Approved”, Don Gotterbarn,
Keith Miller, Simon Rogerson, Communications of the ACM, October
1999, Vol42, no. 10, pages 102-107.
+ Announces the revised 5.2 version of the Code

• “Using the New ACM Code of Ethics in Decision Making”, Ronald E.
Anderson, Deborah G. Johnson, Donald Gotterbarn, Judith Perrolle,
Communications of the ACM, February 1993, Vol36, no. 2, pages 98-104.
+ Discusses 9 cases of situations you might encounter and how (an older

version of) the code address them

18

http://www.acm.org/serving/se/code.htm
http://computer.org/tab/swecc/code.htm

12.Conclusion

Code of Ethics: 8 Principles
+ ACM-site: http://www.acm.org/serving/se/code.htm
+ IEEE-site: http://computer.org/tab/swecc/code.htm

• 1. PUBLIC
+ Software engineers shall act consistently with the public interest.

• 2. CLIENT AND EMPLOYER
+ Software engineers shall act in a manner that is in the best interests of their client

and employer consistent with the public interest.
• 3. PRODUCT

+ Software engineers shall ensure that their products and related modifications meet
the highest professional standards possible.

• 4. JUDGMENT
+ Software engineers shall maintain integrity and independence in their professional

judgment.
• 5. MANAGEMENT

+ Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.

• 6. PROFESSION
+ Software engineers shall advance the integrity and reputation of the profession

consistent with the public interest.
• 7. COLLEAGUES

+ Software engineers shall be fair to and supportive of their colleagues.
• 8. SELF

+ Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

19

http://www.acm.org/serving/se/code.htm
http://computer.org/tab/swecc/code.htm

12.Conclusion

Case: Privacy - Description
• Case Description

+ You consult a company concerning a database for personnel
management.

+ Database will include sensitive data: performance evaluations, medical
data.

+ System costs too much and company wants to cut back in security.

• What does the code say?
+ 1.03. Approve software only if they have a well-founded belief that it is

safe, meets specifications, passes appropriate tests, and does not
diminish quality of life, diminish privacy or harm the environment. The
ultimate effect of the work should be to the public good.

+ 3.12. Work to develop software and related documents that respect
the privacy of those who will be affected by that software.

> Situation is unacceptable.

20

12.Conclusion

Case study: Privacy - Solution
• Applicable Clauses

+ 1.02. Moderate the interests of the software engineer, the employer, the client and
the users with the public good.

+ 1.04. Disclose to appropriate persons or authorities any actual or potential danger to
the user, the public, or the environment, that they reasonably believe to be
associated with software or related documents.

+ 2.07. Identify, document, and report significant issues of social concern, of which
they are aware, in software or related documents, to the employer or the client.

+ 6.09. Ensure that clients, employers, and supervisors know of the software
engineer's commitment to this Code of ethics, and the subsequent ramifications of
such commitment.

• Actions
+ Try to convince management to keep high security standards.
+ Include in contract a clause to cancel contract when against the code of ethics.
+ Alarm other institutions if you later hear that others accepted the contract.

21

12.Conclusion

Case study: Privacy - Solution

• Actions
+ …
+ Include in contract a clause to cancel contract when against the code

of ethics.
+ …

22

If you are an independent consultant, how can you ensure that you
will not have to act against the code of ethics?

O

12.Conclusion

Case: Unreliability
• Case Description

+ You’re the team leader of a team building software for calculating taxes.
+ Your team and your boss are aware that the system contains a lot of defects.

Consequently you state that the product can’t be shipped in its current form.
+ Your boss ships the product anyway, with a disclaimer “Company X is not responsible

for errors resulting from the use of this program”.

• What does the code say?
+ 1.03. Approve software only if they have a well-founded belief that it is safe, meets

specifications, passes appropriate tests, and does not diminish quality of life, diminish
privacy or harm the environment. The ultimate effect of the work should be to the
public good.

+ 5.11. Not ask a software engineer to do anything inconsistent with this Code.
+ 5.12. Not punish anyone for expressing ethical concerns about a project.

> Disclaimer does not apply: can only be made in “good conscience”.
> In court you can not be held liable.

23

12.Conclusion

VW emissions scandal

24

O

Your mission should you choose to accept.
• You are a software engineer working for volkswagen. Your

management asks to install a so called “defeat device” into
the car to circumvent emission tests.

12.Conclusion

Facebook / Twitter API

25

O

Your mission should you choose to accept.
• You are a master thesis student and you are asked to inject

“spy software” on the API of big social media for research
purposes.

