
13.Appendix — Questions

13. Appendix. Questions
+ 01. Introduction 
+ 02. Requirements 
+ 03. Software Architecture 
+ 04. Project Management 
+ 05. Design By Contract 
+ 06. Testing 
+ 07. Formal Specifications 
+ 08. Domain Models 
+ 09. Software Quality 
+ 10. Software Metrics 
+ 11. Refactoring 
+ 12. Conclusion

1

13.Appendix — Questions

Examen

2

Tussentijdse opdrachten + 
Schriftelijk examen

Mondeling Mondeling

eind resultaat 
[0, 10]

eind resultaat 
[10, 20]

resultaat > 12

Mondeling = Herkansing 
•extra kennisvragen 
•evt. oefening

Mondeling = Diversificatie 
•1 a 2 inzichtsvragen (cfr. “Can you 

answer the following questions”) 
• evt. 1 creatieve vraag

Selectie (minimumnorm) 
•1 tussentijdse opdracht per hoofdstuk 

•Tijdens het jaar op te leveren 
•Presentatie + Kwalitatieve feedback 
•Resultaat > 12 

•Schriftelijk examen 
•1 kennis vraag per hoofdstuk 

• (cfr. “You should know the answer 
to these questions”) 

•beperkte oefeningen 
•Resultaat > 12



1.Introduction

1. Introduction (1/2)

3

• You should know the answers to these questions: 
+ How does Software Engineering differ from programming? 
+ Why is programming only a small part of the cost of a “real” software project ? 
+ Give a definition for “traceability”. 
+ What is the difference between analysis and design? 
+ Explain verification and validation in simple terms. 
+ Why is the “waterfall” model unrealistic? Why is it still used? 
+ Can you explain the difference between iterative development and incremental 

development? 
+ How do you decide to stop in the spiral model? 
+ How do you identify risk? How do you asses a risk? Which risks require action? 
+ What is Failure Mode and Effects Analysis (FMEA)? 
+ List the 6 principles of extreme programming. 
+ What is a “sprint” in the SCRUM process? 
+ Give the three principal roles in a scrum team. Explain their main responsibilities. 
+ Draw a UML class diagram modelling marriages in cultures with monogamy (1 wife 

marries 1 husband), polygamy (persons can be married with more than one other 
person), polyandry (1 woman can be married to more than one man) and polygyny 
(1 man can be married to more than one woman). 

+ Draw a UML diagram that represents an object “o” which creates an account (balance 
initially zero), deposits 100$ and then checks whether the balance is correct.

1.Introduction

Introduction (2/2)
• Can you answer the following questions? 

+ What is your preferred definition of Software Engineering? Why? 
+ Why do we choose “Correctness” & “Traceability” as evaluation criteria? Can you 

imagine some others? 
+ Why is “Maintenance” a strange word for what is done during the activity? 
+ Why is risk analysis necessary during incremental development? 
+ How can you validate that an analysis model captures users’ real needs? 
+ When does analysis stop and design start? 
+ When can implementation start? 
+ Can you compare the Unified Process and the Spiral Model? 
+ Can you explain the values behind the Agile Manifesto? 
+ Can you identify some synergies between the techniques used during extreme 

programming? 
+ Can you explain how the different steps in the scrum process create a positive 

feedback loop? 
+ How does scrum reduce risk? 
+ Is it possible to apply Agile Principles with the Unified Process? 
+ Did the UML succeed in becoming the Universal Modeling Language? Motivate your 

answer.

4



2.Requirements

2. Requirements (1/2)
• You should know the answers to these questions 

+ Why should the requirements specification be understandable, precise and open? 
+ What’s the relationship between a use case and a scenario? 
+ Can you give 3 criteria to evaluate a system scope description? Why do you select 

these 3? 
+ Why should there be at least one actor who benefits from a use case? 
+ Can you supply 3 questions that may help you identifying actors? And use cases? 
+ What’s the difference between a primary scenario and a secondary scenario? 
+ What’s the direction of the <<extends>> and <<includes>> dependencies? 
+ What is the purpose of technical stories in scrum? 
+ List and explain briefly the INVEST criteria for user stories. 
+ Explain briefly the three levels of detail for Product Backlog Items (Epic, Features, 

Stories). 
+ What is a minimum viable product? 
+ Define a misuse case. 
+ Define a safety story. 

