
Software Engineering
3de BAC Informatica (Computer Science)
[Academic year 2023-2024]

© Prof. Serge Demeyer

(This slide deck is significantly revised compared to previous editions.
Extra - changed - new info is marked with variants of)**New** **Revised**

0.Praktische Zaken

Opleiding Informatica — Doel en Ambitie

2

Doelstelling: Het doel van de opleiding Informatica aan de Universiteit Antwerpen is
bekwame en wetenschappelijk gevormde informatici af te leveren. Na hun opleiding
• (a) zijn zij in staat zich de nieuwste technologische ontwikkelingen in de diverse

deelgebieden eigen te maken,
• (b) kunnen zij deze waar nodig ook exploiteren binnen hun beroepscontext, en
• (c) kunnen zij zelf een originele bijdrage leveren tot de verdere evolutie van de

informatica.

Ambitie: De onderwijscommissie Informatica van de Universiteit Antwerpen wil een
unieke opleiding aanbieden gebaseerd op de aanbevelingen van gerenommeerde
wetenschappelijke organisaties zoals ACM, IEEE en SIAM. Ze wenst dat haar alumni
voldoende diepgang en flexibiliteit bezitten om gegeerd te zijn op de arbeidsmarkt en
academische posities te bekleden in universiteiten en onderzoeksinstellingen met
wereldfaam. Daartoe hanteert zij een transparant en activerend leerproces, conform
de visie van de Universiteit Antwerpen rond “studentgecentreerd onderwijs”.

0.Praktische Zaken 3

Bachelor Programma - overzicht Internationale

standaarden

(ACM, IEEE, AIS, SIAM)

… … …

Software
Engineering

Databases

Computer-
netwerken

&
Gedistribueerde

Systemen

Fundamenten van de Informatica
Wetenschappelijke verankering

B
a
ch
e
lo
r

Master

profileringsruimte

0.Praktische Zaken 4

Bachelor Programma - overzicht Internationale

standaarden

(ACM, IEEE, AIS, SIAM)

… … …

Software
Engineering

Databases

Computer-
netwerken

&
Gedistribueerde

Systemen

Fundamenten van de Informatica
Wetenschappelijke verankering

B
a
ch
e
lo
r

Master

profileringsruimte
Bachelor Eindwerk

0.Praktische Zaken

Bachelor Eindwerk

5

Capstone

0.Praktische Zaken

Kerncompetenties Software Engineering

6

Analyse en ontwerp voor kleinschalige software projecten +

Implementatie van nieuwe softwaresystemen +

Onderhoud van bestaande softwaresystemen ++

Implementatie en onderhoud van een databank

Beheer van een lokaal netwerk

Vakbekwaamheid ++

Maatschappij +++

Communicatievaardigheden +

Wiskundige basis

Formeel denken en abstraherend vermogen +

Levenslang leren ++

Wetenschappelijke aanpak +

Wetenschappelijke basis

Autonoom en creatief functioneren +

Bachelor = bekwame informaticus

Academische Bachelor = wetenschappelijke vorming

0.Praktische Zaken

HOOFDSTUK 0 – Praktische Zaken
• Doel

+ Professionele Informaticus
+ Plaats in het Curriculum

- Kerncompetenties
+ Beoordelingscriteria
+ Examen
+ Voorbeeldvragen

• Literatuur
• Inhoudstafel

7

0.Praktische Zaken

Doel
• Programmaboekje

+ “Het doel bestaat erin om de student een brede basis te verschaffen in
het bouwen van softwaresystemen die te complex zijn om door één
persoon gerealiseerd te worden.”

+ Dus
- brede basis

> véél technieken
- complexe systemen

> schaalbare technieken

8

0.Praktische Zaken

Professionele Informaticus
• diverse domeinen

+ traditionele “data processing”
(banken, verzekeringen)

+ spitstechnologie
(cloud, AI, cyber-physical)

+ telecommunicatie
(netwerkbeheer, e-commerce)

+ ...
+ onderzoek

• zij verwachten
+ technische virtuozen

- diverse specialiteiten
+ groepsspelers

- sociale vaardigheden

9

Public Domain

38

25
23 22

16 15

11

7 6 6 5 4 3 0
0

5

10

15

20

25

30

35

40

So
ft
w
ar

e
on

tw
ik
ke

lin
g

C
on

su
lta

nt

So
ft
w
ar

e
An

al
is
t

O
nd

er
zo

ek
er

 (
ac

ad
em

is
ch

)

So
ft
w
ar

e
Ar

ch
ite

ct

Pr
oj
ec

tle
id
er

W
eb

 d
es

ig
ne

r
&
 D

ev
el
op

er

D
ie
ns

te
n
aa

n
kl
an

te
n

Sy
st
ee

m
 o
nt

w
ik
ke

lin
g

H
el
pd

es
k

O
nd

er
zo

ek
er

 (
in
du

st
ri
ee

l)

In
fr
as

tr
uc

tu
ur

 b
eh

ee
rd

er

Ve
rk

oo
p
en

 m
ar

ke
tin

g

H
ar

dw
ar

e
on

tw
ik
ke

lin
g

Enquête onder alumni (april 2008) — JobProfiel

Enquête onder alumni (april 2008) — Bedrijfssector

22

18

15

4
3

2 1 1 1 1 1 1
0

5

10

15

20

25

C
on

su
lta

nc
y

O
nd

er
w
ijs

 &
 v
or

m
in
g

In
fo
rm

at
ie
te
ch

no
lo
gi
e
&
 t
el
ec

om
m
un

ic
at
ie

An
de

re

O
pe

nb
ar

e
di
en

st
en

 /
 o
ve

rh
ei
d

C
om

m
er

ci
ël
e
se

ct
or

In
du

st
ri
e

M
ed

is
ch

e
se

ct
or

 /
 g
ez

on
dh

ei
ds

se
ct
or

Fi
na

nc
ië
le
 s
ec

to
r

Ve
rz
ek

er
in
gs

w
ez

en

H
um

an
 r
es

ou
rc
es

 m
an

ag
em

en
t

En
te
rt
ai
nm

en
t
/
vr

ije
tij

ds
se

ct
or

Enquête onder alumni (april 2008) — Bedrijfsgrootte

5 of minder werknemers

3%

tussen 5 en 50

werknemers

12%

tussen 50 en 500

werknemers

20%

meer dan 500 werknemers

65%

0.Praktische Zaken

Job Profiles (Software Engineering)

13

SCRUM Master

Test Lead

QA Engineer

Software Architect

Chief Technology Officer (CTO)

Project Manager
Enterprise Architect

Organisation Size

Niew

Team Lead

0.Praktische Zaken

Criteria - Selectie
• Accuraatheid

+ Een professionele software engineer werkt in groep en moet dus op
een accurate manier kunnen communiceren met zijn collega’s en
eindgebruikers.

* Juist gebruik van terminologie
* Parate kennis definities

• Toepasbare kennis
+ Een professionele software engineer moet in staat zijn gekende

technieken toe te passen in een variërende context.
* “Know-how”
* Oefeningen

14

SELECTIE
• Je moet dit kunnen

demonstreren tijdens het
examen om te slagen!

0.Praktische Zaken

Criteria - Diversificatie
• Inzicht

+ Een professionele software engineer moet technische keuzes kunnen
verantwoorden

* “Know when”
* Afwegingen maken

15

DIVERSIFICATIE:
•De mate waarin je dit kunt

demonstreren tijdens het examen
laat je toe je te onderscheiden van
je collega’s.

0.Praktische Zaken

Tussentijdse Opdrachten
• (Bijna) wekelijks
• Oefeningen: toepassing van de theorie van de week.

• ⇒ Rapporteren via mondelinge presentatie (om de 2 à 3 weken)

• In groep: 3 personen.
• Kwalitatieve feedback ⇒ evolutie is belangrijk.

Evaluatie
• Quotering volgens gewicht

• 30% - Mijlpaal 1 [Requirements + Architecture + Project Management]
• 50% - Mijlpaal 2 [Testing + Formal Specifications + State Charts]
• 20% - Mijlpaal 3 [Refactoring + Quality Control]

16

Een resultaat > 12 op 20 is noodzakelijk om te slagen voor dit
vak!

Herzien

0.Praktische Zaken

Ideale Semester Planning

17

Herzien

week 1 [T] Introduction -- geen oefeningen

week 2 [T] Requirements [P] Requirements

week 3 [T] Software Architecture [P] Software Architecture

week 4 [T] Project Management [P] Project Management

week 5 [T] Design by Contract -- EVALUATIE

week 6 [T] Testing [P] Testing

week 7 [T] Formal Specifications [P] Formal Specifications

week 8 [T] Domain Models [P] State Charts

week 9 [T] Software Quality -- EVALUATIE

week 10 [T] Software Metrics [P] Refactoring

week 11 [T] Refactoring [P] Software Quality

week 12 (-- reserve) -- EVALUATIE

week 13 [T] Conclusion -- geen oefeningen

https://ansymore.uantwerpen.be/software-engineering-3e-bac/tijdsschema

0.Praktische Zaken

Uitstellen?

18

0

4,5

9

13,5

18

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

Software Engineering Artificiële Intelligentie
Numerieke Lineaire Algebra Bachelor Eindwek

0.Praktische Zaken

Examen

19

Tussentijdse opdrachten +
Schriftelijk examen

Mondeling Mondeling

eind resultaat
[0, 10]

eind resultaat
[10, 20]

resultaat > 12

Mondeling = Herkansing
•extra kennisvragen
•evt. oefening

Mondeling = Diversificatie
•1 a 2 inzichtsvragen (cfr. “Can you

answer the following questions”)
• evt. 1 creatieve vraag

Selectie (minimumnorm)
•1 tussentijdse opdracht per hoofdstuk

•Tijdens het jaar op te leveren
•Presentatie + Kwalitatieve feedback
•Resultaat > 12

•Schriftelijk examen
•1 kennis vraag per hoofdstuk

• (cfr. “You should know the answer
to these questions”)

•beperkte oefeningen
•Resultaat > 12

0.Praktische Zaken

Voorbeeldvragen (schriftelijk)

20

Enkele voorbeeldvragen
1. Geef 2 redenen waarom het waterval model onrealistisch is.
2. “Het systeem is voor 93% correct” is een geldige uitspraak.

Ja / Neen
Waarom?

3. Bij het overschrijven van een methode in een subclasse ...
(a) moet de preconditie gelijk blijven
(b) mag de preconditie zwakker worden
(c) mag de preconditie sterker worden

Waarom?

Modelantwoorden
1.

gebruikers kunnen behoeften nooit volledig specificeren
een werkende versie is veel te laat beschikbaar

2. Ja / Neen
Correctheid is een absolute eigenschap.

3. (b)
Een subklasse moet minstens hetzelfde contract vervullen.

0.Praktische Zaken

Voorbeeldvragen (mondeling)
Een voorbeeld v. e. inzichtsvraag

+ Leveren CRC-kaarten het best mogelijke ontwerp? Argumenteer?

+ Modelantwoord
- er is geen eenduidig criterium om te meten wat het “beste” ontwerp is
- de techniek is heel vrij: elke stap kan verscheidene goede antwoorden bieden
- veel hangt af van de groepsdynamiek

Een voorbeeld v.e. creatieve vraag
+ Je baas heeft op de radio gehoord van het “log4j security exploit” en vraagt een

veiligheidsplan. Wat zul je allemaal in dat veiligheidsplan opnemen ?

+ Modelantwoord
+ De context is niet voldoende duidelijk en je moet zelf vragen stellen om die helder te

krijgen.
- Wat voor soort systeem is het? Hoe hangt het aan het internet?
- Wat voor soorten risico’s loopt het systeem? Hoeveel risico is je baas bereid te

lopen? Hoeveel is hij bereid te investeren?

21

0.Praktische Zaken

Criteria (ii)
• Levenslang leren

+ Een professionele software engineer zal zijn leven lang de technische
evoluties op de voet moeten volgen.

* Vele referenties naar boeken, artikels, world-wide web
* “Engels” als voertaal voor de transparanten

22

ACHTERGRONDINFORMATIE:
• Je wordt verondersteld zelf

selectief met diverse bronnen
om te gaan.

0.Praktische Zaken

Literatuur
Aanbevolen is 1 van onderstaande boeken aandachtig door te nemen (INZICHT)

+ [Ghez02] Fundamentals of software engineering (Second edition), C. Ghezzi, M.
Jazayeri, D. Mandroli, Prentice Hall, 2002.

> Tijdloos door de nadruk op onderliggende principes, maar daardoor moeilijk.
+ [Pres00] Software Engineering — A Practitioner’s Approach, R. Pressman (Fifth

Edition), Mc-Graw Hill, 2000. (2014 = Eighth edition)
> Zeer praktisch en zeer diep, maar anderzijds weinig selectief en volumineus

(dus duur).
+ [Somm05] Software Engineering (Ninth Edition), I. Sommerville, Addison-Wesley,

2011. (2018 = Tenth edition)
> Zeer populair, zeer breed en makkelijk leesbaar, maar mist af en toe wat

diepgang.
Andere literatuur wordt per hoofdstuk vermeld, incl. referenties op het web.

23

0.Praktische Zaken

Literature (Agile)

24

ptg8286261

• [Rubi13] Essential Scrum: A Practical Guide to
the most popular agile process. Kenneth S.Rubin.
Addison-Wesley, 2013

1.Introduction

CHAPTER 1 – Introduction
• Software Engineering

+ Why & What
+ Product & Process
⇒ Correctness & Traceability

• Software Process
+ Activities
+ Iterative & Incremental Development
⇒ Risk

+ Sample Processes
- Unified Process
- Spiral model
- Agile Development

> Agile Manifesto, XP
⇒ Scrum

• Software Product
+ UML

1

CAPSTONE PROJECT
• (“Bachelor Eindwerk”)

+ assess the risk to your project
+ apply Scrum process

1.Introduction

Literature
• Other

+ [Brue00] Object-Oriented Software Engineering, B. Bruegge, A. Dutoit,
Prentice Hall, 2000.
- One of the first software engineering textbooks with a specific

object-oriented perspective
+ [Gold95] Succeeding with Objects: Decision Frameworks for Project

Management, A. Goldberg and K. Rubin, Addison-Wesley, 1995.
- Explains how to define your own project management strategy

• Papers
+ [Armo00] Phillip G. Armour, “The Five Orders of Ignorance”,

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10
- A very good explanation of the “known knowns”; “unknown knowns”

and “unknown unknowns” phenomenon
+ [Larm2003] Craig Larman and Victor R. Basili, ”Iterative and

Incremental Development: A Brief History", IEEE Computer, June 2003
- An overview of how we improved upon the naive waterfall

2

1.Introduction

Why Software Engineering?

3

A naive view on software development

Specification Final
Program

• But...
+ Where did the specification come from?
+ How do you know the specification corresponds to the user’s needs?
+ How did you decide how to structure your program?
+ How do you know the program actually meets the specification?
+ How do you know your program will always work correctly?
+ What do you do if the users’ needs change?
+ How do you divide tasks if you have more than a one-person team?

1.Introduction

What is Software Engineering?

4

• Some Definitions and Issues
+ “state of the art of developing quality software on time and within budget” [Brue00]

- Trade-off between perfection and physical constraints
> Software engineering has to deal with real-world issues

- State of the art!
> “best practice” is a moving target ⇒ life-long learning

+ “multi-person construction of multi-version programs” [Parn75]
- Team-work

> Scale issue + Communication Issue
- Successful software systems must evolve or perish

> Change is the norm, not the exception

+ “software engineering is different from other engineering disciplines” [Somm05]
- Not constrained by physical laws

> limit = human mind
- It is constrained by political forces

> balancing stake-holders

1.Introduction

Product and Process

5

Requirement
Specification System

Product
• = What is delivered to the customer
• [Requirements Specification + System (+ all documentation, manuals, ...)]

Process
• = Collection of activities that leads to (a part of) a product
• [During process we apply techniques]

1.Introduction

Evaluation Criteria

6

Requirement
Specification System

2 evaluation criteria to assess techniques applied during process

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

Traceability
• Can we deduce which product components will be affected by changes?

1.Introduction

Traceability

7

How to predict impact of changes?
Maintain relationship

• from component to requirement that caused its presence
• from requirement that must be changed when component is adapted

Comp 1 Comp 2 … … … … … Comp m

Req 1 x

Req 2 x x

…

… x

… x x

Req n x

This table is virtual: it is much too large to maintain explicitly!
⇒ A good process should help you deducing this relationship.

1.Introduction

Software Process Activities (i)

8

Requirement
Specification System

Requirement
Collection

Analysis

Design Maintenance

Implementation Testing

+ Quality
Assurance

+ Quality

Assurance

1.Introduction

Software Process Activities (ii)

9

• Requirements Collection (a.k.a. Requirements Elicitation)
+ Establish customer’s needs

• Analysis
+ Model and specify the requirements (“what”)

• Design
+ Model and specify a solution (“how”)
+ system design (architecture) + detailed design (object design, formal spec)

• Implementation
+ Construct a solution in software

• Testing
+ Verify the solution against the requirements

• Maintenance
+ Change a system after its been deployed
+ = Repair defects + adapt to new requirements

• Quality Assurance
+ Make sure all above goes well

= Deliver quality, on time and within budget

VALIDATION

VERIFICATION

1.Introduction

The Waterfall Software Lifecycle

10

The classical software life cycle
models the software development
as a step-by-step “waterfall”
between the various development
activities.

• going backward is possible but
should be an exception
(implies a mistake)

The waterfall model is popular for upper management, because
• Visible: it is easy to control project progress

> Very explicit in project bidding & contract negotiations!