12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Project Management
+ 3.Use Cases
+ 4.Domain Modeling
+ 5.Testing
+ 6.Design by Contract
+ 7.Formal Specification
+ 8.Software Architecture
+ 9.Quality Control
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

26

12.Conclusion

Innovation

27

Business Models

1971 — Starbucks
(seattle)

(Vienna)
1529 — European coffee house

1475 — Kiva Han coffee house
 (Constantinople)

Underlying Technology

1946 — commerical piston espresso machine

1908 — patent on paper filter

2001 — senseo
2000 — nespresso

12.Conclusion

Innovation

28

Business Models

1971 — Starbucks
(seattle)

(Vienna)
1529 — European coffee house

1475 — Kiva Han coffee house
 (Constantinople)

Underlying Technology

1946 — commerical piston espresso machine

1908 — patent on paper filter

2001 — senseo
2000 — nespresso

Tech
nology ch

anges e
very 20 years

…

Underly
ing busin

ess
models r

arely ch
ange!

12.Conclusion

Innovation in ICT

29

E
m

b
e
d

d
e
d

In
te

rn
e
t

ENIAC, 1945 IBM PC, 1981 iPad, 2010NEC ultralite, 1989

U
n

d
e
rlyin

g

T
e
ch

n
o

lo
g

y

12.Conclusion

Innovation in ICT

30

E
m

b
e
d

d
e
d

In
te

rn
e
t

ENIAC, 1945 IBM PC, 1981 iPad, 2010NEC ultralite, 1989

U
n

d
e
rlyin

g

T
e
ch

n
o

lo
g

y

Tech
nology ch

anges e
very 5 years

…

Underly
ing busin

ess
models c

hange ofte
n!

12.Conclusion

Market pressure in ICT

31

RELIABILITY AGILITY

Measure of innovation
• # products in portfolio younger than 5 years

+ in ICT usually more than 1/2 the portfolio

Significant investment in R&D
• more products … faster

12.Conclusion

Reliability vs. Agility

32

Software is vital to our society ⇒ Software must be reliable

Traditional Software Engineering
Reliable = Software without bugs

Today’s Software Engineering
Reliable = Easy to Adapt

Striving for
RELIABILITY

(Optimise for
perfection)

Striving for
AGILITY

(Optimise for
development speed)

On the Origin
of Species

12.Conclusion

Bugs (& Bug Reports)

33

12.Conclusion

Bugs (& Bug Reports)

34

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

Suggestions?

12.Conclusion

Bug Report Triaging

35

Question Cases Precision Recall

Who should fix this bug? Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug? JBoss

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

What is the severity of
this bug? Mozilla, Eclipse, Gnome

mozilla,
eclipse:67% - 73%

gnome:
75%-82%

mozilla,
eclipse:50% - 75%

gnome:
68%-84%

Artificial
Intelligence

Inside

12.Conclusion

Bug Report Triaging

36

Question Cases Precision Recall

Who should fix this bug? Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug? JBoss

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

What is the severity of
this bug? Mozilla, Eclipse, Gnome

mozilla,
eclipse:67% - 73%

gnome:
75%-82%

mozilla,
eclipse:50% - 75%

gnome:
68%-84%

Irrelevant for

Practitioners

Internal vs.
External  

Bug Reports

Artificial
Intelligence

Inside

12.Conclusion

Story Points (Planning Poker)

37

1/2 1 2 3 5 8 13 20 40 100 ♾

Public Domain

12.Conclusion

Results

38

Human
MMRE: 0.48

(*) Mean Magnitude
of Relative Error

Learning Curve

12.Conclusion

Artificial

Intelligence

Inside

“in vivo” Validation

39

Explainable!

12.Conclusion

Test Amplification

40

System Under TestTest Suite

Code Coverage

System Under TestAmplified Test Suite

12.Conclusion

Example - testDeposit

41

1 def testDeposit (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.get_balance(), 10)  
5 self.b.deposit(100)  
6 self.b.deposit(100)  
7 self.assertEqual(self.b.get_balance() , 210)

Input

Expected output

12.Conclusion

Example - testDeposit_amplified (1/2)

42

1 def testDeposit_amplified (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.
5 get_transactions(), [10])  
6 self.assertFalse(self.b.is_empty ())
7 self.assertEqual(self.b.owner, ’Iwena Kroka’)
8 self.assertEqual(self.b.get_balance(), 10)
 …  

Assertion Amplification

Assertion Amplification = (re)generate appropriate assertions to verify the
actual state of the object under test by observing the run-time behaviour.