•  You should be able to complete the following tasks 
+ Write a requirements specification for your bachelor capstone project.

5

CAPSTONE PROJECT

2.Requirements

Requirements (2/2)
• Can you answer the following questions?  

+ Why do use cases fit well in an iterative/incremental development process? 
+ Why do we distinguish between primary and secondary scenarios? 
+ What would you think would be the main advantages and disadvantages of use 

cases? 
+ How would you combine use-cases to calculate the risky path in a project plan? 
+ Do use-cases work well with agile methods? Explain why or why not. 
+ Can you explain the use of a product roadmap in scrum? 
+ Choose the three most important items in your “Definition of Ready” checklist. Why 

are these most important to you? 
+ Can you relate scrum user stories to some of the principles in the Agile Manifesto? 
+ How would you turn an FMEA analysis into a misuse case diagram? 
+ Elaborate on the relationship between an FMEA analysis and the variants of safety 

stories.

6



03.Architecture

3. Architecture (1/2)
You should know the answers to these questions  

• What’s the role of a software architecture?  
• What is a component? And what’s a connector?  
• What is coupling? What is cohesion? What should a good design do with them?  
• What is a pattern? Why is it useful for describing architecture?  
• Can you name the components in a 3-tiered architecture? And what about the 

connectors?  
• Why is a repository better suited for a compiler than pipes and filters?  
• What’s the motivation to introduce an abstract factory?  
• Can you give two reasons not to introduce an Adapter (Wrapper)?  
• What problem does an abstract factory solve? 
• List three tradeoffs for the Adapter pattern. 
• How do you decide on two architectural alternatives in scrum? 
• What’s the distinction between a package diagram and a deployment diagram? 
• Define a sensitivity point and a tradeoff point from the ATAM terminology. 

You should be able to complete the following tasks  
• Take each of the patterns and identify the components and connectors. Then assess the 

pattern in terms of coupling and cohesion. Compare this assessment with the tradeoffs.

7

03.Architecture

Architecture (2/2)
Can you answer the following questions?  

• What do architects mean when they say “architecture maps function onto form”? And 
what would the inverse “map form into function” mean?  

• How does building architecture relate to software architecture? What’s the impact on the 
corresponding production processes?  

• Why are pipes and filters often applied in CGI-scripts?  
• Why do views and controllers always act in pairs?  
• Explain the sentence “Restricts communication between subject and observer” in the 

Observer pattern 
• Can you explain the difference between an architecture and a pattern? 
• Explain the key steps of the ATAM method? 
• How can you balance emergent design with intentional architecture? 
• What happens when your team goes outside the boundaries of the guardrail? 
• How would you organize an architecture assessment in your team?

8



4.Project Management

4.Project Management (1/2)
• You should know the answers to these questions 

+ Name the five activities covered by project management. 
+ What is a milestone? What can you use them for? 
+ What is a critical path? Why is it important to know the critical path? 
+ What can you do to recover from delays on the critical path? 
+ How can you use Gantt-charts to optimize the allocation of resources to a project? 
+ What is a “Known kown”, and “Unknown known” and an “Unknown Unknown”? 
+ How do you use PERT to calculate the risk of delays to a project? 
+ Why does replacing a person imply a negative productivity? 
+ What’s the difference between the 0/100; the 50/50 and the milestone technique for 

calculating the earned value? 
+ Why shouldn’t managers take on tasks in the critical path? 
+ What is the “definition of done” in a Scrum project? 
+ Give a definition for a Squad, Tribe, Chapter and Guild in the spotify scrum model. 

• You should be able to complete the following tasks 
+ draw a PERT Chart, incl. calculating the critical path and the risk of delays 
+ draw a Gant chart, incl. allocating and optimizing of resources 
+ draw a slip line and a timeline

9

4.Project Management

Project Management (2/2)
• Can you answer the following questions? 