The waterfall model is unrealistic for large projects, because
• Complete: a customer cannot state all requirements explicitly
• Idealistic: in real projects iteration occurs (but tools and organisation obstruct)
• Time: A working version of the system is only available late in the project
• Change: it is very difficult and costly to adapt to changes in the requirements

Requirement
Collection

Analysis

Design

Implementation

Testing

Maintenance

1.Introduction

Iterative and Incremental Development

11

• A good process must mix two principles (see [Gold95], p. 94-96)

• Iterative Development
+ Controlled reworking of a system part to make improvements

- We get things wrong before we get them right
(Software development is a learning experience)

• Incremental Development
+ Make progress in small steps to get early tangible results

- Always have a running version
(Control your learning via concrete intermediate steps)

1.Introduction

Knowns & Unknowns
[This is terminology used for planning military campaigns.]

Phillip G. Armour, “The Five Orders of Ignorance”, COMMUNICATIONS OF THE ACM October 2000

Known knowns
• = the things you know you know

You can safely make assumptions here during planning

Known unknowns
• = the things you know, you don’t know

You can prepare for these during planning

Unknown unknowns
• = the things you do not know, you don’t know

These you cannot prepare for during planning
… the best you can do is being aware and spot opportunities
+ do a thorough risk analysis

• software projects (compared to other engineering projects) have lots of “unknown
unknowns”
+ Not constrained by physical laws
+ Many stakeholders ⇒ strong political forces around project

12

1.Introduction

The Unified Process

13

How do you plan the number of iterations? How do you decide on
completion?

DutchGuilder Wikipedia

1.Introduction

Boehm’s Spiral Lifecycle

14

go, no-go decision

Stop?
After risk analysis

© Image adapted from Boehm, B. (1988) A Spiral Model of Software Development and Enhancement. IEEE Computer, 21 (5), 62-72.

1.Introduction

Risk Analyis (a.k.a. Risk Management)

15

Risk Identification
> Identify risk factors via “risk item checklist” (see [Pres00])

• Project Risks: e.g., staffing risk
• Technical Risks: e.g. “leading edge” technology
• Business Risks: e.g., market risk (building a product that nobody wants)

Risk Projection (Risk Estimation)
• For each risk factor, estimate the likelihood and the impact

+ 3 point likert scale:
- low - medium - high

+ 5 point likert scale
- [impact] insignificant - minor - moderate - major - catastrophic
- [likelihood] almost certain - likely - possible - unlikely - rare

• Prioritize the list

Risk Assessment
• For each “important” risk factor, take action to reduce risk

+ important? Depending on your risk appetite
• … or terminate project
• Examples

+ Staff does not have the right skills ⇒ Define training plan and hire extra staff

+ “Leading edge” technology ⇒ Build a prototype to evaluate benefits/drawbacks

+ Market risk ⇒ do a market study

1.Introduction

Risk Projection (refined)

16

Risk = impact * likelihood
impact

Low Medium High

High low medium high

Medium low medium medium

Low low low lowlik
el

ih
oo

d

impact

insignificant minor moderate major catastrophic

almost
certain moderate high high critical critical

likely moderate moderate high high critical

possible low moderate high high critical

unlikely low moderate moderate high high

rare low low moderate moderate high

lik
el

ih
oo

d

1.Introduction

Risk Projection (continued)

17

Risk = impact * likelihood * urgency

Sometimes a 3rd item is added to the equation

urgency = the time left before measures or responses would need to be implemented

less time available ⇒ risk becomes more critical

1.Introduction

Risk Assessment (example)

18

Risk?
 - probability: extremely unlikely
 (however, 3 independent e-mails)
 - urgency: extremely urgent
 (potential explosion within hours)
 - impact … infinite
 (potential life loss of students)

1.Introduction

Risk Projection (duo exercise)

19

impact

Low Medium High

High low medium high

Medium low medium medium

Low low low lowlik
el

ih
oo

d

O
What is the risk that you will postpone the weekly software
engineering assignments?

• If risk is medium, what mitigation actions will you take?
• If risk is high, what mitigation actions will you take?

New

1.Introduction

Failure Mode and Effects Analysis (FMEA)
• A step-by-step approach for identifying all possible failures in a design, a

manufacturing or assembly process, or a product or service.

+ “Failure modes”
- means the ways, or modes, in which something might fail. Failures

are any errors or defects, especially ones that affect the customer,
and can be potential or actual.

+ "Effects analysis”
- refers to studying the consequences of those failures.

FMECA: Failure Mode, Effect and Criticality Analyses
+ “Criticality Analysis”

- used to chart the probability of failure modes against the severity of
their consequences

- mainly when systems are already in operation

20

1.Introduction

Failure Mode and Effects Analysis (Example)

21

Potential Failure
Mode

Potential Effects of
Failures

Se
ve
rit
y

Potential Causes of
Failures

Current
Process Control

Occurrence
(± Likelihood)

Detection
(± Urgency)

Critical
(± Impact)

Risk Priority
Number

Recommended
Actions

Function: Dispense Fuel

Does not dispense
fuel

- Customer Dissatisfied
- Discrepancy in
bookkeeping

8
- Out of fuel
- Machine jams
- Power failure

- Out of fuel alert
- Machine jam
alert
- none

Dispense too much
fuel

- Company loses money
- Discrepancy in
bookkeeping

8 - Sensor defect
- Leakage

- none
- pressure sensor

Takes too long to
dispense fuel - Customer annoyed 3 - Power outage

- Pump disrupted
- none
- none

1.Introduction

Failure Mode and Effects Analysis (exercise)

22

Potential Failure
Mode

Potential Effects of
Failures

Se
ve
rit
y

Potential Causes of
Failures

Current
Process Control

Occurrence
(± Likelihood)

Detection
(± Urgency)

Critical
(± Impact)

Risk Priority
Number

Recommended
Actions

Function: Dispense Fuel

Does not dispense
fuel

- Customer Dissatisfied
- Discrepancy in
bookkeeping

8
- Out of fuel
- Machine jams
- Power failure

- Out of fuel alert
- Machine jam
alert
- none

O Assess the risk for the “Does not Dispense Fuel” function (low - medium - high)
• What mitigation actions do you recommend?

New

https://www.vrt.be/vrtnws/nl/2023/09/13/waarom-je-niet-even-in-je-auto-mag-gaan-zitten-tijdens-het-tanke/

1.Introduction

Prototyping

23

A prototype is a software program developed to test, explore or validate a
hypothesis, i.e. to reduce risks.

*** proof-of-concept

An exploratory prototype, also known as a throwaway prototype, is intended to
validate requirements or explore design choices.

• UI prototype — validate user requirements
• rapid prototype — validate functional requirements
• experimental prototype — validate technical feasibility

An evolutionary prototype is intended to evolve in steps into a finished product
• grow, don’t build [Broo87]: “grow” the system redesigning and refactoring

along the way
• combines incremental and iterative development

*** First do it, then do it right, then do it fast.

1.Introduction

Manifesto for Agile Software Development

24

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

© 2001, the above authors this declaration may be freely copied in any form, but only in its entirety through this notice.

http://agilemanifesto.org/

1.Introduction

Lean Manufacturing

25

Eliminate Waste
(e.g. Spaghetti Diagrams)

© Christoph Roser on AllAboutLean.com By Dr Ian Mitchell - Own work©

Smooth Flow
(e.g. KanBan Boards)

1.Introduction

eXtreme Programming (XP)

26

• Fine scale feedback
+ Pair programming
+ Planning game
+ Test-driven development
+ Whole team

• Continuous process
+ Continuous integration
+ Refactoring or design improvement
+ Small releases

• Shared understanding
+ Coding standards
+ Collective code ownership
+ Simple design
+ System metaphor

• Programmer welfare
+ Sustainable pace

• Coding
+ The customer is always available
+ Code the Unit test first
+ Only one pair integrates code at a

time
+ Leave Optimization till last
+ No Overtime

• Testing
+ All code must have Unit tests
+ All code must pass all Unit tests

before it can be released.
+ When a Bug is found tests are

created before the bug is addressed
(a bug is not an error in logic, it is a
test you forgot to write)

+ Acceptance tests are run often and
the results are published

1.Introduction

Agile or not? There is no single truth …

27

Heavyweight Lightweight

1.Introduction

Scrum — Sprints

28

Sprint =
• 2-4 week period
• team creates a working (= potentially

shippable) product increment
• features in increment are chosen from

product backlog

Daily stand-up meeting!

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Rugby metaphor

By PierreSelim

©

1.Introduction

Scrum — Roles

29

Product Owner
Prioritize backlog

Scrum Master
Facilitator

Development Team
Responsible for increment
to be added to the product
• 5-9 individuals
• self organizing

1.Introduction

Scrum — Feedback Loop

30

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Sprint
Review

Sprint
Retrospective

1.Introduction

Scrum - Planning & Monitoring

31

Sprint
Backlog

Poker
Planning

Task Points Hours

Pablo Straub Wikipedia

1.Introduction

UML - History

32

• First generation:
+ Adaptation of existing notations (ER diagrams, state diagrams...):

* Booch, OMT, Shlaer and Mellor,...
+ Specialized techniques:

* CRC cards; use-cases; design by contract

• Second generation:
+ Combination of “proven” ideas

* Fusion: Booch + OMT + CRC + formal methods

• Third generation:
+ Unified Modeling Language:

* uniform notation: Booch + OMT + Use Cases + Statecharts
* complete lifecycle support (the Unified Process)
* adaptable: you can extend the notation, choose your own

process

1.Introduction

Static UML - Classes (i)

33

display (on: Surface)

rotate (angle: Integer)

erase ()

destroy ()

select (p: Point): Boolean

centre: Point

vertices: List of Point

borderColour: Colour

fillColour: Colour

Polygon
Polygon

ZWindows::Window

Class name, attributes and
operations:
(organized into compartments)

A collapsed class view.
(NB: attributes & operations
not shown, so don’t know
whether empty or not!)

Class with Package name:
(Optional, but useful for
large systems !)

Attributes and operations are also collectively called features.

1.Introduction

Static UML - Classes (ii)

34

+display ()

+hide ()

+create ()

-attachXWindow (xwin: Xwindow*)

+size: Area = (100, 100)

#visibility: Boolean = false

+default-size: Rectangle

#maximum-size: Rectangle

-xptr: XWindow*

<<user interface>>
Window

{abstract}

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)Stereotype

(what “kind” of class is it?)

•underlined features
have class scope

• italic features are
abstract

+ = “public”
= “protected”
- = “private”
(interpretation is open)

• Attributes are specified as: name: type = initialValue { property string }
• Operations are specified as: name (param: type = defaultValue, ...) : resultType

1.Introduction

Static UML - Associations

35

name
address

Company
name
AHV nr
address

Person

**
employer employee

Employs ➤

Works-for

➤

0..1

0..1

Married-to

0..1

*

boss

worker

➤

Manages

Associations
•denoted by a solid line.
• represents structural relationships between objects of different classes.

•optional name and direction
• (unique) role names and multiplicities at end-points

(BEWARE POSITION)
• traverse using navigation expressions

e.g., universityAntwerp.employee[name = “Demeyer”].wife

1.Introduction

Static UML - Aggregation & Composition

36

3..*1
Polygon Point

Contains ➤ {ordered}

fillPattern
linePattern

GraphicsBundle
1

1

Aggregation
• denoted by a hollow diamond
• whole-part relationship: part may exist without the whole

(i.e. whole owns a reference to the part)
Composition

• denoted by a solid diamond
• whole-part relationship: part must always exist with the whole

(i.e., whole owns the part)

1.Introduction

Static UML - Generalization

37

Generalization
• denoted with a hollow arrow from the specific to the general
• represents inheritance, is-a relationships, code reuse relationship

(philosophical debate: Square inherits from Rectangle or vice-versa)

display ()

colour

Figure
{abstract}

display ()

endpoints

Line

display ()

radius
start_angle
arc_angle

Arc

display ()

control_points

Spline

1.Introduction

Dynamic UML - Objects

38

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1: Polygon triangle1: Polygon

: Polygon

triangle1

Objects
• shown as rectangles with their name and type underlined in one compartment
• attribute values, optionally, in a second compartment
• the name of the object may be omitted (then colon must be kept with class name)
• the class of the object may be supressed (together with the colon) to represent an

anonymous object

1.Introduction

Dynamic UML - Sequence Diagrams

39

Sequence Diagrams
• Object at top, lifeline as dashed vertical line (time flows from top to bottom)
• Method execution as rectangle, message sends as arrow with message name
• Possibility to show concurrency via special arrowheads

: User : Store

: Item

request()
newItem(3)

i := query()

check(i)

destroy()

Async Message

Simple Message

Synchronous with Immediate Return

Synchronous

1.Introduction

Dynamic UML - Collaboration Diagrams

40

Collaboration Diagrams
• Objects with associations positioned freely in the diagram
• Messages with little arrows near to associations
• Message sequences follow from hierarchical numbering
• Expressibility is identical to sequence diagrams

+ ⇒Freedom in lay-out but message sequence difficult to follow

: User

: Store : Item

1: request()

1.1: newitem(3)

1.2: i := query()

1.4: destroy()

1.3: check(i)

1.Introduction

Summary (i)

41

• You should know the answers to these questions:
+ How does Software Engineering differ from programming?
+ Why is programming only a small part of the cost of a “real” software project ?
+ Give a definition for “traceability”.
+ What is the difference between analysis and design?
+ Explain verification and validation in simple terms.
+ Why is the “waterfall” model unrealistic? Why is it still used?
+ Can you explain the difference between iterative development and incremental

development?
+ How do you decide to stop in the spiral model?
+ How do you identify risk? How do you asses a risk? Which risks require action?
+ What is Failure Mode and Effects Analysis (FMEA)?
+ List the 6 principles of extreme programming.
+ What is a “sprint” in the SCRUM process?
+ Give the three principal roles in a scrum team. Explain their main responsibilities.
+ Draw a UML class diagram modelling marriages in cultures with monogamy (1 wife

marries 1 husband), polygamy (persons can be married with more than one other
person), polyandry (1 woman can be married to more than one man) and polygyny
(1 man can be married to more than one woman).

+ Draw a UML diagram that represents an object “o” which creates an account (balance
initially zero), deposits 100$ and then checks whether the balance is correct.

1.Introduction

Summary (ii)
• Can you answer the following questions?

+ What is your preferred definition of Software Engineering? Why?
+ Why do we choose “Correctness” & “Traceability” as evaluation criteria? Can you

imagine some others?
+ Why is “Maintenance” a strange word for what is done during the activity?
+ Why is risk analysis necessary during incremental development?
+ How can you validate that an analysis model captures users’ real needs?
+ When does analysis stop and design start?
+ When can implementation start?
+ Can you compare the Unified Process and the Spiral Model?
+ Can you explain the values behind the Agile Manifesto?
+ Can you identify some synergies between the techniques used during extreme

programming?
+ Can you explain how the different steps in the scrum process create a positive

feedback loop?
+ How does scrum reduce risk?
+ Is it possible to apply Agile Principles with the Unified Process?
+ Did the UML succeed in becoming the Universal Modeling Language? Motivate your

answer.

42

2.Requirements

• Introduction
+ When, Why, Where, What

• Iteratively Developing Use Cases
+ Inception

- Scope Definition + Risk
Identification

- Actors & Use cases +
Project Plan

+ Elaboration
- Primary & Secondary

Scenarios
• Scrum: User Stories

- Behaviour driven (template)
- Conditions of Satisfaction
- INVEST Criteria

> Definition of Ready

- Granularity: Epic /
Features / Sprintable
Stories
> Product Roadmap
> Minimum Viable Product

• Safety Critical
+ Misuse Cases
+ Safety Stories

• Conclusion
+ Use Cases / User Stories

- Correctness & Traceability

CHAPTER 2 – Requirements

1

2.Requirements

Literature
Books

• [Ghez02], [Somm05], [Pres00]
+ Chapters on Specification/ (OO)Analysis/ Requirements Engineering

• Use Cases
+ [Schn98] Applying Use Cases - a Practical Guide, Geri Schneider, Jason, P. Winters,

Addison-Wesley, 1998.
- An easy to read an practical guide on how to iteratively develop a set of use cases

and how to exploit it for project planning.
+ [Jaco92] Object-Oriented Software Engineering:

A Use-Case Driven Approach, I. Jacobson et. al.,
Addison-Wesley, 1992.
- The book that introduced use-cases

• User Stories
+ [Rubi13] Essential Scrum: A Practical Guide to the most popular agile process.

Kenneth S.Rubin. Addison-Wesley, 2013.
- The chapter on “Requirements and user stories”

2

2.Requirements

Literature (Safety Critical)
Agile Requirements

• “User stories as lightweight requirements for agile clinical decision support
development", Vaishnavi Kannan, et. al. In Journal of the American Medical Informatics
Association, Volume 26, Issue 11, November 2019, Pages 1344–1354
https://doi.org/10.1093/jamia/ocz123
+ Mixing use cases with user stories in a medical (= safety-critical) context

• Making sense of MVP (Minimum Viable Product) – and why I prefer Earliest Testable/
Usable/Lovable
Posted on 2016-01-25 – 12:14 by Henrik Kniberg
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp
+ A plea for early feedback from actual users

Safety Critical
• Ian Alexander, "Misuse Cases: Use Cases with Hostile Intent" in IEEE Software, vol. 20,

no. 01, pp. 58-66, 2003. doi: 10.1109/MS.2003.1159030
+ Explains a negative form of a use case; a negative scenario. Use- and misuse-case

diagrams are valuable in threat and hazard analysis.

• Jane Cleland-Huang and Michael Vierhauser, "Discovering, Analyzing, and Managing
Safety Stories in Agile Projects," 2018 IEEE 26th International Requirements
Engineering Conference (RE), 2018, pp. 262-273, doi: 10.1109/RE.2018.00034.
+ Addresses the specific problems of discovering, analyzing, specifying, and managing

safety requirements within the agile Scrum process.