12.Conclusion

Example - testDeposit_amplified (2/2)

43

1 def testDeposit_amplified (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.
5 get_transactions(), [10])  
6 self.assertFalse(self.b.is_empty ())
7 self.assertEqual(self.b.owner, ’Iwena Kroka’)
8 self.assertEqual(self.b.get_balance(), 10)
9 with self.assertRaises(Exception):  
10 self.b.deposit(−56313)
11 self.b.deposit(100)
12 self.b.set_owner(’Guido van Rossum’)  
13 self.assertEqual(self.b.
14 get_transactions(), [10])
…

Input Amplification

Input Amplification = Transform the original test method(*); forcing
previously untested paths.
(*) Change the set-up of the object under test, providing parameters that
represent boundary conditions; inject calls to state-changing methods

⇒ Brute force but optimize via increase in code coverage

12.Conclusion 44

12 pull requests
9 merged
3 pending

12.Conclusion

Q&A support

45

12.Conclusion

Stack Overflow

46

12.Conclusion

Summary (i)
• You should know the answers to these questions

+ Name 3 items from the code of ethics and provide a one-line explanation.
+ If you are an independent consultant, how can you ensure that you will not have to

act against the code of ethics?
+ What would be a possible metric for measuring the amount of innovation of a

manufacturing company?
+ Explain the 2 main steps of test amplification: input amplification and assertion

amplification

47

12.Conclusion

Summary (i) - Continued
“No Silver Bullet”

• What’s the distinction between essential and accidental complexity?
• Name 3 reasons why the building of software is essentially a hard task? Provide a one-

line explanation.
• Why is “object-oriented programming” no silver bullet?
• Why is “program verification” no silver bullet?
• Why are “components” a potential silver bullet?

“Killer Robot”
• Which regression tests would you have written to prevent the “killer robot”?
• Was code reviewing applied as part of the QA process? Why (not)?
• Why was the waterfall process disastrous in this particular case?
• Why was the user-interface design flawed?

48

12.Conclusion

Summary (ii)
• Can you answer the following questions?

+ You are an experienced designer and you heard that the sales people earn more
money than you do. You want to ask your boss for a salary-increase; how would you
argue your case?

+ Software products are usually released with a disclaimer like “Company X is not
responsible for errors resulting from the use of this program”. Does this mean that
you shouldn’t test your software? Motivate your answer.

+ Your are a QA manager and are requested to produce a monthly report about the
quality of the test process. How would you do that?

+ Why is “explainable Artificial Intelligence” so important when creating bots for
software engineering tasks?

• When you chose the “No Silver Bullet” paper
+ Explain why incremental development is a promising attack on conceptual essence.

Give examples from the different topics addressed in the course.
+ “Software components” are said to be a promising attack on conceptual essence.

Which techniques in the course are applicable? Which techniques aren’t?
• When you chose the “Killer Robot” paper

+ Recount the story of the Killer Robot case. List the three most important causes for
the failure and argue why you think these are the most important.

49

12.Conclusion

Summary (i)
• You should know the answers to these questions

+ Name 3 items from the code of ethics and provide a one-line explanation.
+ If you are an independent consultant, how can you ensure that you will not have to

act against the code of ethics?
+ What would be a possible metric for measuring the amount of innovation of a

manufacturing company?
+ Explain the 2 main steps of test amplification: input amplification and assertion

amplification

When you chose the “No Silver Bullet” paper
• What’s the distinction between essential and accidental complexity?
• Name 3 reasons why the building of software is essentially a hard task? Provide a one-

line explanation.
• Why is “object-oriented programming” no silver bullet?
• Why is “program verification” no silver bullet?
• Why are “components” a potential silver bullet?

When you chose the “Killer Robot” paper
• Which regression tests would you have written to prevent the “killer robot”?
• Was code reviewing applied as part of the QA process? Why (not)?
• Why was the waterfall process disastrous in this particular case?
• Why was the user-interface design flawed?

50

12.Conclusion

Summary (ii)
• Can you answer the following questions?

+ You are an experienced designer and you heard that the sales people earn more
money than you do. You want to ask your boss for a salary-increase; how would you
argue your case?

+ Software products are usually released with a disclaimer like “Company X is not
responsible for errors resulting from the use of this program”. Does this mean that
you shouldn’t test your software? Motivate your answer.

+ Your are a QA manager and are requested to produce a monthly report about the
quality of the test process. How would you do that?

+ Why is “explainable Artificial Intelligence” so important when creating bots for
software engineering tasks?

When you chose the “No Silver Bullet” paper
+ Explain why incremental development is a promising attack on conceptual essence.

Give examples from the different topics addressed in the course.
+ “Software components” are said to be a promising attack on conceptual essence.

Which techniques in the course are applicable? Which techniques aren’t?

When you chose the “Killer Robot” paper
+ Recount the story of the Killer Robot case. List the three most important causes for

the failure and argue why you think these are the most important.

51