+ Name the various activities covered by project management. Which ones do you 
consider most important? Why? 

+ How can you ensure traceability between the plan and the requirements/system? 
+ Compare PERT-charts with Gantt charts for project planning and monitoring. 
+ How can you deal with “Unknown Unknowns” during project planning? 
+ Choose between managing a project that is expected to deliver soon but with a large 

risk for delays, or managing a project with the same result delivered late but with 
almost no risk for delays. Can you argue your choice? 

+ Describe how earned-value analysis can help you for project monitoring. 
+ Would you consider bending slip lines as a good sign or a bad sign? Why? 
+ You’re a project leader and one of your best team members announces that she is 

pregnant. You’re going to your boss, asking for a replacement and for an extension of 
the project deadline. How would you argue the latter request? 

+ You have to manage a project team of 5 persons for building a C++ compiler. Which 
team structure and member roles would you choose? Why? 

+ Can you give some advantages and disadvantages of scrum component teams and 
scrum feature teams.

10



5. Design by Contract

5. Design by Contract (1/2)

11

• You should know the answers to these questions 
+ What is the distinction between Testing and Design by Contract? Why are they 

complementary techniques? 
+ What’s the weakest possible condition in logic terms? And the strongest? 
+ If you have to implement an operation on a class, would you prefer weak or strong 

conditions for pre- and postcondition? And what about the class invariant? 
+ If a subclass overrides an operation, what is it allowed to do with the pre- and 

postcondition? And what about the class invariant? 
+ Compare Testing and Design by contract using the criteria “Correctness” and 

“Traceability”. 
+ What’s the Liskov substitution principle? Why is it important in OO development? 
+ What is behavioral subtyping? 
+ When is a pre-condition reasonable? 

• You should be able to complete the following tasks 
+ What would be the pre- and post-conditions for the methods top and isEmpty in the 

Stack specification? How would I extend the contract if I added a method size to the 
Stack interface? 

+ Apply design by contract on a class Rectangle, with operations move() and resize(). 
+ Write consumer-driven contracts for a given REST-API .

5. Design by Contract

Design by Contract (2/2)
• Can you answer the following questions? 

+ Why are redundant checks not a good way to support Design by Contract? 
+ You’re a project manager for a weather forecasting system, where performance is a 

real issue. Set-up some guidelines concerning assertion monitoring and argue your 
choice. 

+ If you have to buy a class from an outsourcer in India, would you prefer a strong 
precondition over a weak one? And what about the postcondition? 

+ Do you feel that design by contract yields software systems that are defect free? If 
you do, argue why. If you don’t, argue why it is still useful. 

+ How can you ensure the quality of the pre- and postconditions? 
+ Why is (consumer-driven) contract testing so relevant in the context of micro-

services? 
+ Assume you have an existing software system and you are a software quality 

engineer assigned to apply design by contract. How would you start? What would you 
do?

12



6.Testing

6.Testing (1/2)
You should know the answers to these questions 

• What is (a) Testing, (b) a Testing Technique, (c) a Testing Strategy 
• What is the difference between an error, a failure and a defect? 
• What is a test case? A test stub? A test driver? A test fixture? 
• What are the differences and similarities between basis path testing, condition testing 

and loop testing? 
• How many tests should you write to achieve MC/DC coverage? And multiple condition 

coverage? 
• Where do you situate alpha/beta testing in the four quadrants model? 
• What are the differences and similarities between unit testing and regression testing? 
• How do you know when you tested enough? 
• What is Alpha-testing and Beta-Testing? When is it used? 
• What is the difference between stress-testing and performance testing? 

You should be able to complete the following tasks 
• Complete test cases for the Loop Testing example (Loop Testing on page 19). 
• Rewrite the binary search so that basis path testing and loop testing becomes easier. 
• Write a piece of code implementing a quicksort. Apply all testing techniques (basis path 

testing, conditional testing [3 variants], loop testing, equivalence partitioning) to derive 
appropriate test cases. 

• Write FIT test cases for the user stories in you Bachelor Capstone Project 
• Apply fuzz testing to the REST-API of your project

13

CAPSTONE PROJECT

6.Testing

Testing (2/2)
Can you answer the following questions? 