3

2.Requirements

When Requirements?

4

Requirement
Specification System

A requirements specification must be
• understandable: so that we can decide what is in- and out scope

+ Do all parties agree?
• precise: so that parties agree what’s inside and outside the system

+ Can you write an acceptance test for each requirement?
• open: so that developers have enough freedom to pick an optimal solution

+ Requirements specify the “what”, not the “how ”.

2.Requirements

Why Requirements?

5

Numerous
stakeholders

&
Limited

resources

© — source unknown

2.Requirements

Where Requirements?

6

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

Requirements
Specification

Functional
Requirements

Non-functional
Requirements

• functionality as
demanded by the
end users

• constraints placed on
the global system or
the development
process.

• quality attributes, such
as performance, user-
friendliness,
maintainability, …

2.Requirements

What are Use Cases?

7

• Use Case
+ A use case describes outwardly visible requirements of the system
+ A use-case is a generic description of an entire transaction executed to achieve a goal

(= the use case goal) and involving several actors.

• Actors
+ Actors have responsibilities
+ To carry out responsibilities, an actor sets goals
+ Primary actor (= stakeholder) has unsatisfied goal and needs system assistance
+ Secondary actor provides assistance to satisfy the goal

• Scenario
+ Scenario = an instance of a use-case, showing a typical example of its execution

- Use case = Primary “success” scenario
and secondary “alternative” scenarios

- Scenario shows how objects interact to achieve the use case goal
= UML Sequence diagrams & Collaboration Diagrams

2.Requirements

Kinds of Use Cases
There is not a “one size fits all”: use cases depend on your purpose

• Scope
+ Brain-storm mode vs. full-fledged detailed specification

• Intended Audience
+ end-user vs. system development team vs. internal documentation

• Granularity
+ summary vs. detailed; overall system function vs. specific feature
+ Brief Use Case — Casual Use Case — Fully Dressed Use case

• Black-Box vs. White-Box
+ with or without knowledge about (business) processes used to achieve

goal

Depending on your purpose some kind of
Use Case Template is selected

8

2.Requirements

DutchGuilder Wikipedia

Unified Process: Inception

9

Use cases work well when starting an iterative/incremental process!
+ e.g. inception & elaboration phase in Unified Process

2.Requirements

Inception: System Scope

10

+ During inception you must define the system’s scope
- used to decide what lies inside & outside the system

• Scope
+ should be short

- (1 paragraph for small projects;
1/2 a page for mid-size projects;
2-3 pages for large projects)

* long statements are not convincing

+ should be written down
- later reference when prioritizing use cases

+ should have end-user commitment (*)
- end-user involved in writing

* formally approved by a project steering committee

(*) The difference between “involvement” and “commitment”? In a Ham
and Egg Breakfast...the chicken is involved and the pig is committed!

2.Requirements

System Scope: Example
• (Example from [Schn98])

+ “We are developing order-processing software for a mail-order
company called National Widgets, which is a reseller of products
purchased from various suppliers.
- Twice a year the company publishes a catalogue of products, which

is mailed to customers and other interested people.
- Customers purchase products by submitting a list of products with

payment to National Widgets. National Widgets fills the order and
ships the products to the customer’s address.

- The order-processing software will track the order from the time its
is received until the product is shipped.

- National Widgets will provide quick service. They should be able to
ship a customer’s order by the fastest, most efficient means
possible.”

11

2.Requirements

Evaluate the previous scope description

1. Summarise the purpose of the system in a single word

2. What quality criteria are important?

3. What is clearly outside scope?

4. (Technical) opportunities to improve?

12

O

2.Requirements

Analyzing the Example
• The previous example of a system scope description is

+ short (1/2 a page)
* quick assessment of what’s the system supposed to do

+ goal-oriented (track orders)
* open for various solutions

+ includes criteria (quick service, track all of the ordering process, …)
* will be used to evaluate whether we accomplished the goals

+ provides context
- National Widgets is reseller ⇒ external suppliers & shipment

* the system will not solve everything,
some problems are out of scope

• … and very importantly
+ imperfect (twice a year? on-line catalogue?)

- may be improved when understanding increases
- … but goal and main criteria should not change once approved

13

2.Requirements

Inception: Risk Factors

14

• During inception you must identify the project’s risk factors
+ you do not have control over the system’s context and it will change
+ projects never go according to plan

> identify potential problems early (… including wild success)
• Example

Context Risk Factors Impact Likely Urgency

Competitors Time to market (too late/too early)

Market trends More internet at home

Potential disasters Suppliers don’t deliver on time

System is down

Expected users Too many/few users

Schedule Project is delivered too early/too late

Technology Dependence on changing technology

Inexperienced team

Interface with legacy systems

<< Risky Path (Project Management)

2.Requirements

Inception: System Boundaries

15

During inception you must specify the system boundaries
• what functionality is internal to the system (= use cases)
• what functionality is external but necessary for internal functionality (= actors)

+ ⇒ the distinction is often not as clear as you would like it

+ ⇒ iterate: identifying actors + identify use cases

At least one actor must benefit from the use case (i.e. sees
the use case value). The corresponding stakeholder will argue

to keep the use case in the requirements!

Identify Actors
(external)

Identify
Use Cases
(internal)

iterate

2.Requirements

• Actors
+ Who uses the system?
+ Who installs the system?
+ Who starts up/shuts down the

system?
+ Who maintains the system?
+ What other systems use this

system?
+ Who provides information to

this system?
+ Does anything happen

automatically at a preset
time?

• Use Cases
+ What functions will the actor

want from the system?
+ What actors will create, read,

update, or delete information
stored inside the system?

+ Does the system need to
notify actors about changes in
its internal state?

+ Who gets information from
this system?

+ Are there any external events
the system must know about?

+ What actor informs the
system about those events?

Identifying Actors & Use cases

16

Above questions may help during the identification process.

2.Requirements

Example: Actors & Use cases

17

Place Order

Get Order
Status

Register
Complaint

Calculate
Postage

Print Mail Label

Deliver Product

Send Product

Cancel Order

Return Product

Send Catalogue

Maintain
Product Inventory

Charge Account

Credit Account

Customer

Customer Rep

Inventory
Associate

Clerk

Shipping Company

Accounting

2.Requirements

Inception: Project Plan

18

• During inception you must specify the project plan
= when to develop which use case
+ Includes intermediate milestones
+ based on Scope Definition & Risk Factors
+ may result in splitting/merging use cases
+ negotiate: estimate costs (=developer) + assign priorities

(=customer)

• Good negotiations obey 2 strict rules
+ Developers estimate cost; customers do not interfere.

> Schedule slips are the responsibility of development team.
+ Customers assign priorities; developers do not interfere.

> Deciding where the money is spent is the customers
responsibility.

iterate

Estimate Costs
(Developers)

Assign Priorities
(Customers)

2.Requirements

Terminating the Inception Phase
After inception the requirements specification consists of
• Scope definition

+ Short description involving
goals, criteria, context

• Risk Factors
+ Events that may cause

problems during project
• Actors

+ Represent the various stakeholders in the project
• Use cases

+ Represent transactions; valuable for at least one actor
• Project Plan

+ For each use case
- Cost estimate (assigned by development team)
- Priority (assigned by customers)

+ Time plan including intermediate milestones

Formal approval by project steering committee

19

Requirement
Specification

2.Requirements

Unified Process: Elaboration

20

DutchGuilder Wikipedia

Use cases work well when starting an iterative/incremental process!
+ e.g. inception & elaboration phase in Unified Process

2.Requirements

Elaboration: Primary & Secondary Scenarios
During elaboration you must refine the use cases via scenarios

• Scenario is one way to realize the use case
- From the actors point of view!

• = List of steps to accomplish the use case goal

• Primary “success” scenario
+ = Happy day scenario
+ Scenario assuming everything goes right

(i.e., all input is correct, no exceptional conditions, …)
• Secondary “alternative” scenarios

+ Scenario detailing what happens during special cases
(i.e., error conditions, alternate paths, …)

21

2.Requirements

Example: Place Order Scenario (1/2)

22

USE CASE 5 Place Order

Goal in Context Customer issues request by phone to National Widgets; expects goods
shipped and to be billed.

Scope & Level Company, Summary

Preconditions National Widgets has catalogue of goods

Success End Condition Customer has goods, we have money for the goods.

Failed End Condition We have not sent the goods, Customer has not spent the money.

Primary Actors Customer, Customer Rep, Shipping Company

Secondary Actors Accounting System, Shipping Company

Trigger Purchase request comes in.

DESCRIPTION

Step Action

1. Customer calls in with a purchase request.

2. Customer Rep captures customer info.

3. WHILE Customer wants to order goods.

3.1. Customer Rep gives Customer info on goods, prices, etc.

2.Requirements

Example: Place Order Scenario (2/2)

23

3.2. Customer selects good to add to order list.

4. Customer approves order list.

5. Customer supplies payment details.

6. Customer Rep creates order.

7. Customer Rep requests Accounting System to Charge Account.

8. Customer Rep requests Shipping Company to Deliver Product.

9. Customer pays goods.

Branch SUBVARIATIONS

1. Customer may use: (a) phone in, (b) fax in, (c) use web order form.

4. Customer may pay via: (a) credit card; (b) cheque; (c) cash.

Branch ALTERNATIVE PATHS

any Customer may cancel transaction.

Branch EXTENSIONS

After 3.2 Out of selected good: 3.2.a. Renegotiate Order (Use case 44).

Before 9 Customer returns goods: 9a. Handle returned goods (Use case 45).

2.Requirements

Place Order Use Case Diagram

24

Stereotypes <<extends>> and <<include>> to specify use case
relationships.
• Beware the direction of the arrows; it specifies change dependencies!

Place Order
Extension Points

- after 3.2: Out of selected goods
- before 9: Customer returns

goods

Renegotiate Order

Handle
Returned

Goods

Deliver ProductCharge Account

Customer

Customer Rep

<<extends>>

<<extends>>

<<include>>
<<include>>

2.Requirements

Scrum: User Stories

25

Three C’s

Agile Manifesto: We value customer collaboration over contract negotiation.

Card

Conversation

Confirmation

2.Requirements

Behaviour Driven (User Stories)

26

As a <user role>
I want to <goal>
so that <benefit>.

• …
• …
• …
•

As a clerk
I want to calculate stampage

so that goods get shipped fast.

• Verify with nearby address
• Verify with overseas address
• Verify with parcels <= 1kg
• Verify with fragile parcel

Template

As an inventory associate
I want to minimise stock

so that we save warehouse costs.
(See book of Müller for heuristics)

• References / explanations allowed
+ Conversation

• Coarse grained
+ break down in smaller chunks

Example

Conditions of Satisfaction

2.Requirements

INVEST Criteria

27

I Stories should be independent of another and should not
have dependencies on other stories

N Negotiable: Too much detail on story limits conversation
with the customer

V Each story has to be of value to the customer

E Stories should be small enough to estimate

S Stories should be small enough to be completed in one
iteration

T Testable: Acceptance criteria should be available

What & Why
(not How)

CAPSTONE PROJECT

Technical Stories?

2.Requirements

Independent vs. Interdependent

28

I Stories should be independent of another and should not
have dependencies on other stories

Desirable but …
not as easy as it seems!

• Some user stories depend on one another for technical reasons.
+ e.g.: Storing items in a database before one can retrieve.

> Work-around: dummy records
• Early stories take longer to implement

+ Creating the technical infrastructure
• Circular dependencies are a nightmare

+ Split the story in smaller chunks

2.Requirements

Technical Stories

29

As a developer
I want to migrate to Oracle version 3.2

so that we are not operating on a
version that soon will retire.

As a security engineer
I want to ensure that HTTP, Radius
SecureID, and LDAP authentication

protocols are adhered to
so that we avoid backdoor attacks.

Value?
• Educate your product owners
• Calculate risk (Business case)

Technical stories express non-functional requirements in story form.

2.Requirements

Two sides of the same coin

30

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Definition of DoneDefinition of Ready

2.Requirements

Definition of Ready

31

definition of ready = a checklist of the properties that must be satisfied before an item in
the product back log can be moved into a sprint.

Example “Definition of Ready” checklist
✓ Business value is clearly articulated.
✓ Details are sufficiently understood by the development team so it can make an

informed decision as to whether it can complete the Product Backlog Item.
✓ Dependencies are identified and no external dependencies would block the Product

Backlog Item from being completed.
✓ Team is staffed appropriately to complete the Product Backlog Item.
✓ The Product Backlog Item is estimated and small enough to comfortably be completed

in one sprint.
✓ Acceptance criteria are clear and testable.
✓ Performance criteria, if any, are defined and testable.
✓ Scrum team understands how to demonstrate the Product Backlog Item at the sprint

review.

2.Requirements

Product Backlog — Level of Detail

32

Epic Months Bigger than a
release

Features Weeks Bigger than a
sprint

Sprintable
Stories Days Sprint Ready

CAPSTONE PROJECT

2.Requirements

Product Roadmap (a.k.a. Release Roadmap)

33

Q3—2020 Q4—2020 Q1—2021 Q2—2021

Market Map Market Study Advertising Launch

Market Events CEBIT Fair

Feature Map … … …

Release Plan

Release Schedule 0.5 0.7 1.0

Product Roadmap: communicates the incremental nature of how the product will be
built and delivered over time, along with the important factors that drive each individual
release.

Epic

2.Requirements

Minimum Viable Product

34

Q3—2020 Q4—2020 Q1—2021 Q2—2021

Market Map Market Study Advertising Launch

Market Events CEBIT Fair

Feature Map … … …

Release Plan

Release Schedule 0.5 0.7 1.0

A minimum viable product (MVP) is a version of a product with just enough features to
be usable by early customers who can then provide feedback for future product
development.

> First milestone for start-ups!

New

2.Requirements

Minimum Viable Product: Iterations

35

Making sense of MVP (Minimum Viable Product) – and why I prefer Earliest Testable/Usable/Lovable
Posted on 2016-01-25 – 12:14 by Henrik Kniberg
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

New

2.Requirements

Minimum Viable Product: Exercise

36

New

O
You an your neighbour are launching a start-up company with a mission
to create a revolutionary new product.

• An on-line system for sharing course material in a post covid era
(a.k.a. “Blackboard on steroids”)

Which iterations for your minimum viable product do you see?

2.Requirements

Failure Mode and Effects Analysis (Example)

37

Potential Failure
Mode

Potential Effects of
Failures

Se
ve
rit
y

Potential Causes of
Failures

Current
Process Control

Occurrence
(± Likelihood)

Detection
(± Urgency)

Critical
(± Impact)

Risk Priority
Number

Recommended
Actions

Function: Dispense Fuel

Does not dispense
fuel

- Customer Dissatisfied
- Discrepancy in
bookkeeping

8
- Out of fuel
- Machine jams
- Power failure

- Out of fuel alert
- Machine jam
alert
- none

Dispense too much
fuel

- Company loses money
- Discrepancy in
bookkeeping

8 - Sensor defect
- Leakage

- none
- pressure sensor

Takes too long to
dispense fuel - Customer annoyed 3 - Power outage

- Pump disrupted
- none
- none

Slide Adapted
from Intro

We must be able to express
“can never happen”

scenarios

2.Requirements

Misuse Cases
• = a use case from the point of view security of an actor hostile to the

system under design.
+ Results from a Failure Mode and Effects Analysis (FMEA)

Adds extra items to a use case diagram
+ Misuse case (coloured black)
+ Negative actor (marked somehow)
+ “Threatens” relationship

- Between misuse case and ordinary use case
- ≈ Potential causes of failures (FMEA analysis)

+ “Mitigates” relationship
- Between misuse case and ordinary use case
- ≈ Current Process Control (FMEA analysis)

38

2.Requirements

Misuse Case (Example)

39

© Adapted from Ian Alexander, "Misuse Cases: Use Cases with Hostile Intent"

Driver Car Thief

Drive the Car

Locks the Car

Lock the
Transmission

Steal the Car

Shortcut the
Ignition

<<Threatens>>

<<Mitigates>>

<<Mitigates>>

<<Threatens>>

2.Requirements

Safety Stories
• = if satisfied, will prevent a hazard from occurring or reduce the impact

of its occurrence

Extended template for Safety Stories (Easy Requirements Syntax — EARS)

• Ubiquitous: The <component name> shall <response>

• Event Driven: When <trigger> the <system name>

• State Driven: While <in a specific state>
the <system name> shall <system response>

• State Option: Where <feature is included> the <system name> shall
<system response>

• Unwanted Behavior: If <optional preconditions> <trigger>, then the
<system name> shall <system response>

40

2.Requirements

Safety Stories (Example)
Several variants of stories

• System Story (SYS-1): A UAV (unmanned aerial vehicle) shall maintain a minimum
separation distance from other UAVs at all times.

• Data Hazard (H-1): Inaccurate GPS (Global Positioning System) coordinates for UAV.
+ Failure Mode: GPS provides inaccurate readings.
+ Effect: Violation of minimum separation distance between two UAVs goes undetected,

and UAVs collide in midair and then crash onto bystanders.
+ Level: Critical

• Safety Story (SAF-1): The GPS
coordinates of each UAV must be
accurate within one meter at all times.

• Design Definition (DD-1): When the
Dronology system is deployed in an
urban environment at least two
independent means of UAV
localization must be used.

Establish traceability links!