• You’re responsible for setting up a test program. To whom will you assign the 
responsibility to write tests? Why? 

• Why do we distinguish between several levels of testing in the V-model? 
• Explain why basis path testing, condition testing and loop testing complement each 

other. 
• Why is mutation coverage a better criterion for assessing the strength of a test suite? 
• Explain fuzzing (fuzz testing) in your own words. 
• Explain what FIT tables are. 
• When would you combine top-down testing with bottom-up testing? Why? 
• When would you combine black-box testing with white-box testing? Why? 
• Is it worthwhile to apply white-box testing in an OO context? 
• What makes regression testing important? 
• Is it acceptable to deliver a system that is not 100% reliable? Why (not)? 
• Explain the subtle difference between code coverage and test coverage.

14



7.Formal Specifications

7.Formal Specifications (1/2)

15

You should know the answers to these questions 
• Why is an UML class diagram a semi-formal specification? 
• What is an automated theorem prover? 
• What is the distinction between “partially correct” and “totally correct”? 
• Give the mathematical definition for the weakest precondition of Hoare triple {P} S {Q} 
• Why is it necessary to complement sequence diagrams with statecharts? 
• What is the notation for the start and termination state on a state-chart? What is the 

notation for a guard expression on an event? 
• What does it mean for a statechart to be 

(a) consistent, (b) complete, and (c) unambiguous? 
• How does a formal specification contribute to the correctness of a given system? 

You should be able to complete the following tasks 
• Use a theorem prover (Daphny) to prove that a given piece of code is correct. 
• Create a statechart specification for a given problem. 
• Given a statechart specification, derive a test model using path testing.

7.Formal Specifications

Formal Specifications (2/2)
Can you answer the following questions? 

• (Based on the article “A Formal Approach to Constructing Secure Air Vehicle Software”.) 
+ What is according to you the most effective means to achieve “provably secure 

against cyberattacks”? 
• Why is it likely that you will encounter formal specifications? 
• Explain why we need both the loop variant and the loop invariant for proving total 

correctness of a loop? 
• What do you think happened with the bug report on the broken Java.utils.Collection.sort 

()? Why do you think this happened? 
• Explain the relationship between “Design By Contract” on the one hand “State based 

specifications” on the other hand. 
• Explain the relationship between “Testing” on the one hand and “State based 

specifications” on the other hand. 
• You are part of a team build a fleet management system for drones transporting medical 

goods between hospitals. You must secure the system against cyber-attacks. Your boss 
asks you to look into formal specs; which ones would you advise and why?

16



8. Domain Modelling

8. Domain Modelling (1/2)

17

• You should know the answers to these questions 
+ Why is it necessary to validate and analyze the requirements? 
+ What’s the decomposition principle for functional and object-oriented decomposition? 
+ Can you give the advantages and disadvantages for functional decomposition? What 

about object-oriented decomposition? 
+ How can you recognize “god classes”? 
+ What is a responsibility? What is a collaboration? 
+ Name 3 techniques to identify responsibilities. 

+ What do feature models define? 
+ Give two advantages and disadvantages of a “clone and own” approach 
+ Explain the main difference between a social fork and a variant fork 

+ How does domain modeling help to achieve correctness? Traceability? 

• You should be able to complete the following tasks 
+ Apply noun identification & verb identification to (a part of) a requirements 

specification. 
+ Create a feature model for a series of mobile phones.

8. Domain Modelling

Domain Modelling (2/2)

18

• Can you answer the following questions? 
+ How does domain modeling help to validate and analyze the requirements? 
+ What’s the problem with “god classes”? 
+ Why are many responsibilities, many collaborators and deep inheritance hierarchies 

suspicious? 
+ Can you explain how role-playing works? Do you think it helps in creative thinking? 
+ Can you compare Use Cases and CRC Cards in terms of the requirements 

specification process? 
+ Do CRC cards yield the best possible class design? Why not? 
+ Why are CRC cards maintained with paper and pencil instead of electronically? 
+ What would be the main benefits for thinking in terms of “system families” instead of 

“one-of-a-kind development? What would be the main disadvantages? 
+ Can you apply scrum to develop a product line? Argue your case.



9. Software Quality

9. Software Quality (1/2)
You should know the answers to these questions 

• Why is software quality more important than it was a decade ago? 
• Can a correctly functioning piece of software still have poor quality? Why? 
• If quality control can’t guarantee results, why do we bother? 
• What’s the difference between an external and an internal quality attribute? And 

between a product and a process attribute? 
• What’s the distinction between correctness, reliability and robustness? 
• How can you express the “user friendliness” of a system? 
• Can you name three distinct refinements of “maintainability”? What do each of these 

names mean? 
• What is meant with “short time to market”? Can you name 3 related quality attributes 

and provide definitions for each of them? 
• Name four things which should be recorded in the review minutes. 
• Explain briefly the three items that should be included in a quality plan. 
• What’s the relationship between ISO9001, CMMI standards and an organization’s quality 

system? How do you get certified? 
• Can you name and define the 5 levels of CMMI? 
• Where would “use-cases” as defined in chapter 3 fit in the table of core process areas 

(p. 32)? Motivate your answer shortly.

19

9. Software Quality

Software Quality (2/2)
You should be able to complete the following tasks 

• Given a piece of code and a coding standard, review the code to verify whether the 
standard has been adhered to. 

Can you answer the following questions? 
• Given the Quality Attributes Overview table, argue why the crosses and blanks occur at 

the given positions. 
• Why do quality standards focus on process and internal attributes instead of the desired 

external product attributes? 
• Why do you need a quality plan? Which topics should be covered in such a plan? 
• How should you organize and run a review meeting? 
• Why are coding standards important? 
• What would you include in a documentation review checklist? 
• How often should reviews by scheduled? 
• Could you create a review check-list for ATAM? 
• Would you trust software from an ISO 9000 certified company? And if it were CMMI? 
• You are supposed to develop a quality system for your organization. What would you 

include? 
• Where would “testing” fit in the table of core process areas (p. 32). Does it cover a 

single row or not? Argue why (not)?

20



10.Software Metrics

10.Software Metrics (1/2)
You should know the answers to these questions 

• Can you give three possible problems of metrics usage in software engineering? How 
does the measurement theory address them? 

• What’s the distinction between a measure and a metric? 
• Can you give an example of a direct and an indirect measure? 
• What kind of measurement scale would you need to say “A specification error is worse 

than a design error”? And what if we want to say “A specification error is twice as bad as 
a design error?” 

• Explain the need for a calibration factor in Putnam’s model. 
• Fill in the blanks in the following sentence. Explain briefly, based on the Putnam’s 

model. 
+ If you want to finish earlier (= decrease scheduled time), you should ... the effort ... . 

• Give three metrics for measuring size of a software product. 
• Discuss the main advantages and disadvantages of Function Points. 
• What does it mean for a coupling metric not to satisfy the representation condition? 
• Can you give 3 examples of impreciseness in Lines of Code measurements? 

You should be able to complete the following tasks 
• Given a set of use cases (i.e. your project) calculate the use case points. 
• Given a set of user stories, perform a poker planning session.

21

CAPSTONE PROJECT

10.Software Metrics

Software Metrics (2/2)
Can you answer the following questions? 

• During which phases in a software project would you use metrics? 
• Why is it so important to have “good” product size metrics? 
• Can you explain the two levels of calibration in COCOMO (i.e. C & S vs. M)? How can 

you derive actual values for these parameters? 
• Can you motivate why in software engineering, productivity depends on the scheduled 

time? Do you have an explanation for it? 
• Can you explain the cone of uncertainty? And why is it so relevant to cost estimation in 

software projects? 
• How can you decrease the uncertainty of a project bid using Putnam’s model? 
• Why do we prefer measuring Internal Product Attributes instead of External Product 

Attributes during Quality Control? What is the main disadvantage of doing that? 
• You are a project manager and you want to convince your project team to apply 

algorithmic cost modeling. How would you explain the technique? 
• Where would you fit coupling/cohesion metrics in a hierarchical quality model like ISO 

9126? 
• Why are coupling/cohesion metrics important? Why then are they so rarely used? 
• Do you believe that “defect density” says something about the correctness of a 

program? Motivate your answer?