41

© Adapted from Jane Cleland-Huang et. al, "Discovering, Analyzing, and Managing Safety Stories in Agile Projects,"

2.Requirements

Conclusion

42

Use Cases User Stories

Understandable Actors provide an end users
perspective

<User Roles> provide an end
users perspective

Precise Scenarios are sufficiently detailed
to test (path coverage)

“Conditions of Satisfaction“
⇒ test scenarios

Open Actors perspective emphasizes the
what (and much less the how) The INVEST criteria

But there is no guarantee, it still requires
• close interaction with various stakeholders
• iteration to improve earlier misconceptions
• … and lots of hard work.

Use cases / User Stories help you to specify good requirements because it is
easier to make them … (a) understandable; (b) precise; and (c) open.

2.Requirements

Requirements & Correctness
• Are we building the system right?

+ Good requirements will help to validate solution against requirements.
- Testing

Writing black box regression tests should be easy.
+ … however, step to system design (architecture)

+ detailed design (objects) is hard.
- Use cases & User Stories tend to result in hard to maintain systems

• Are we building the right system?
+ Good requirements should be easy to verify

- Understandable & precise
+ … however

- we may omit requirements
* Completeness is not guaranteed!
* Complementary Failure Mode and Affect Analysis (FMEA)

- Focus on scenarios restricts evolving requirements
* Requirements should specify “what” not “how”

43

2.Requirements

Requirements & Traceability
• Requirements ⇔ System

+ Via proper naming conventions
- … including names of regression tests

• Requirements ⇔ Project Plan

+ Use cases & User Stories form good milestones
- Less so for misuse cases and safety stories

+ Estimating development effort is feasible
- Balancing Numerous stakeholders

against Limited resources

44

Use cases form a good base for negotiating the project plan.
User Stories (epics) form a good basis for negotiating the product roadmap.

2.Requirements

Summary(i)
• You should know the answers to these questions

+ Why should the requirements specification be understandable, precise and open?
+ What’s the relationship between a use case and a scenario?
+ Can you give 3 criteria to evaluate a system scope description? Why do you select

these 3?
+ Why should there be at least one actor who benefits from a use case?
+ Can you supply 3 questions that may help you identifying actors? And use cases?
+ What’s the difference between a primary scenario and a secondary scenario?
+ What’s the direction of the <<extends>> and <<includes>> dependencies?
+ What is the purpose of technical stories in scrum?
+ List and explain briefly the INVEST criteria for user stories.
+ Explain briefly the three levels of detail for Product Backlog Items (Epic, Features,

Stories).
+ What is a minimum viable product?
+ Define a misuse case.
+ Define a safety story.

• You should be able to complete the following tasks
+ Write a requirements specification for your bachelor capstone project.

45

CAPSTONE PROJECT

2.Requirements

Summary(ii)
• Can you answer the following questions?

+ Why do use cases fit well in an iterative/incremental development process?
+ Why do we distinguish between primary and secondary scenarios?
+ What would you think would be the main advantages and disadvantages of use

cases?
+ How would you combine use-cases to calculate the risky path in a project plan?
+ Do use-cases work well with agile methods? Explain why or why not.
+ Can you explain the use of a product roadmap in scrum?
+ Choose the three most important items in your “Definition of Ready” checklist. Why

are these most important to you?
+ Can you relate scrum user stories to some of the principles in the Agile Manifesto?
+ How would you turn an FMEA analysis into a misuse case diagram?
+ Elaborate on the relationship between an FMEA analysis and the variants of safety

stories.

46

03.Architecture

CHAPTER 3 – Software Architecture
• Introduction

+ When, Why and What?
+ Functional vs. Non-functional
+ Coupling and Cohesion
+ Patterns

• Macro architecture
+ Layered Architecture
+ Pipes and Filters
+ Blackboard Architecture
+ Model-View-Controller

• Micro Architecture
+ Observer
+ Abstract Factory
+ Adapter (a.k.a. Wrapper)

• Other Patterns
+ Security, …
+ Microservices

• Conclusion
+ Architecture in UML
+ Architecture Assessment

- ATAM
+ Architecture in SCRUM

- Spike
- Architecture Runway
- GuardRails

+ Correctness & Traceability

1

03.Architecture

Literature (1/2)
Software Engineering Text Books
• [Somm05]: chapter “Architectural Design”
• [Pres00]: chapter “Architectural Design”

Books on Software Architecture
• [Shaw96] Software architecture: perspectives on an emerging discipline,

Mary Shaw, David Garlan, Prentice-Hall, 1996.
+ The book introducing software architecture.

• [Bass03] Software architecture in practice (2nd edition), Len Bass, Paul
Clements, Rick Kazman, Addison-Wesley, 2003.
+ A very deep and practical treatment of software architecture,

incl. ATAM. (The book received an award.)
Articles
• [Kruc95] Philippe Kruchten "The 4+1 View Model of Architecture ", IEEE

Software, November 1995 (Vol. 12, No. 6) pp. 42-50.
+ A paper that illustrates convincingly the need for various perspectives

on the design of a system.

2

03.Architecture

Literature (2/2)
Pattern Language

• [Foot97] Big Ball of Mud, Brian Foote, Joseph Yoder; Fourth Conference on Patterns
Languages of Programs (PLoP '97/EuroPLoP '97)
+ http://www.laputan.org/mud/mud.html; most popular architecture.

Pattern Catalogues
• [Busc98] Pattern-Oriented Software Architecture: A System of Patterns, Frank

Buschman, Regine Meunier, Hans Rohnert, Peter Somerlad, Michael Stal, Wiley and
Sons, 1996.
+ Introduces architectural styles in pattern form. Also covers some design patterns and

idioms.
> At architecture (= “macro-architecture”) level

• [Gamm95] Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, Addison-Wesley, 1995.
+ The classic; commonly referred to as the “Gang of Four (GOF)”

> At design (= “micro-architecture”) level
• [Shum06] Security Patterns: Integrating Security and Systems Engineering, Markus

Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, Peter
Sommerlad, Wiley & Sons, 2006.

3

03.Architecture

When Architecture?

4

Designing a software system requires course-grained decomposition
⇒ organize work in the development team

Conway’s law
Organizations which design systems are constrained to produce designs which are
copies of the communications structure of these organizations. [Conw68]

• If you have 4 groups working on a compiler; you’ll get a 4-pass compiler

03.Architecture

Why Architecture

5

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

……………

Requirements
Specification

Functional
Requirements

Non-functional
Requirements

• functionality as demanded
by the end users

• constraints placed on the global
system or the development
process.

• quality attributes, such as
performance, user-friendliness,
maintainability, …

ARCHITECTURE
• map requirements onto system

structure
= map function onto form

SCALE ISSUE

03.Architecture

Characteristics of a Gothic Cathedral

6

Public Domain

O

03.Architecture

Architecture as a Metaphor

7

Parallels
• Architects are the technical interface

between the customer and the contractor.
• A poor architectural design cannot be

rescued by good construction technology.
• There are architectural styles or schools.

+ (e.g., “ghotic” in buildings;
“client-server” in software)

Differences
• Buildings are tangible, software is intangible.

> Software Architecture is often
expressed via metaphors.

• Buildings are rather static, software is quite flexible.
> The underlying architecture allows to anticipate changes.

• Building architecture is supposed to be aesthetic.
> Buildings avoid to mix styles; in software heterogeneity is considered good.

• A building architect carries legal responsibilities.
> Usually a building architect is not employed by the constructor.

Public Domain

03.Architecture

What is Software Architecture?
Software Architecture

• A description of components and the connectors between them.
+ Typically specified in different views to show the relevant functional and non-

functional properties.

Component
• An encapsulated part of a software system with a designated interface.

+ Components may be represented as modules (packages), classes, objects or a set of
related functions. A component may also be a subsystem.

Subsystem
• A component that is a system in its own right, i.e. can operate independently

Connector (a.k.a. Relationships)
• A connection between components.

+ There are static connectors that appear directly in source code (e.g., use or import
keywords) and dynamic connectors that deal with temporal connections (e.g.,
method invocations).

View
• Represents a partial aspect of a software architecture that shows specific functional and

non-functional properties.

8

03.Architecture

Functional vs. Non-functional Properties
• See [Bush98]

Functional property
• Deals with a particular aspect of the system’s functionality. Usually in direct relationship

with a particular use case or conceptual class.

Non-functional property
• Denotes a a constraint placed on the global system or the development process.

Typically deals with quality attributes that cross-cut the whole system design and are
quite intangible.

• Typical non-functional properties
+ Changeability; systems must evolve or perish
+ Interoperability; interaction with other systems
+ Efficiency; use of resources such as computing time, memory, ...
+ Reliability; system will continue to function even in unexpected situations
+ Testability; feasibility to verify that requirements are covered
+ Reusability; ability to reuse parts of software system or process for constructing

other systems

Architecture is about tradeoffs

9

03.Architecture

Coupling and Cohesion
Coupling
• Measure of strength for a connector (i.e., how strongly is a component

connected with other components via this connector)
Cohesion
• Measure of how well the parts of a component belong together (i.e., how

much does the functioning of one part rely on the functioning of the
other parts)

> Coupling and cohesion are criteria that help us to evaluate
architecture tradeoffs.

> Minimize coupling and maximize cohesion

However …
• The perfect trade-off corresponds to a component that does nothing!
• Coupling at one level becomes cohesion at the next.

> More qualitative trade-off analysis is necessary

10

03.Architecture

Patterns
Pattern
• The essence of a solution to a recurring problem in a particular context.

+ Experts recall a similar solved problem and customize the solution.
+ Patterns document existing experience.
+ The context of a pattern states when (and when not) to apply the

solution.
+ A pattern lists the tradeoffs (a.k.a. forces) involved in applying the

solution.

Pattern Form
• Patterns are usually written down following a semi-structured template.

+ Patterns always have a name
+ Patterns allow experts to have deep design discussions in a few words!

11

03.Architecture

Layered Architecture in Networks

12

OSI Reference Model

TCP/IP Stack

Ethernet

FTP, HTTP, …

TCP

IP

Ethernet

IP

TCP

FTP, HTTP, …

Physical Connection

Presentation

Physical

Transport

Network

Data link

Application

Session

Data link

Network

Physical

Physical

Data link

Network

Transport

Session

Presentation

Application

Communications Medium

03.Architecture

3-Tiered Architecture

13

Application Layer
• Models the UI and application logic

Domain Layer
• Models the problem domain (usually

a set of classes)

Database Layer
• Provides data according to a certain

database paradigm (usually relational
database)

TabTabTab

Document Window

Lab

el

03.Architecture

Pattern: Layered Architecture
Context

• Requirements imply various levels of abstraction (low & high level)

Problem
• Need for portability and interoperability between abstraction levels

Solution
• Decompose system into layers;

each layer encapsulates issues at same level
• Layer n provides services to layer n + 1
• Layer n can only access services at layer n - 1

+ Call-backs may be used to communicate back to higher layers
+ Relaxed variant allows access to all lower layers

Tradeoffs
• How stable and precise can you make the interfaces for the layers?
• How independent are the teams developing the different layers?
• How often do you exchange components in one layer?
• How much performance overhead can you afford when crossing layers?

14

03.Architecture

Pipes and Filters Examples
UNIX shells

• tar cf - .| gzip -cfbest| rsh hcoss dd

Many CGI-scripts for WWW-forms
• data source is some filled in web-form
• filters are written via a number of scripting languages (perl, python)
• data sink is generated web page

+ Example: wiki-web pages (http://c2.com/cgi/wiki)

Scanners & Parsers in Compilers

15

data source =
current directory

data sink =
remote host

filter =
compress

pipe pipe

char getchar ()

Input

token yylex()

Scanner

bool yyparse()

Parser

03.Architecture

Pattern: Pipes and Filters
Context

• Processing data streams

Problem
• Flexibility (and parallelism) is required

Solution
• Decompose system into filters, each with 1 input- and 1 output stream
• Connect output from one filter to input of another

> Need a data source and data sink
• Variants

+ Push filter: filter triggers next one by pushing data on the output
+ Pull filter: filter triggers previous one by pulling data from the input

Tradeoffs
• How often do you change the data processing?
• How well can you decompose data processing into independent filters?

+ Sharing data other than in/out streams must be avoided
• How much overhead (task switching, data transformation) can you afford?
• How much error-handling is required?

16

03.Architecture

Compilers as Blackboard Architecture

17

Abstract
syntax tree

Grammar
definition

Symbol
table

output
definition

repository / blackboard

code generator

optimizer

semantic
analyzer

syntax
analyzer

lexical
analyzer

pretty printer

editor

03.Architecture

Pattern: Blackboard (a.k.a. Repository)

18

Context
• Open problem domain with various partial solutions

Problem
• Flexible integration of partial solutions

Solution
• Decompose system in 1 blackboard, several knowledge sources and 1 control

+ Blackboard is common data structure
+ Knowledge sources independently fill and modify the blackboard contents
+ Control monitors changes and launches next knowledge sources

Tradeoffs
• How well can you specify the common data structure?
• How many partial solutions exist? How will this evolve?
• How well can you compose an overall solution from the partial solutions?
• Can you afford partial solutions that do not contribute the current task?

03.Architecture

Quizz

19

Why is a repository better suited
for an integrated development
environment than pipes and filters? O

LLVM CLION VisualStudio

03.Architecture

Interactive Applications

20

Document Window

0
12,5
25
37,5
50

Blue: 43%

Green: 39%

Yellow: 6%

Red: 10%

Purple: 2%

data

Document Window

Blue 43%

Green 39%

Yellow 6%

Red 10%

Purple 2%

03.Architecture

Pattern: Model-View-Controller

21

Context
• Interactive application where multiple widgets act on same data

Problem
• Ensure consistency between the various widgets

Solution
• Decompose system in a model, and several view-controller pairs
• Model: provides functional core (data)

+ registers dependent views/controllers
+ notifies dependent components about changes (send update)

• View: creates and initializes associated controller + displays information
+ responds to notification events (receive update)

• Controller: accepts user input events + translate events into requests to model and view
+ responds to notification events (receive update)

Tradeoffs
• How many widgets? How consistent? Should they be “plug able”?
• Increased complexity, especially without library of views/controllers
• Excessive number of updates if not carefully applied
• Close coupling between View-Controller;

average coupling from View-Controller to Model

03.Architecture

Problem: Circular Dependencies 1-N

22

Controller Model View

setData(…)
handleEvent

notify(…)

getData(…)
Circular

Dependency

03.Architecture

Solution: Observer

23

attach(Observer)
detach(Observer)
notify(…)

Subject

update(…)

Observer

getData(): …
setData(…)

Model

handleEvent(…)
update(…)

Controller

*1

11

for all o in observers {
 0->update()
}

update(…) {
 …
 model.getData();
 …
}

setData(…) {
 …
 self.notify();
 …
}

03.Architecture

Pattern: Observer

24

Context
• Change propagation: when one class changes (the subject) others should adapt (the

observers)

Problem
• Change propagation implies a circular dependency: (a) adapting requires the observers

to access the subject; (b) changing requires the subject to notify the observers

Solution
• Split the circular dependency; move one direction in new superclasses
• Force observers to register themselves on a subject before they will be notified
• Notification becomes anonymous and asymmetrical: subject notifies all observers

Tradeoffs
• Extra complexity: observers will receive more updates than necessary

+ extra program logic to filter the applicable notifications
• Restricts communication between subject and observer

03.Architecture

Problem: Constructor Dependencies

25

Construct widgets
without knowing the

look-and-feel

Widget

Window Scrollbar

MacScrollbar

MotifScrollbar

MacWindow

MotifWindow

Client

These dependencies
must be avoided

03.Architecture

Solution: Abstract Factory

26

Introduce intermediate
factory class

Widget

Window Scrollbar

MacScrollbar

MotifScrollbar

MacWindow

MotifWindow

Client

createScrollBar(): Scrollbar

createWindow(): Window

WidgetFactory

createScrollBar(): Scrollbar

createWindow(): Window

MacWidgetFactory

createScrollBar(): Scrollbar

createWindow(): Window

MotifWidgetFactory

03.Architecture

Pattern: Abstract Factory

27

Context
• Class hierarchy with abstract roots representing a family of objects

+ concrete leaves representing particular configurations

Problem
• Invoking constructors implies tight coupling with concrete leaves instead of abstract

roots

Solution
• Create an abstract factory class with operations for creating

all abstract roots
• Create concrete factory classes for all possible configurations.

Tradeoffs
• How many members in the family? How many configurations?
• When do you switch configurations?
• How strict are the configurations?
• Can clients rely on the abstract interfaces?

03.Architecture

Problem: Interface Mismatch

28

• getExtent provides same
functionality as boundingBox,
but name mismatch

• showManipulator is not
available

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

Use class Textview as
a Shape, but interface

does not match

X

03.Architecture

Solution: Adapter

29

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

return _text.getExtent()
boundingBox():Rectangle

showManipulator()

_text: TextView

TextShape

man := new
 TextManipulator(this.boundingBox);
man.show();

1

1

A
d
a
p
ts

 ➤

Introduce intermediate
adapter class

Public Domain

03.Architecture

Pattern: Adapter (a.k.a.Wrapper)

30

Context
• Merge two separately developed class hierarchies

Problem
• Class provides (most of) needed functionality but interface does not match

Solution
• Create an adapter class with one attribute of adaptee class
• Adapter class translates required interface into adaptee class

Tradeoffs
• How much adapting is required?

+ For one class
+ For the whole hierarchy

• How will the separately developed classes evolve?
• Does the merging work in one direction or in both directions?
• How much overhead in performance and maintenance can you afford?

03.Architecture

Other Pattern Catalogues

31

Security

Testing

Reengineering

Microservices

*** Revised ***

(MicroServices)

03.Architecture

Context
• Provide access to a system for external clients
• Ensure not misused or damaged by external clients

Problem
• External access ⇒ system’s integrity in danger

• Complex inner structure ⇒ explosion of potential security breaches

Solution
• Define single access point; check legitimacy

Security Pattern (sample): Single Access Point

32

282 Chapter 9 System Access Control Architecture

Structure

The single access point can be represented by the following UML diagram.

However it is more intuitive to presented it as shown in the accompanying sketch,
since it is hard to show the boundary protection of the protected system. Boundary
protection is essential to make the single access point efficient in checking clients and
hindering intruders to access the system.

deny access to

enters system through

enterSystem
provides access to

protectsinteracts with

Client

Single Access Point

block access

Boundary Protection

Proctected System

System

Boundary

Access
point

Client

9.2 Single Access Point 283

Dynamics

The sequence diagram illustrates a regular scenario of an client entering the system.
The client logs in at the single access point and then uses the protected system. The
passive protection given by the boundary (the city wall) cannot be shown here.

Implementation

To implement the SINGLE ACCESS POINT (279), several tasks are required:

1. Define your security policy for the system at hand. Before you start securing
your system, you should know what you secure and why. Apply the patterns
from this book to obtain the security requirements for the system to be protect-
ed. The security policy must contain the trust relationship between the internal
subsystems. All of them need to trust the single access point and also each other.
Even if such trust can be established, it might be wise to apply the Defence in
Depth security principle (see Chapter 15, Supplementary Concepts) for extra-
sensitive subsystems.

2. Define a prominent or well-known position for the single access point, or
make it transparent for its legitimate users. Christopher Alexander’s MAIN
ENTRANCE [AIS+77] gives some guideline about where to place your main
entrance, which SINGLE ACCESS POINT (279) definitely is. He writes, ‘There-
fore: place the main entrance of the building at a point where it can be seen
immediately from the main avenues of approach and give it a bold, visible
shape which stands out in front of the building.’ Microsoft Window’s classic

:Single Access
Point :Protected System

OK

log-in

:Client
«actor»

do something

check
client

do anything

03.Architecture

Context: (Train) App

33

Train
Connections

…

Flexible demand with sometimes
peak volume in transactions

… data feed from multiple sources
within the organisation

03.Architecture

Pattern: MicroServices

34

Context
• Distributed system (cloud) with multiple access points

+ Many read access - few write and update

Problem
• Elastic scaling of access points to deal with peak demand

Solution
• Microservices structure an application as a collection of small, loosely coupled and

independently deployable services.
+ Each of these services corresponds to a specific business functionality and can be

developed, deployed and scaled independently.
• Each service is independent and communicates with others via well-defined APIs and

protocols (REST-API)

Tradeoffs
• How much data sharing is needed?

+ Database per service (Database sharding — elastic split of database)
+ Event mechanism to notify updates

• How much communication needed?
- Each service deployed by separate DevOps team.
- Business transactions that span multiple services? (the Saga pattern)

• Resilience: what is a service is down?
+ Reroute calls to failing service (the Circuit breaker pattern)

5. Design by Contract

MicroService Example - Pet Store (REST API)

35

03.Architecture

UML: Package Diagram

36

Decompose system in packages (containing any other UML element, incl. packages)

Application Layer

Domain Layer

Database Layer

Processing
Orders

Customer
Management

Customer Order

query()

DBCustomer

03.Architecture

UML: Deployment Diagram

37

Shows physical lay-out of run-time components on hardware nodes.

:Safari

myMac: Macintosh

:IExplorer

aPC: PC

:WebServer

:UnixHost

:Database

:UnixHost

03.Architecture

Deployment Diagram vs Package Diagram

38

:Safari

myMac: Macintosh

:IExplorer

aPC: PC

:WebServer

:UnixHost

:Database

:UnixHost

Application Layer

Domain Layer

Database Layer

Processing
Orders

Customer
Management

Customer Order

query()

DBCustomer

O
• What’s the distinction between a package

diagram and a deployment diagram?
• Which one would you use in the 4+1

architectural views?
(logical view / development view /
process view / physical view)

03.Architecture

UML: Patterns

39

boundingBox():Rectangle

showManipulator()

Shape

boundingBox():Rectangle

showManipulator()

Line

getExtent(): Rectangle

TextView

boundingBox():Rectangle

showManipulator()

_text: TextView

TextShape

1

1

A
d
a
p
ts

 ➤
Adapter

Adaptee

Adapter

03.Architecture

Architecture Assessment

40

Why?
• The earlier you find a problem in a software project, the better.

+ Identify and assess risks!
• An unsuitable architecture is a recipe for disaster.

+ A poor architectural design cannot be rescued by
good construction technology.

+ If you wait until the system is built, tackling architectural problems
comes at a great cost

Architecture evaluation is a cheap way to avoid disaster.
• Organize review early in the process

+ An architecture evaluation doesn’t tell you “yes” or “no” or “6,75 out of
10”.

> It tells you where the risks are.

03.Architecture

Architecture Tradeoff Analysis Method(ATAM)
• originated from Software Engineering Institute (SEI) at Carnegie Mellon

Answers to two kind of questions:
• Is the architecture suitable for the system for which is was designed?
• Which of two or more competing architectures is the most suitable one for the system at

hand?

41

03.Architecture

ATAM Terminology

42

Risks are potentially problematic
architectural decisions.

The rules for writing business logic modules
in the second tier of your three-tier client-
server style are not clearly articulated. This
could result in replication of functionality,
thereby compromising modifiability of the
third tier.

Nonrisks are good decisions that rely on
assumptions that are frequently implicit in
the architecture.

Assuming message arrival rates of once per
second, a processing time of less than 30
milliseconds, and the existence of one higher
priority process, then a one-second soft
deadline seems reasonable.

A sensitivity point is a property of one or
more components (and/or component
relationships) that is critical for achieving a
particular quality attribute response.

The average number of person-days of effort
it takes to maintain the system might be
sensitive to the degree of encapsulation of its
communication protocols and file formats.

A trade-off point involves two (or more)
conflicting sensitivity points.

If the processing of a confidential message
has a hard real-time latency requirement
then the level of encryption could be a trade-
off point.

03.Architecture

Architecture in scrum?

43

CAPSTONE PROJECT

Spike (a.k.a. Knowledge Acquisition Stories / Proof-of-concept)

As a developer
I want to prototype two alternatives for
the … component
so that I know ….

• Run Speed Tests
• Run Load Tests
• Run Security Tests
• Write short memo comparing the

results

Conditions of SatisfactionSpike

03.Architecture

Architecture Runway

• Agile development avoids big design up-front
- emergent design—defining and extending the architecture only as

necessary to deliver the next increment of functionality.
- intentional architecture — requires some centralized planning and

cross-team coordination

44

While we must acknowledge emergence in design and
system development, a little planning can avoid much

waste. —James Coplien, Lean Architecture

© Scaled Agile, Inc.

*** New ***

03.Architecture

GuardRails

• rules, standards and best practices related to the development pipeline
+ coding, building, testing, release, design, …

• Staying behind the guardrails = proceed without consulting other teams
• Moving outside = additional discussion or approval needed

+ Changing existing guardrails?
+ Adopting new guardrails?

45

New Slide

*** New ***

03.Architecture

Beware

46

Patterns
• Patterns define the essence of the solution

> misinterpretation is common among people
• Patterns are “Expert” knowledge

> “hammer looking for a nail” syndrome
• Patterns introduce complexity (more classes, methods, ...)

> cost/benefit analysis

Architecture
• Architecture intends to tackle complexity

> say less with more
• Architecture implies tradeoffs

> a boxes and arrows diagram is not an architecture
(at least consider coupling/cohesion)

• Architectural erosion
> law of software entropy
> “Big ball of mud” is most often applied in practice

03.Architecture

Correctness & Traceability
Correctness
• Are we building the system right?

+ Architecture deals with non functional requirements
- Choosing the best architecture involves tradeoffs

+ Architecture allows to scale up
- Organize (testing) work in the team

• Are we building the right system?
+ Indifferent

Traceability
• Requirements ⇔ System?

+ Architecture implies extra abstraction level
+ Software architecture is intangible

- Traceability becomes more difficult

47

03.Architecture

Summary (i)
You should know the answers to these questions

• What’s the role of a software architecture?
• What is a component? And what’s a connector?
• What is coupling? What is cohesion? What should a good design do with them?
• What is a pattern? Why is it useful for describing architecture?
• Can you name the components in a 3-tiered architecture? And what about the

connectors?
• Why is a repository better suited for a compiler than pipes and filters?
• What’s the motivation to introduce an abstract factory?
• Can you give two reasons not to introduce an Adapter (Wrapper)?
• What problem does an abstract factory solve?
• List three tradeoffs for the Adapter pattern.
• How do you decide on two architectural alternatives in scrum?
• What’s the distinction between a package diagram and a deployment diagram?
• Define a sensitivity point and a tradeoff point from the ATAM terminology.

You should be able to complete the following tasks
• Take each of the patterns and identify the components and connectors. Then assess the

pattern in terms of coupling and cohesion. Compare this assessment with the tradeoffs.

48

03.Architecture

Summary (ii)
Can you answer the following questions?

• What do architects mean when they say “architecture maps function onto form”? And
what would the inverse “map form into function” mean?

• How does building architecture relate to software architecture? What’s the impact on the
corresponding production processes?

• Why are pipes and filters often applied in CGI-scripts?
• Why do views and controllers always act in pairs?
• Explain the sentence “Restricts communication between subject and observer” in the

Observer pattern
• Can you explain the difference between an architecture and a pattern?
• Explain the key steps of the ATAM method?
• How can you balance emergent design with intentional architecture?
• What happens when your team goes outside the boundaries of the guardrail?
• How would you organize an architecture assessment in your team?

49

4.Project Management

CHAPTER 4 – Project Management
• Introduction

+ When, Why and What?
• Planning & Monitoring

+PERT charts
+Gantt charts
+Uncertainty
⇒ Risk to the schedule

+ Dealing with delays
+ Monitoring: earned value

analysis
- Tasks completed, Time

sheets
- Slip Lines, Timelines

+ An afterthought: late projects
… started late

• Organisation, Staffing, Directing
+ Belbin Roles
+ Myers Briggs Type Inventory
+ Team Structures
+ Directing Teams

• Scrum
+ Definition of Done
+ Scaling Scrum

• Conclusion
+ Correctness & Traceability

1

4.Project Management

Literature
+ [Ghez02] In particular, “Management of Software Engineering”
+ [Pres00] In particular, “Software Project Planning” & “Project

Scheduling and Tracking”
+ [Somm05] In particular, “Project Planning” & “Managing People”

• Other
+ [Hugh99] Software Project Management, B. Hughes and M. Cotterell,

McGraw Hill, 1999.
* Good practical examples on PERT, Gantt, Time-sheets, ...

2

4.Project Management

Literature - Papers
• [Henr99] Sallie M. Henry, K. Todd Stevens “Using Belbin's leadership role

to improve team effectiveness: An empirical investigation.” ,Journal of
Systems and Software, Volume 44, Issue 3, January 1999, Pages
241-250, ISSN 0164-1212.
+ Demonstrating that Belbin roles do make a difference in team

efficiency, even for student projects

• [Dema11] Tom De Marco"All Late Projects Are the Same," IEEE Software,
pp. 102-103, November/December, 2011
+ All projects that finish late have this one thing in common: they

started late.

• [Yoge21] Yogeshwar Shastri, Rashina Hoda, Robert Amor “The role of the
project manager in agile software development projects.” Journal of
Systems and Software, Volume 173, 2021, 110871. https://doi.org/
10.1016/j.jss.2020.110871.
+ Agile projects shouldn’t have project managers … or not?

3

4.Project Management

When Project Management

4

Ensure smooth process

Requirement
Specification System

4.Project Management

Why Project Management?

5

Almost all software products are obtained via projects.
⇒ Every product is unique

(as opposed to manufactured products)

Software Project = Deliver on time and within budget

Achieve interdependent
& conflicting goals …

… with limited resources.

Your project team is a resource!

4.Project Management

What is Project Management?

6

Requirement
Specification System

Project Management =
Plan the work and work the plan

Management Functions
• Planning: Breakdown into tasks + Schedule resources.
• Organization: Who does what?
• Staffing: Recruiting and motivating personnel.
• Directing: Ensure team acts as a whole.
• Monitoring (Controlling): Detect plan deviations + take corrective actions.

Focus of this lecture is Planning & Monitoring.
(Other functions are best learned in real life.)

4.Project Management

Tasks & Milestones

7

Good planning depends a lot on project manager’s intuition and experience!
• Split project into tasks

- Tasks into subtasks etc.
• For each task, estimate the task duration

- Define tasks small enough for reliable estimation.
• Most tasks should end with a milestone.

- Milestone = A verifiable goal that must be met after task completion
> Verifiable? by the customer

- Clear unambiguous milestones are a necessity!
(“80% coding finished” is a meaningless statement)

- Monitor progress via milestones
• Organize tasks concurrently to make optimal use of workforce
• Define dependencies between project tasks

+ Total time depends on longest (= critical) path in activity graph
+ Minimize task dependencies to avoid delays

Planning is iterative ⇒ monitor and revise schedules during the project!

4.Project Management

PERT Chart: Task Dependencies

8

- 1 start node & 1 end node - node numbering preserves time dependencies
- time flows from left to right - no loops, no dangling nodes

Remember: small tasks & milestones verifiable by customer!

4.Project Management

Finding the Critical Path

9

• Forward Pass: compute “earliest start-date” (ESD)
> ESD (start-task) := start-date project

+ Breadth-first enumeration (use node numbering)
+ For each task: compute earliest start-date

= Latest of all incoming paths
> ESD (task) := latest of (

 ESD (preceding task) + estimated task duration (preceding task))
• Backward Pass: compute “latest end-date” (LED)

> LED (end-task) := ESD (end-task) + estimated task duration
+ Breadth-first enumeration (node numbering in reverse order)
+ For each task: compute latest end-date

= Earliest of all outgoing paths
> LED (task):= earliest of (

 LED (subsequent task) - estimated task duration (subsequent task))
• Critical Path

+ = path where delay in one task will cause a delay for the whole project
+ path where for each task:

> ESD(task) + estimated time (task)= LED(task)

Revised

(Replaced node with task)

4.Project Management

PERT Chart: Forward pass

10

This is a schedule with coarse grained granularity: 1 month is 4 weeks of 7 days (week 1 = 1-7; week 2 = 8-15; …)

ESD(1) := start-date project
ESD(2) := ESD(1) + time(1) := 01/01 + 2 weeks := 15/01
ESD(4) := latest (ESD(3.1) + 3 wks, ESD(3.2) + 2 wks, ESD(3.3) + 4 wks) := 15/03

4.Project Management

PERT Chart: Backward pass + Critical path

11

•LED(7) := ESD(7) + time(7) := 15/04 + 2 wks := 31/04
• LED(6) := LED(7) - time(7) := 31/04 - 2 wks := 14/04
• LED(2) := earliest (LED(3.1) - 3 wks, LED(3.2) - 3 wks, LED(3.3) - 4 wks) := 14/02

4.Project Management

When to use PERT Charts?

12

• Good for: Task interdependencies
+ shows tasks with estimated task duration
+ links task that depend on each other

(depend = cannot start before other task is completed)
+ optimise task parallelism
+ monitor complex dependencies

• Good for: Critical Path Analysis
+ calculate for each task: earliest start-date, latest finish-date

(latest start-date, latest finish-date)
+ optimise resources allocated to critical path
+ monitor critical path

• Not for: Time management

(N.B.: PERT = Program Evaluation and Review Technique)

4.Project Management

Critical Path (exercise)

13

1. Start
(2 wks)

2.2 Payment
(5 wks)

2.1 Dispense Fuel
(6 wks)

3. Finish
(1 wks)

2.3 Print Receipt
(4 weeks)

01/01

14/01

…/…

…/…

…/…

…/…

…/…

…/…

…/…

…/…

O Identify the critical path
• Forward pass: earliest start data
• Backward pass: latest end date

4.Project Management

Gantt Chart: Time Management

14

J F M A M

 1.Start

2. Place Order

3. Extras

 3.1. Cancel Order

 3.2. Get Order Status

 3.3. Send Catalog

4. Integrate & Test

5. Write Manual

6. Reviewing

7. Finish

 task slack time milestone summary task

4.Project Management

Resource Allocation

15

For each task, list the required resources.
•Mainly staff (incl. type of skills required)
• ... and special equipment

Activity Resource Time Quantity Notes

1 Senior Programmer 2 wks 2 Initially senior programmers only

2 Senior Programmer 4 wks 2

3.1 Senior Programmer 3 wks 1

Junior Programmer 3 wks 1 Implementation: extra junior staff

3.2 Senior Programmer 2 wks 1

Junior Programmer 2 wks 1

3.3 Senior Programmer 4 wks 1

Junior Programmer 4 wks 1

4 Senior Programmer 4 wks 1

Junior Programmer 4 wks 2

5 Senior Programmer 4 wks 1

Writer 4 wks 1 Manual

6 Quality Engineer 1 day/wk 1 Assistance from QA department

7 Senior Programmer 2 wks 2

4.Project Management

Gantt Chart: Resource Allocation

16

J F M A M

 1.Start

2. Place Order

3. Extras

 3.1. Cancel Order

 3.2. Get Order Status

 3.3. Send Catalog

4. Integrate & Test

5. Write Manual

6. Reviewing

7. Finish

Senior Programmer

Junior Programmer

Scheduling tasks at earliest start dates typically gives uneven resource distribution!