22



11.Refactoring

11.Refactoring (1/2)
You should know the answers to these questions: 

• Can you explain how refactoring differs from plain coding? 
• Can you tell the difference between Corrective, Adaptive and Perfective maintenance? 

And how about preventive maintenance? 
• Can you name the three phases of the iterative development life-cycle? Which of the 

three does refactoring support the best? Why do you say so? 
• Can you give 4 symptoms for code that can be “cured” via refactoring? 
• Can you explain why add class/add method/add attribute are behaviour preserving? 
• Can you give the pre-conditions for a “rename method” refactoring? 
• Which 4 activities should be supported by tools when refactoring? 
• Why can’t we apply a “push up” to a method “x()” which accesses an attribute in the 

class the method is defined upon (see Refactoring Sequence on page 27–31)? 
You should be able to complete the following tasks 

• Two classes A & B have a common parent class X. Class A defines a method a() and 
class B a method b() and there is a large portion of duplicated code between the two 
methods. Give a sequence of refactorings that moves the duplicated code in a separate 
method x() defined on the common superclass X. 

• What would you do in the above situation if the duplicated code in the methods a() and 
b() are the same except for the name and type of a third object which they delegate 
responsibilities too? 

• Monitor the technical debt of you bachelor capstone project.

23

CAPSTONE PROJECT

11.Refactoring

Refactoring (2/2)
Can you answer the following questions? 

• Why would you use refactoring in combination with Design by Contract and Regression 
Testing? 

• Can you give an example of a sequence of refactorings that would improve a piece of 
code with deeply nested conditionals? 

• How would you refactor a large method? And a large class? 
• Consider an inheritance relationship between a superclass “Square” and a subclass 

“Rectangle”. How would you refactor these classes to end up with a true “is-a” 
relationship? Can you generalise this procedure to any abusive inheritance relationship?

24



12.Conclusion

12.Conclusion (1/2)
• You should know the answers to these questions 

+ Name 3 items from the code of ethics and provide a one-line explanation. 
+ If you are an independent consultant, how can you ensure that you will not have to 

act against the code of ethics? 
+ What would be a possible metric for measuring the amount of innovation of a 

manufacturing company? 
+ Explain the 2 main steps of test amplification: input amplification and assertion 

amplification 

When you chose the “No Silver Bullet” paper 
• What’s the distinction between essential and accidental complexity? 
• Name 3 reasons why the building of software is essentially a hard task? Provide a one-

line explanation. 
• Why is “object-oriented programming” no silver bullet? 
• Why is “program verification” no silver bullet? 
• Why are “components” a potential silver bullet? 

When you chose the “Killer Robot” paper 
• Which regression tests would you have written to prevent the “killer robot”? 
• Was code reviewing applied as part of the QA process? Why (not)? 
• Why was the waterfall process disastrous in this particular case? 
• Why was the user-interface design flawed?

25

12.Conclusion

Conclusion (2/2)
• Can you answer the following questions? 

+ You are an experienced designer and you heard that the sales people earn more 
money than you do. You want to ask your boss for a salary-increase; how would you 
argue your case? 

+ Software products are usually released with a disclaimer like “Company X is not 
responsible for errors resulting from the use of this program”. Does this mean that 
you shouldn’t test your software? Motivate your answer. 

+ Your are a QA manager and are requested to produce a monthly report about the 
quality of the test process. How would you do that? 

+ Why is “explainable Artificial Intelligence” so important when creating bots for 
software engineering tasks? 

When you chose the “No Silver Bullet” paper 
+ Explain why incremental development is a promising attack on conceptual essence. 

Give examples from the different topics addressed in the course. 
+ “Software components” are said to be a promising attack on conceptual essence. 

Which techniques in the course are applicable? Which techniques aren’t? 

When you chose the “Killer Robot” paper 
+ Recount the story of the Killer Robot case. List the three most important causes for 

the failure and argue why you think these are the most important.

26