4.Project Management

Gantt Chart: Optimized Resources

17

Shuffle tasks in time to optimise use of resourceS
• Distribute resources evenly (or with a smooth build-up and run-down)
• May require to extend termination date or to split tasks

J F M A M

 1.Start

2. Place Order

3. Extras

 3.1. Cancel Order

 3.2. Get Order Status

 3.3. Send Catalog

4. Integrate & Test

5. Write Manual

6. Reviewing

7. Finish

Senior Programmer

Junior Programmer

Deadline
extended
…

… but
smooth
resource
usage

4.Project Management

Gantt Chart: Staff Allocation

18

J F M A M

Darius

Marta

Leo

Ryan

Sylvia

1.Start

1.Start

2.Place Order

2.Place Order

3.1Canc … 3.2 … 4. Test

3.3 Send … 5. Write Man…

7.Fin…

7.Fin…

3.1Canc … 3.2 … 4. Test

3.3 Send … 4. Test

5. Write Man…

(Overall tasks such as reviewing, reporting, ... are difficult to incorporate)

4.Project Management

When to use Gantt Charts?

19

• Good for: Time management
+ shows tasks in time
+ optimise resources by managing “slack time”
+ monitor critical tasks (= without slack time)

• Good for: Resource and staff allocation
+ shows resource/staff occupation
+ optimize “free time” (= time without occupation)
+ monitor bottlenecks (= fully occupied resources / staff)

• Not for: Task Interdependencies

(N.B. Charts are developed by Henry Gantt; hence the name)

4.Project Management

PERT Chart: Including Resources

20

Due to allocated resources, implicit dependencies are added...
• may give rise to different critical path
• may break “encapsulation” between groups of project tasks

Dependencies
between tasks have

changed: they must be
executed by the same
persons, hence have to

wait

4.Project Management

• Planning under uncertainty
+ State clearly what you know and don’t know
+ State clearly what you will do to eliminate unknowns
+ Make sure that all early milestones can be met

> However: tackle critical risks early

• Get commitment
+ from main parties involved, incl. management
+ The difference between “involvement” and “commitment”? In a Ham

and Egg Breakfast...the chicken is involved and the pig is committed!

• Build confidence
+ within the team
+ with the customer

> ... re-planning will not be considered harmful

Uncertainty

21

A software project is like skiing down a black piste.
The ultimate goal is clear: getting down in one piece.
The way to reach the goal? ... One turn at a time. (See [Gold95])

14

4.Project Management

Knowns & Unknowns
[This is terminology used for planning military campaigns.]

Phillip G. Armour, “The Five Orders of Ignorance”, COMMUNICATIONS OF THE ACM October 2000

Known knowns
• = the things you know you know

You can safely make assumptions here during planning

Known unknowns
• = the things you know, you don’t know

You can prepare for these during planning

Unknown unknowns
• = the things you do not know, you don’t know

These you cannot prepare for during planning
… the best you can do is being aware and spot opportunities
+ do a thorough risk analysis

• software projects (compared to other engineering projects) have lots of “unknown
unknowns”
+ Not constrained by physical laws
+ Many stakeholders ⇒ strong political forces around project

22

Slide Repeated
from Intro

4.Project Management

Repeated from

Requirements

Inception: Risk Factors
• During inception you must identify the project’s risk factors

+ you do not have control over the system’s context and it will change
+ projects never go according to plan

> identify potential problems early (… including wild success)
• Example

23

Context Risk Factors Impact Likely Urgency

Competitors Time to market (too late/too early)

Market trends More internet at home

Potential disasters Suppliers don’t deliver on time

System is down

Expected users Too many/few users

Schedule Project is delivered too early/too late

Technology Dependence on changing technology

Inexperienced team

Interface with legacy systems

<< Risky Path (Project Management)

4.Project Management

Risk Analysis: Quantify Risks for Delays

24

Quantify Risk:
Calculate the risk to
the global schedule
from the risk on the
individual tasks

go, no-go decision

© Image adapted from Boehm, B. (1988) A Spiral Model of Software Development and Enhancement. IEEE Computer, 21 (5), 62-72.

4.Project Management

Calculating Risky Path (1/2)
• (This calculation is an advanced but crucially important part of PERT)
• Estimate Task Time

+ For each task, estimate
- likely time LT(task), optimistic time OT(task),

pessimistic time PT(task)
- deduce estimated time (= weighted average)

- Redo the critical path analysis with the estimated time ET
• Calculate Standard Deviation per Task

+ For each task, calculate the degree of uncertainty for the task time

25

** Revised **

(Improved Formulas)

4.Project Management

Example: Calculating Risk (1/2)

26

OT LT PT ET S

1.Start 2 2 2 2 0

2.Place Order 3 4 5 4 0,33

3.1.Cancel 2 3 4 3 0,33

3.2.Get Order 2 2 3 2,17 0,17

3.3.Send Catalogue 3 4 6 4,17 0,50

4.Test 4 4 6 4,33 0,33

5.Manual 3 4 5 4 0,33

7.Finish 2 2 2 2 0

Task 3.3 is riskiest task
(interface with legacy database)

• Optimistic Time, Likely Time and Pessimistic Time is given

• deduce estimated time ET(task)
+ Redo the critical path analysis with ET

• calculate standard deviation S(task)

** Revised **

(Improved Formulas)

4.Project Management

Example: Redo Critical Path with ET

27

1. Start
(2 wks)

2. Place Order
(4 wks)

3.1. Cancel Order
(3 wks)

3.2. Get Order Status
(2,17 wks) [-0.83]
= 1 day faster

3.3. Send Catalog
(4,17 wks) [+0.17]

4. Integrate & Test
(4,33 wks) [+0.33]
= 2,5 extra days

7. Finish
(2 wks)

5. Write Manual
(4 wks)

6. Reviewing

01/01

14/01

15/01

14/02

15/02

07/03
08/03

20/03

21/03

23/03

24/04

09/05

Critical path
remains … but
± 2 extra days

*** New ***

4.Project Management

• Forward Pass: Calculate Standard Deviation per Path
+ For each possible path up until a given task n

- calculate the degree of uncertainty for the path execution time
* Paths with a high deviation are likely to slip.

+ For each task: compute standard deviation per path leading into the
task

* Degree to which a given task may end later than planned
* = Maximum of all standard deviations for incoming paths

Calculating Risky Path (2/2)

28

** Revised **

(Improved Formulas)

4.Project Management

• Riskiest Task = the node with the highest risk for delay
> Maximum for all S(task)

• Risky Path = start-to-end path(s) with the highest standard deviation
> Risky path applies to the whole PERT chart!
> SP (end) := maximum of all incoming paths for end node

• Worst Case Delay: Applies to the risky path(s) only
> = worst case impact the risky path may have on the end date

Results of Risky path Analysis

29

** Revised **

(Improved Formulas)

4.Project Management

Example: Calculating Risk (2/2)

30

End Node path S(m1) S(m2) S(m3) S(m4) S(m5) S(m6) √(∑S(mi)2)

1.Start 1 0 0

2.Place O. 1,2 0 0,33 0,33

3.1.Cancel 1,2,3.1 0 0,33 0,33 0,4667

3.2.Get O. 1,2,3.1,3.2 0 0,33 0,33 0,17 0,4967

3.3.Send C. 1,2,3.3 0 0,33 0,5 0,5991

4.Test 1,2,3.1,3.2,4 0 0,33 0,33 0,17 0,33 0,5963

1,2,3.3,4 0 0,33 0,5 0,33 0,684 << max

5.Manual 1,2,3.3,5 0 0,33 0,5 0,33 0,684

7.Finish 1,2,3.1,3.2,4,7 0 0,33 0,33 0,17 0,33 0 0,5963

1,2,3.3,4,7 0 0,33 0,5 0,33 0 0,684 << max

1,2,3.3,5,7 0 0,33 0,5 0,33 0 0,684 << max

• For each task n: compute standard deviation per path
> = Maximum of all standard deviations for incoming paths

⇒ Paths 1,2,3.3,4,7 and 1,2,3.3,5,7 represent largest risk!

** Revised **

(Improved Formulas)

4.Project Management

Example: Risky Path

31

1. Start
(2 wks)

2. Place Order
(4 wks)

3.1. Cancel Order
(3 wks)

3.2. Get Order Status
(2,17 wks) [-0.83]
= 1 day faster

3.3. Send Catalog
(4,17 wks) [+0.17]

4. Integrate & Test
(4,33 wks) [+0.33]
= 2,5 extra days

7. Finish
(2 wks)

5. Write Manual
(4 wks)

6. Reviewing

01/01

14/01

15/01

14/02

15/02

07/03
08/03

20/03

21/03

23/03

24/04

09/05

• Worst case delay (“pessimistic time” minus “likely time” for all tasks on risky path)
+ 1,2,3.3,4,7: 0 + 1 + 2 + 2 + 0 = 5 extra weeks
+ 1,2,3.3,5,7: 0 + 1 + 2 + 1 + 0 = 4 extra weeks

• Risk analysis: can the project afford such delays? Customers decision; if not … no-go!

Revised
(Improved Graph)

** Revised **

(Improved Graph)

4.Project Management

Calculating Risk: exercise

32

OT LT PT S path S(path)

1.Start 2 2 2 1

2.1 Dispense Fuel 5 6 8 1,2.1

2.2 Payment 4 5 8 1,2.2

2.3 Print Receipt 3 4 5 1,2.3

3. Finish 1 1 1 1,2.1, 3

1,2.2, 3

1,2.3, 3

** New **

O • What is the riskiest task?
• What is riskiest path?
• What is the worst case delay?

1. Start
(2 wks)

2.2 Payment
(5 wks)

2.1 Dispense Fuel
(6 wks)

3. Finish
(1 wks)

2.3. Print Receipt
(4 weeks)

4.Project Management

Delays & Options

33

+ Assume that you have the following two options

+ What would you choose?
+ What do you think upper management would choose? (*)

(*)Most managers would choose option 2!
Early with big risk for delay Later with small risk for delay

delivery of project within
4 (four) months
… but can be 1 month early
… or 4 months late!

delivery of project within
5 (five) months
… at maximum 1 week late
… or 1 week early.

4.Project Management

Delays

34

• Myth:
+ “If we get behind schedule, we can add more programmers

and catch up.”
• Reality:

+ Adding more people typically slows a project down.

• Scheduling Issues
+ Estimating the difficulty of problems and the cost of developing a

solution is hard
+ The unexpected always happens. Always allow contingency in planning
+ Productivity is not proportional to the number of people working on a

task
- Productivity does not depend on raw man-power but on intellectual

power
- Adding people to a late project makes it later due to communication

overhead.
+ Cutting back in testing and reviewing is a recipe for disaster
+ Working overnight? Only short term benefits …

4.Project Management

Cost of Replacing a Person

35

(See [Dema98], chapter 13. The Human Capital)

Time

Productivity

Ralph is at

normal pace

Louis is at

normal pace

Ralph takes over

bothers colleagues

⇒ productivity is negative

Louis prepares to leave

⇒ must do extra (note taking)

+ motivation drops

4.Project Management

Dealing with Delays

36

• Spot potential delays as soon as possible
+ ... then you have more time to recover

• How to spot?
+ Earned value analysis

* planned time is the project budget
* time of a completed task is credited to the project budget

• How to recover?
+ A combination of following 3 actions

- Adding senior staff for well-specified tasks
* outside critical path to avoid communication overhead

- Prioritize requirements and deliver incrementally
* deliver most important functionality on time
* testing remains a priority (even if customer disagrees)

- Extend the deadline

4.Project Management

Calculating Earned Value (= Tasks Completed)

• The 0/100 Technique
+ earned value := 0% when task not completed
+ earned value := 100% when task completed

* tasks should be rather small
* gives a pessimistic impression

• The 50/50 Technique
+ earned value := 50% when task started
+ earned value := 100% when task completed

* tasks should be rather large
* may give an optimistic impression
* variant with 20/80 gives a more realistic impression

• The Milestone Technique
+ earned value := number of milestones completed / total number of

milestones
* tasks are large but contain lots of intermediate milestones
* Good for summary views on large schedules

37

4.Project Management

Calculating Earned Value (= Time sheets)

38

Organizations usually require staff to maintain time sheets
= bookkeeping of time spent by an individual for a particular task in a project

Opportunity to monitor team occupation
• Compare time spent (= earned value) vs. time planned
• Ask staff member if delay for this task is expected

Time Sheet
Name: Laura Palmer_____ Week ending: March, 3rd 2000_
Rechargeable hours
Project Task Activity Description Hours Delay?
C34 5 5.3 Chapter 3 25 -
C34 5 5.4 Chapter 4 5 +
C34 6 6.0 Reviewing 4 -

Non-rechargeable hours
Hour Description Authorized
8 Use-case training J.F. Kennedy

4.Project Management

Monitoring Delays – Slip Line (Gantt chart)

39

Visualise percentage of task completed via shading
• draw a slip line at current date, connecting endpoints of the shaded areas
• bending to the right = ahead of schedule, to the left = behind schedule

Interpretation
• Today is 1rst of March
• Task 3.1 is finished ahead of schedule and task 3.2 is started ahead of schedule
• Tasks 3.3 and 6 seem to be behind schedule (i.e., less completed than planned)

J F M A M

 1.Start

2. Place Order

3. Extras

 3.1. Cancel Order

 3.2. Get Order Status

 3.3. Send Catalog

4. Integrate & Test

5. Write Manual

6. Reviewing

7. Finish

4.Project Management

Monitoring Delays – Timeline Chart

40

Visualise slippage evolution
• downward lines represent planned completion time as they vary in current time
• bullets at the end of a line represent completed tasks

Interpretation (end of October)
• Task 3.1 is completed as planned.
• Task 3.2 is rescheduled 1/2 wk earlier end of February and finished 1 wk ahead of time.
• Tasks 3.3 rescheduled with one week delay at the and of February

J F M A M

F

M

3
.1

. s
c
a
n
n
e
r

3
.2

. p
a
rs

e
r

3
.3

. c
o
d
e
 g

e
n
e
ra

to
r

4.Project Management

Slip Line vs. Timeline

41

• Slip Line
+ Monitors current slip status of project tasks

- many tasks
- only for 1 point in time

> include a few slip lines from the past to illustrate evolution
• Timeline

+ Monitors how the slip status of project tasks evolves
- few tasks

> crossing lines quickly clutter the figure
> colors can be used to show more tasks

- complete time scale

4.Project Management

An afterthought ...

42

All projects that finish late have this one thing in common: they started late.
• [Dema11] Tom De Marco"All Late Projects Are the Same," IEEE Software, pp. 102-103,

November/December, 2011

• 1. Nobody had the guts to kick off the project until the competition proved it
doable and desirable; by then, the project was in catch-up mode and had to be
finished lickety-split.
⇒ Business failure: blame marketing

• 2. If the project were started long enough before its due date to finish on time,
all involved would have had to face up to the fact from the beginning that it
was going to cost a lot more than anyone was willing to pay.
+ On the surface: poor risk analysis and cost estimation
+ What if gains would be orders of magnitude larger than the cost?
+ Who decides to start an expensive project with marginal gains?
⇒ Management failure: blame decision makers

• 3.No one knew that the project needed to be done until the window of
opportunity was already closing.
⇒ Business failure + Management failure

4.Project Management

Individuals work in Teams

43

Distribution of a software engineer’s time, as logged within IBM
• [McCu78] G M McCue, "IBM's Santa Teresa Laboratory — Architectural Design for Program

Development,” IBM Systems Journal, 17, 1, pp. 4-25, 1978]

IMPLICATIONS?
• You cannot afford too many solo-players in a team
• Complementary personalities are as important as technical skills
• More women are necessary

working alone
30%

non-productive
(travel and training)

20%

interaction with
other people

50%

4.Project Management

Belbin Team Roles

44

Action Oriented
Roles

Shaper Challenges the team to
improve

Implementer Puts ideas into action

Completer
Finisher

Ensures thorough, timely
completion

People Oriented
Roles

Coordinator Acts as a chairperson

Team Worker Encourages cooperation

Resource
Investigator Explores outside opportunities

Thought Oriented
Roles

Plant Presents new ideas and
approaches

Monitor-Evaluator Analyzes the options

Specialist Provides specialized skills

“Do you want a collection of brilliant minds or a brilliant collection of minds?”
[Dr. Raymond Meredith Belbin (1926)]

An effective team
has members that
cover nine classic

team roles.

Overlap is
possible!

4.Project Management

Myers Briggs Type Inventory (MBTI)

45

Attribution-ShareAlike 3.0 Unported

** New **

4.Project Management

Typical Team Structures

46

Hierarchical (Centralized)
e.g. Chief Programmer

• For well-understood problems
• Predictable, fast development
• Large groups

Consensus (Decentralized)
e.g. Egoless Programming Team

• For exploratory projects
• Fast knowledge transfer
• Small groups

Organize so that no one person has to talk to more then 8 (eight) persons in total!

Centralized upper management
+ Decentralized teams

Decentralized upper management
+ Centralized teams

There is no “one size fits all” team structure!

4.Project Management

Directing Teams

47

Directing a team = the whole becomes more then the sum of its parts

• Managers serve their team
+ Managers ensure that team has the necessary information and

resources
> incl. pizza!

+ Responsibility demands authority
- Managers must delegate

> Trust your own people and they will trust you.
+ Managers manage

- Managers cannot perform tasks on the critical path
> Especially difficult for technical managers

+ Developers control deadlines
- A manager cannot meet a deadline to which the developers have not

agreed

4.Project Management

Scrum: Milestone = Sprint Review

48

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Sprint
Review

Sprint
Retrospective

Milestone

Agreed Upon
Definition of Done

4.Project Management

Definition of Done

49

definition of done = a checklist of the types of work that the team is expected to
successfully complete before it can declare its work to be potentially shippable.

✔ Design reviewed
✔ Code completed
✔ Code refactored
✔ Code in standard format
✔ Code is commented
✔ Code checked in
✔ Code inspected
✔ End-user documentation

updated✔ Tested
✔ Unit tested
✔ Integration tested
✔ Regression tested
✔ Platform tested
✔ Language tested
✔ Zero known defects
✔ Acceptance tested
✔ Live on production servers

Different levels of “doneness”:
• Task level
• User story level

+ (e.g. completed FIT acceptance tests with
customer)

• Iteration level
+ (e.g. all stories developed, all bugs closed)

• Release level
+ (e.g. installation package created, stress

testing completed)

4.Project Management

Scaling Scrum: Scrum of Scrum

50

few times a week

resolve inter-team dependencies
developer (+ scrum master?)

Synchronisation of work via “scrum of scrums”

4.Project Management

Scaling Scrum: Component Team

51

Product
Backlog Sprint

Backlog

Multiple
Scrum Teams …

… responsible
for a single
component

4.Project Management

Scaling Scrum: Feature Team

52

… responsible for
a single feature

Multiple
Scrum Teams …

Joint code
ownership

Product
Backlog

4.Project Management

Spotify Scrum Model

53

Squad =
Scrum Team

Tribe =
Loosely coupled Scrum Teams working
on related features/components

tribe tribe tribe

chapter

chapter

tribe

Chapter =
Team members with similar
expertise within a tribe.

Guild =
Team members with similar
interests across tribes.

4.Project Management

Conclusion: Correctness & Traceability
• Correctness

+ The purpose of a plan is not correctness.
- The purpose is to detect deviations as soon as possible

... and take appropriate actions
* Adding people to a late project makes it later

+ Are we building the system right?
- Deliver what’s required

* ... on time within budget

• Traceability
+ Plan ⇔ Requirements & System?

- Only when done well
* small tasks
* milestones verifiable by customer

54

4.Project Management

Summary (i)
• You should know the answers to these questions

+ Name the five activities covered by project management.
+ What is a milestone? What can you use them for?
+ What is a critical path? Why is it important to know the critical path?
+ What can you do to recover from delays on the critical path?
+ How can you use Gantt-charts to optimize the allocation of resources to a project?
+ What is a “Known kown”, and “Unknown known” and an “Unknown Unknown”?
+ How do you use PERT to calculate the risk of delays to a project?
+ Why does replacing a person imply a negative productivity?
+ What’s the difference between the 0/100; the 50/50 and the milestone technique for

calculating the earned value?
+ Why shouldn’t managers take on tasks in the critical path?
+ What is the “definition of done” in a Scrum project?
+ Give a definition for a Squad, Tribe, Chapter and Guild in the spotify scrum model.

• You should be able to complete the following tasks
+ draw a PERT Chart, incl. calculating the critical path and the risk of delays
+ draw a Gant chart, incl. allocating and optimizing of resources
+ draw a slip line and a timeline

55

4.Project Management

Summary (ii)
• Can you answer the following questions?

+ Name the various activities covered by project management. Which ones do you
consider most important? Why?

+ How can you ensure traceability between the plan and the requirements/system?
+ Compare PERT-charts with Gantt charts for project planning and monitoring.
+ How can you deal with “Unknown Unknowns” during project planning?
+ Choose between managing a project that is expected to deliver soon but with a large

risk for delays, or managing a project with the same result delivered late but with
almost no risk for delays. Can you argue your choice?

+ Describe how earned-value analysis can help you for project monitoring.
+ Would you consider bending slip lines as a good sign or a bad sign? Why?
+ You’re a project leader and one of your best team members announces that she is

pregnant. You’re going to your boss, asking for a replacement and for an extension of
the project deadline. How would you argue the latter request?

+ You have to manage a project team of 5 persons for building a C++ compiler. Which
team structure and member roles would you choose? Why?

+ Can you give some advantages and disadvantages of scrum component teams and
scrum feature teams.

56

5. Design by Contract

CHAPTER 5 – Design by Contract

1

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Literature

2

• [Ghez02], [Somm05], [Pres00]
+ Occurences of “contract”, “assertions”, “pre” and “postconditions”, via index

• [Meye97] Object-Oriented Software Construction, B. Meyer, Prentice Hall, Second Edn.,
1997.
+ An excellent treatment on the do’s and don’ts of object-oriented development.

Especially relevant are the chapters 6, 11-12

Copies of the following two articles are available from the course web-site.
• [Jeze97] “Put it in the contract: The lessons of Ariane”, Jean-Marc Jézéquel and Bertrand

Meyer, IEEE Computer, January 1997, Vol30, no. 2, pages 129-130. A slightly different
version of this article is available at http://www.irisa.fr/pampa/EPEE/Ariane5.html
+ A (heatedly debated) column arguing that Design by Contract would have prevented

the crash of the first Ariane5 missile.
• [Garl97] “Critique of ‘Put it in the contract: The lessons of Ariane’”, Ken Garlington. See

http://home.flash.net/~kennieg/ariane.html
+ An article providing counterarguments to the former. Yet by doing so gives an

excellent comparison with Testing and Code Inspection.

Modern applications - Testing REST API
+ "Simplifying Microservice testing with Pacts", Ron Holshausen.

https://dius.com.au/2014/05/19/simplifying-micro-service-testing-with-pacts/
- Tutorial: https://docs.pact.io

5. Design by Contract

When Design by Contract?

3

Mistakes are possible (likely!?)
• while transforming requirements into a system
• while system is changed during maintenance

5. Design by Contract

Why Design By Contract?

4

• What’s the difference with Testing?
+ Testing tries to diagnose (and cure) defects after the facts.
+ Design by Contract tries to prevent certain types of defects.

> “Design by Contract” falls under Implementation/Design

• Design by Contract is particularly useful in an Object-Oriented context
- (Or component-oriented, service-oriented, …)

+ preventing errors in interfaces between classes, components, services
(incl. subclass and superclass via subcontracting)

+ preventing errors while reusing classes, components, services
(incl. evolving systems, thus incremental and iterative development)

* Example of the Ariane 5 crash

Use Design by Contract in combination with Testing!

5. Design by Contract

What is Design By Contract?

5

“View the relationship between two classes as a formal agreement, expressing each party’s
rights and obligations.” ([Meye97], Introduction to Chapter 11)

• Each party expects benefits (rights) and accepts obligations
• Usually, one party’s benefits are the other party’s obligations
• Contract is declarative: it is described so that both parties can understand what service

will be guaranteed without saying how.

• Example: Airline reservation

Obligations Rights

Customer
(Client Class)

- Be at Brussels airport at
least 1 hour before
scheduled departure time

- Bring acceptable baggage
- Pay ticket price

- Reach Chicago

Airline
(Supplier Class) - Bring customer to Chicago

- No need to carry passenger who
is late,

- has unacceptable baggage,
- or has not paid ticket

5. Design by Contract

pre-condition: {x >= 9} post-condition: {x >= 13}

Pre- and Post-conditions + Invariants

6

component: {x := x + 5}

obligations are expressed via pre- and post-conditions
“If you promise to call me with the precondition satisfied, then I, in return
promise to deliver a final state in which the postcondition is satisfied.”

... and invariants
“For all calls you make to me, I will make sure the invariant remains
satisfied.”

pre-condition: {x > 0, y > 0}

component: {x := x - y}

pre-condition: {x > 0, y < 0}

component: {x := x + y}

invariant: {x >= y}

Quiz: Whose fault is it when a pre-condition is NOT satisfied?O

5. Design by Contract

Given
A stream of characters, length unknown

Requested
Produce a stream containing the same characters but in reverse order
Specify the necessary intermediate abstract data structure

while (! inStream.atEnd())
{
 stack.push (
 inStream.next());
}

while (! stack.isEmpty())
{
 system.out.print (
 stack.pop());
}

Example: Stack

7

Hello olleH

H

e

l

l

o

5. Design by Contract

class stack
 invariant: (isEmpty (this)) or
 (! isEmpty (this))

 public char pop ()
 require: ! isEmpty (this)
 ensure: true

 public void push (char)
 require: true
 ensure: (! isEmpty (this))
 and (top (this) = char)

 public void top (char) : char
 require: ...
 ensure: ...
 public void isEmpty () : boolean
 require: ...
 ensure: ...

Example: Stack Specification

8

Implementors of stack promise
that invariant will be true after
all methods return (incl.
constructors)

Clients of stack promise
precondition will be true before
calling pop()

Implementors of stack promise
postcondition will be true after
push() returns

Left as an exercise

O

5. Design by Contract

So what: isn’t this pure documentation?
Who will

(a) Register these contracts for later reference (the book of laws)?
(b) Verify that the parties satisfy their contracts (the police)?

Answer
(a) The source code
(b) The running system

 Quiz: What happens when a pre-condition is NOT satisfied?

Design by Contract in UML

9

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack

<<invariant>>

(isEmpty (this)) or

(! isEmpty (this))

<<precondition>>

(! isEmpty (this))

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)

O

5. Design by Contract

CHAPTER 6 – Design by Contract

10

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Redundant Checks Considered Harmful
• Extra complexity

Due to extra (possibly duplicated) code
... which must be verified as well.

• Performance penalty
Redundant checks cost extra execution time.

• Wrong context
How severe is the fault? How to remedy the situation? A service
provider cannot asses the situation, only the consumer can.

Redundant Checks

11

public char pop () {
 if (isEmpty (this)) {
 ... //Error-handling
} else {
 ...}

This is redundant code: it is the
responsibility of the client to
ensure the pre-condition!

Redundant checks: naive way for including contracts in the source code

5. Design by Contract

Assertions

12

+ assertion = any boolean expression we expect to be true at some point.

• Assertions …
+ Help in writing correct software

* formalizing invariants, and pre- and post-conditions
+ Aid in maintenance of documentation

* specifying contracts IN THE SOURCE CODE
* tools to extract interfaces and contracts from source code

+ Serve as test coverage criterion
* Generate test cases that falsify assertions at run-time

+ Should be configured at compile-time
* to avoid performance penalties with trusted parties
* What happens if the contract is not satisfied?

Quiz: What happens when a pre-condition is NOT satisfied?
> = What should an object do if an assertion does not hold?

* Throw an exception.O

5. Design by Contract

public char pop() throws AssertionException {
 char tempResult;
 my_assert(!this.isEmpty());
 tempresult = _store[_size--];
 my_assert(invariant());
 my_assert(true); //empty postcondition
 return tempResult;

}

private boolean invariant() {
 return (_size >= 0) && (_size <= _capacity);}

private void my_assert(boolean assertion)
 throws AssertionException {
 if (!assertion) {
 throw new AssertionException
 ("Assertion failed");}
}

Assertions in Source Code

13

Should be turned on/off via
compilation option

5. Design by Contract

public class AssertionException extends Exception {
 AssertionException() { super(); }
 AssertionException(String s) { super(s); }
}

static public boolean testEmptyStack() {
 ArrayStack stack = new();
 try {
 // pop() will raise an exception
 stack.pop();

 } catch(AssertionException err) {
 // we should get here!
 return true;
 };

 return false;
}

Exception Handling

14

If an ‘AssertionException’ is
raised within the try block ...

... we will fall into the ‘catch’
block

5. Design by Contract

Assertions are not...

15

• Assertions look strikingly similar yet are different from …

+ Redundant Checks
- Assertions become part of a class interface
- Compilation option to turn on/off

+ Checking End User Input
- Assertions check software-to-software communication,

not software-to-human

+ Control Structure
- Raising an exception is a control structure mechanism
- … violating an assertion is a fault

> precondition violation: responsibility of the client of the class
> postcondition violation: responsibility of the supplier of the class

* Only turn off assertions with trusted parties
* Tests must verify whether exceptions are thrown

5. Design by Contract

Programming Language Support

16

• Eiffel
+ Eiffel is designed as such … but only used in limited cases

• C++
+ assert() in C++ assert.h does not throw an exception
+ It’s possible to mimic assertions (incl. compilation option) in C++
+ Documentation extraction is more difficult but feasible

• Java
+ ASSERT is standard since Java 1.4

... however limited “design by contract” only; acknowledged by Java
designers
- https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

+ Documentation extraction using JavaDoc annotations

• … Other languages
+ Possible to mimic; compilation option requires language idioms
+ Documentation extraction is possible (style Javadoc)

5. Design by Contract

• 1) The use of ‘previous’ or ‘old’ state
+ sometimes postconditions compare exit state with starting state

+ Eiffel has a pseudo variable ‘old’
+ Mimicking assertions in other languages?

- store ‘old’ state in temporary variables

• 2) Invoking operations within assertions
+ Assertions may invoke operations with pre- and postconditions

- overhead + cycles lead to infinite loops
+ Eiffel switches off assertions when checking assertions
+ Mimicking assertions in other languages?

- Cumbersome using language idioms and class variable
… best to avoid cycles

Two Implementation Issues

17

public char pop ()
 require: ! isEmpty (this)
 ensure: (top (old) = char)
 and (size (old) = size (this) + 1)

Use ‘old’ as a way to refer
to the starting state of the

receiver

5. Design by Contract

+ Pre- and post-conditions are part of the interface of a component.
- Part of black-box testing, not white-box testing

> Do not include assertions in basis-path testing
> Borderline case: include assertions in condition testing

+ Example

+ basis-path testing: cyclomatic complexity = 1; 1 path can cover the control-flow
- (test case 1 = non-empty stack / value on the top)

+ condition testing: 2 inputs cover all conditions
- (test case 1 = non-empty stack / value on the top
- (test case 2 = empty stack / assertion exception)

Testing Issues

18

public char pop() throws AssertionException {
assert(!this.isEmpty());
return _store[_size--];

}

See
Next

 Week

(Chapter
 6. Te

stin
g)

5. Design by Contract

How much assertion monitoring is needed?

• Rule of thumb
+ *** At least monitor the pre-conditions.

- Make sure that verifying pre-conditions is fast!
- Do not rely on switching off monitoring to gain efficiency
- Profile performance to see where you loose efficiency

> First do it, then do it right, then do it fast!

Compiler Checks?

19

All
Especially during development
Too costly during production runs

None
Fully trusted system
Metaphor “sailing without life-jacket”

5. Design by Contract

CHAPTER 6 – Design by Contract

20

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

Correctness Formula

21

a.k.a. Hoare triples
Let:
 A be an operation (defined on a class C)
 {P} and {Q} are properties (expressed via predicates, i.e
 functions returning a boolean)

Then:
 {P} A {Q}
 is a Correctness Formula meaning
 “Any execution of A starting in a state where P holds,
 will terminate in a state where Q holds”

Example: ∀ x positive Integer
 {x >= 9} x := x + 5 {x >=13}

See
within 2 week

s

(Chapter
 7. Fo

rm
al

Speci
fica

tion
)

5. Design by Contract

• (Note: “weaker” and “stronger” follow from logic theory)

• Let {P1} and {P2} be conditions expressed via predicates
+ {P1} is stronger then {P2} iff

- {P1} <> {P2}
- {P1} ⇒ {P2}

+ example
- {x >= 9} is stronger then {x >= 3}

+ {false} is the strongest possible condition
[(not {false}) or {X} is always true]

+ {true} is the weakest possible condition
[(not {X}) or {true} is always true]

• Remember: {P1} ⇒ {P2}

is the same as (not {P1}) or {P2}

Weak and Strong

22

P1 TRUE FALSE TRUE FALSE

P2 TRUE TRUE FALSE FALSE

{P1} ⇒ {P2} TRUE TRUE FALSE TRUE

(not {P1}) or {P2} TRUE TRUE FALSE TRUE

5. Design by Contract

Weak and Strong: Quiz

23

• {P} A {Q} is a specification for operation A
+ You, as a developer of A must guarantee that once {P} is satisfied and

A is invoked it will terminate in a situation where {Q} holds
+ If you are a lazy developer, would you prefer

- a weak or a strong precondition {P}?
- a weak or a strong postcondition {Q}?

weak strong don’t know

precondition {P}

postcondition {Q}

O

5. Design by Contract

Weak or Strong (Preconditions)

24

• Given correctness formula: {P} A {Q}

• If you are a lazy developer, would you prefer a weak or a strong precondition {P}?
+ weak {P} ⇒ the starting situation is not constrained

+ strong {P} ⇒ little cases to handle inside the operation

* The stronger the precondition, the easier it is to satisfy the postcondition
• Easiest Case

+ {false} A {...}
{false} ⇒ {X} is true for any X

[because (not {false}) or {X} is always true]
- if {...} does not hold after executing A, you can blame somebody else because the

precondition was not satisfied
- ... independent of what happens inside A

- Quiz: If you are client of that class, would you prefer a weak or strong
precondition?O

5. Design by Contract

Weak or Strong (Postconditions)

25

• Given correctness formula: {P} A {Q}

• If you are a lazy developer, would you prefer a weak or a strong postcondition {Q}?
+ weak {Q} ⇒ the final situation is not constrained

+ strong {Q} ⇒ you have to deliver a lot when implementing A

* The weaker the postcondition, the easier it is to satisfy that postcondition

• Easiest Case
+ {...} A {true}

{X} ⇒ {true} is true for any X

[because (not {X}) or {true} is always true]
- {true} will always hold after executing A
- ... given that A terminates in a finite time

- Quiz: If you are client of that class, would you prefer a weak or strong
postcondition?O

5. Design by Contract

Weak or Strong (Pre- vs. Post-conditions)

26

• Remember
+ {false} A {...} is easier to satisfy then {...} A {true}

- With the strong precondition you may go in an infinite loop
- The weak postcondition must be satisfied in finite time

5. Design by Contract

Invariants

27

• Invariants correspond to the general clauses in a legal contract, i.e.
properties that always must be true for a given domain.

• {I} is an invariant for class C
+ After invoking a constructor of C, {I} is satisfied

- Default constructors as well!
+ All public operations on C guarantee {I} when their preconditions are

satisfied

• Thus, for each operation A defined on class C with invariant {I}
+ {P} A {Q} should be read as {I and P} A {I and Q}

- strengthens the precondition ⇒ implementing A becomes easier

- strengthens the postcondition ⇒ implementing A becomes more

difficult

5. Design by Contract

Contracts and Inheritance

28

• class C with invariant {I}
+ and operations {Pi} mi {Qi} where i: 1 .. n

• class C’ extends C with invariant {I’}
+ and operations {Pi’} mi {Qi’} where i: 1 .. n

• [We ignore the case where C’ extends the interface of C]

• Quiz: What’s the relationship between the contract in C and the contract
in C’
+ Invariant: Is {I’} stronger, weaker or equal to {I}
+ Precondition: Is {P’} stronger, weaker or equal to {P}
+ Postcondition: Is {Q’} stronger, weaker or equal to {Q}

• Answer according to the Liskov Substitution Principle
+ *** You may substitute an instance of a subclass for any of its

superclasses.

5. Design by Contract

Contracts and Inheritance

29

• class C with invariant {I}
+ and operations {Pi} mi {Qi} where i: 1 .. n

• class C’ extends C with invariant {I’}
+ and operations {Pi’} mi {Qi’} where i: 1 .. n

• [We ignore the case where C’ extends the interface of C]

• Quiz: What’s the relationship between the contract in C and the contract
in C’
+ Invariant: Is {I’} stronger, weaker or equal to {I}
+ Precondition: Is {P’} stronger, weaker or equal to {P}
+ Postcondition: Is {Q’} stronger, weaker or equal to {Q}

VOTES stronger weaker equal don’t know

{I’} vs. {I}

{P’} vs. {P}

{Q’} vs. {Q}

O

5. Design by Contract

Sidetrack: ACM Turing Award Barbara Liskov

30

Press release — NEW YORK, March 10, 2009
– ACM, the Association for Computing Machinery

The ACM has named Barbara Liskov of the Massachusetts Institute
of Technology (MIT) the winner of the 2008 ACM A.M. Turing Award.
The award cites Liskov for her foundational innovations to designing
and building the pervasive computer system designs that power
daily life. Her achievements in programming language design
have made software more reliable and easier to maintain. They are
now the basis of every important programming language since 1975,
including Ada, C++, Java, and C#. The Turing Award, widely
considered the "Nobel Prize in Computing," is named for the British
mathematician Alan M. Turing. The award carries a $250,000 prize,
with financial support provided by Intel Corporation and Google Inc.

[…]

In another exceptional contribution, Liskov designed the CLU programming language, an object-
oriented language incorporating "clusters" to provide coherent, systematic handling of abstract data
types, which are comprised of a set of data and the set of operations that can be performed on the
data. She and her colleagues at MIT subsequently developed efficient CLU compiler implementations
on several different machines, an important step in demonstrating the practicality of her ideas. Data
abstraction is now a generally accepted fundamental method of software engineering that focuses on
data rather than processes, often identified as "modular" or "object-oriented" programming.

5. Design by Contract

Liskov substitution principle revisited

31

Subtype
Relationship

“is-a”

If it swims like a duck and quacks like a duck, then it’s a duck
(i.e.: the interfaces of the subtype and the supertype are equivalent)

If it swims like a duck and quacks like a duck,
but … needs batteries then it is NOT a duck.

(i.e.: mismatch between the interface of the subtype and the supertype)

5. Design by Contract

+ A client of Stack assumes a “true” pre-condition on push()
- Any invocation on push() will deliver the post-condition

+ However, substituting a BoundedStack adds pre-condition
- “! isFull(this)”

+ BoundedStack requires more from its clients
- You cannot substitute a BoundedStack for a Stack

Contracts and Inheritance: Example (1/2)

32

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack<<precondition>>

true

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)

push (char)

isFull(): boolean

BoundedStack<<precondition>>

(! isFull (this))

5. Design by Contract

testStack (s: Stack) {
 push(s, 99);
 if empty(s) {
 error(postC)};
 if pop(s) <> 99 {
 error(postC)};
}

Contracts and Inheritance: Example (2/2)

33

BoundedStack s;
s= new BoundedStack(3);
push(s, 1);
push(s, 2);
push(s, 3);
testStack (s);

testStack should work for any
s: stack we pass !

testStack should work for
any s: stack we pass !

However, it runs into a pre-
condition error when we pass a
bounded stack that is almost full.

As an illustration of the unsatisfied substitution principle, assume the
following (test)code

⇒ substitution principle is not satisfied O
How to fix?

5. Design by Contract

What is the Fix?

34

OStack

pop (): char
push (char)
isEmpty (): boolean
top(): char
isFull(): boolean

<<invariant>>
! isFull (this) isFull() …

 return false;
}

BoundedStack

isFull(): boolean

• Push the “isFull” method higher and include as pre-condition for all “push” operations
• “isFull” usually returns false, but a BoundedStack overrides

5. Design by Contract

Subclassing and Subcontracting

35

• Rule
+ A subclass is a subcontractor of its parent class: it must at least satisfy

the same contract
or

+ If you subcontract, you must be willing to do the job under the original
conditions, no less

• Thus
+ Invariant: {I’} = {I}

Invariant must remain equal (though may be expressed differently)
+ Precondition: {P’} is weaker or equal to {P}
+ Postcondition: {Q’} is stronger or equal to {Q}

• Implementation Issue
+ Eiffel has special syntax for extensions of pre- and postconditions

* Compile-time guarantee that the substitution principle holds
+ In other languages it is left to the programmer to ensure this rule

5. Design by Contract

Behavioural Subtyping

36

Rectangle

Square <<invariant>>
width == height

testRectangle(Rectangle r) {
r.setWidth(2);
r.setHeight(3);
assert r.getWidth() == 2;
assert r.getHeight() == 3;

}

Square s;
s = new Square(3);
testRectangle(s);

• a square “is a” rectangle
+ all square are rectangles; not all rectangles are squares

> a square is a subtype of a rectangle
• but a square is not a behavioural subtype of a rectangle

> a square does not respect the contractual obligations of rectangle
> rectangle explicitly allows height and width to differ

O
How to fix?

5. Design by Contract

What is the Fix?

37

Shape

SquareRectangle

setWidth()
setHeight()
…

setSize()
…

Rectangles and Square become siblings in an inheritance hierarchy

5. Design by Contract

Exam Question

38

Liskov Substitution
Principle

What’s the Liskov substitution principle?
Why is it important in OO development?

Why is it Important?

*** You may substitute an instance of a subclass for any of its superclasses.

It tells us what a subclass may do with pre- and post-conditions and invariants.

• Invariant: {I’} = {I}
+ Invariant must remain equal (though may be expressed differently)

• Precondition: {P’} is weaker or equal to {P}
• Postcondition: {Q’} is stronger or equal to {Q}

5. Design by Contract

CHAPTER 6 – Design by Contract

39

• Introduction
+ When, Why & What
+ Pre & Postconditions + Invariants

- Example: Stack
• Implementation

+ Redundant Checks vs. Assertions
+ Exception Handling
+ Assertions are not…

• Theory
+ Correctness formula
+ Weak and Strong
+ Invariants
+ Subclassing and Subcontracting

- The Liskov Substitution Principle
- Behavioral subtyping

• Conclusion
+ How Detailed?
+ Tools: The Daikon Invariant Detector
+ Modern Application: Rest API
+ Example: Banking
+ Design by Contract vs. Testing

5. Design by Contract

How Detailed Should the Contract Be?

40

• Given correctness formula: {P} A {Q} for operation A
+ P := {false} is not desirable; nobody will invoke an operation like that
+ P := {true} looks promising... at first sight

- A will do some computation + check for abnormal cases + take corrective actions
and notify clients + produce a result anyway

* It will be difficult to implement A correctly
* It will be difficult to reuse A

*** Strong preconditions make a component more reusable

• Reasonable precondition: When designing a component with preconditions
+ It must be possible to justify the need for the precondition in terms of the

requirements specification only
+ Clients should be able to satisfy and check the precondition

- All operations used inside the precondition should be declared public

cfr. Question on slide — 24. Weak or Strong (Preconditions)
If you are client of that class, would you prefer a weak precondition?
> We want a reasonable preconditionO

Data mining algorithms
applied on software

engineering problems

5. Design by Contract

REST API — History

42

© API styles over time, Source: Rob Crowley

5. Design by Contract

MicroService Example - Pet Store (REST API)

43

5. Design by Contract

Test Strategies for Micro-Services

44

Lehvä, J., Mäkitalo, N., Mikkonen, T. (2019). Consumer-Driven Contract Tests for Microservices: A Case Study. In: Franch, X.,
Männistö, T., Martínez-Fernández, S. (eds) Product-Focused Software Process Improvement. PROFES 2019. Lecture Notes in
Computer Science(), vol 11915. Springer, Cham. https://doi.org/10.1007/978-3-030-35333-9_35

Consumer

Provider

End-to-End
Tests

Consumer

Provider

Component
Tests

Test
Double

Consumer

Provider

Integration
Tests

Consumer

Provider

Consumer-Driven
Contract Testing

5. Design by Contract

• Consumer
+ Explicit delivery of the (part

of) the contract used.
+ Mocks the provider based on

the (part of the) contract.

• Provider
+ Replay consumer requests

against its API.
+ Verify responses against

contract.

Consumer-Driven Contract Testing

45

Consumer

Provider

Test micro-services in isolation, solely based on the contractual obligations.

Provider is aware which parts of the contract are actually used by consumers.
> Breaking contracts is explicitly under control.

5. Design by Contract

Example: Banking - Requirements

46

+ a bank has customers
+ customers own account(s) within a bank
+ with the accounts they own, customers may

- deposit / withdraw money
- transfer money
- see the balance

• Non-functional requirements
+ secure: only authorised users may access an account
+ reliable: all transactions must maintain consistent state

5. Design by Contract

Example: Banking - Class Diagram

47

customerNr():int

customerNr : int

IBCustomer

accountNr (): int

getBalance():int

setBalance (amount:int)

accountNr : int

balance : int = 0

IBAccount

validCustomer(cust:IBCustomer) : boolean

createAccountForCustomer(cust:IBCustomer): int

customerMayAccess(cust:IBCustomer, account:int) : boolean

seeBalance(cust:IBCustomer, account:int) : int

transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)

checkSumAccounts() : boolean

IBBank

5. Design by Contract

Example: Banking - Contracts

48

IBBank
invariant: checkSumAccounts()

IBBank::createAccountForCustomer(cust:IBCustomer): int
precondition: validCustomer(cust)
postcondition: customerMayAccess(cust, <<result>>)

IBBank::seeBalance(cust:IBCustomer, account:int) : int
precondition: (validCustomer(cust)) AND

(customerMayAccess(cust, account))
postcondition: true

IBBank::transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)
precondition: (validCustomer(cust))

AND (customerMayAccess(cust, fromAccount))
AND (customerMayAccess(cust, toAccount))

postcondition: true

Ensure the “secure” and “reliable”
requirements.

5. Design by Contract

Example: Banking - CheckSum

49

Bookkeeping systems always maintain two extra accounts, “incoming” and “outgoing”
• ⇒ the sum of the amounts of all transactions is always 0 ⇒ consistency check

MyAccount

date amount

1/1/2000 +100

1/2/2000 +200

1/3/2000 -250

OutGoing

date amount

1/3/2000 +250

Incoming

date amount

1/1/2000 -100

1/2/2000 -200

5. Design by Contract

• Design by contract prevents defects
• Testing detect defects

+ One of them should be sufficient!?

• Design by contract and testing are complementary
+ None of the two guarantee correctness ...

but the sum is more than the parts.
- Testing detects wide range of coding mistakes
- ... design by contract prevents specific mistakes

(due to incorrect assumptions between provider and client)
+ design by contract ⇒ black box testing techniques

- especially, equivalence partitioning & boundary value analysis
+ (condition) testing ⇒ verify whether parties satisfy their obligations

- especially, whether all assertions are satisfied
+ consumer-driven contract testing ⇒ test distributed components in isolation

• Design by contract (and Testing) support Traceability
+ Assertions are a way to record requirements in the source code
+ (Regression) tests map assertions back to the requirements

Correctness & Traceability

50

5. Design by Contract

Summary(i)

51

• You should know the answers to these questions
+ What is the distinction between Testing and Design by Contract? Why are they

complementary techniques?
+ What’s the weakest possible condition in logic terms? And the strongest?
+ If you have to implement an operation on a class, would you prefer weak or strong

conditions for pre- and postcondition? And what about the class invariant?
+ If a subclass overrides an operation, what is it allowed to do with the pre- and

postcondition? And what about the class invariant?
+ Compare Testing and Design by contract using the criteria “Correctness” and

“Traceability”.
+ What’s the Liskov substitution principle? Why is it important in OO development?
+ What is behavioral subtyping?
+ When is a pre-condition reasonable?

• You should be able to complete the following tasks
+ What would be the pre- and post-conditions for the methods top and isEmpty in the

Stack specification? How would I extend the contract if I added a method size to the
Stack interface?

+ Apply design by contract on a class Rectangle, with operations move() and resize().
+ Write consumer-driven contracts for a given REST-API .

5. Design by Contract

Summary(ii)
• Can you answer the following questions?

+ Why are redundant checks not a good way to support Design by Contract?
+ You’re a project manager for a weather forecasting system, where performance is a

real issue. Set-up some guidelines concerning assertion monitoring and argue your
choice.

+ If you have to buy a class from an outsourcer in India, would you prefer a strong
precondition over a weak one? And what about the postcondition?

+ Do you feel that design by contract yields software systems that are defect free? If
you do, argue why. If you don’t, argue why it is still useful.

+ How can you ensure the quality of the pre- and postconditions?
+ Why is (consumer-driven) contract testing so relevant in the context of micro-

services?
+ Assume you have an existing software system and you are a software quality

engineer assigned to apply design by contract. How would you start? What would you
do?

52

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

1

6.Testing

Literature
• Books

+ [Ghez02] Chapter on “Software Verification” is quite good with plenty
of examples of the need for complementary testing techniques.
Terminology used here differs from [Pres00] and [Somm05]

+ [Pres00] Chapter on “Software Testing Techniques” is very good with
lots of concrete examples of the different techniques.

+ [Somm05] Chapter on “Verification and Validation” places Testing in a
broader context.

• Specific Books
+ [Jorg21] Software Testing: A Craftsman’s

Approach (5th edition)
- Master course on Software Testing

2

6.Testing

When to Test?

3

Mistakes are possible (likely!?)
• while transforming requirements into a system
• while system is changed during maintenance

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

6.Testing

The Verification Landscape

4

Are we building the product right?

Formal
Specifications

Simulation Testing

New slide

6.Testing

DutchGuilder Wikipedia

When to Test? The Unified Process

5

Testing is a risk reduction activity
• start as early as possible to assess & reduce risk towards the schedule
• repeat towards the end to assess & reduce risk towards reliability

6.Testing

SPECIFY & DESIGN WITH TESTABILITY IN MIND

When to Test? The V-model

6

Requirements
Documents

Deployed
System

System
Specification

Released
System

System
Design

System
Integration

Module
Specification

Module
Implementation

Acceptance Test

System
Test

Integration
Test

Unit TestPrepare tests here … … and run them here!

6.Testing

Why to Test?

7

• Perfect Excuse
+ We should not invest in testing: our system will contain defects

anyway

• Counter Arguments
+ The more you test, the less likely such defects will cause harm
+ The more you test, the more confidence you will have in the system

• Testing = Risk Management
+ Testing is a risk reduction activity!

- Result of testing is a risk report to project management
(Can we ship this product in good confidence?)

* Go / no-go decision

Program testing can be used to show the presence
of defects, but never their absence.

(E. W. Dijkstra)

6.Testing

What is Testing? (1/3)

8

Input System
Under
Test

Expected output
= Oracle

Software Testing is the process of executing a program or system
with the intent of finding errors.
(Myers, Glenford J., The art of software testing. Wiley, 1979)

New slide

6.Testing

What is Testing? (2/3)
• Testing should

+ verify the requirements (Are we building the product right?)
+ NOT validate the requirements (Are we building the right product?)

• Definitions
+ Testing

- Testing is the activity of executing a program with the intent of
finding a defect
> A successful test is one that finds defects!

+ Testing Techniques
- Techniques with a high probability of finding an as yet undiscovered

mistake
> Criterion: Coverage of the code/requirements/model/risks/…

+ Testing Strategies
- Tell you when you should perform which testing technique

> Criterion: Confidence that you can safely proceed
> Next activity = other testing until deployment

9

REMEMBER: Testing is a risk reduction activity!

6.Testing

What is Testing? (3/3)

10

Errors/Failures
= mismatch between
specification & system

(found with tests)

Surprises (e.g. security flaws)
(sometimes found with tests)

SYSTEM

SPECIFICATION

Omissions (e.g. implicit requirements)
(not found with tests)

6.Testing

Who should Test?

11

+ Programming is a constructive activity:
- try to make things work

+ Testing is a destructive activity:
- try to make things fail

Programmers are not necessarily the best testers!

• In practice
+ Testing is part of quality assurance

- done by developers when finishing a component (unit tests)
- done by a specialized test team when finishing a subsystem

(integration tests / system tests / acceptance tests)

6.Testing

Unit tests …
not sufficient

12

• Interesting Tweet:
All unit tests are passing

https://twitter.com/olafurw/status/
1578704185809244160?
s=11&t=mdYnxnMXgxYBEhH7anVCgQ

6.Testing

What is “Correct”?
• Correctness

+ A system is correct if it behaves according to its specification
> An absolute property

(i.e., a system cannot be “almost correct”)
> ... in theory and practice undecidable

• Reliability
+ The user may rely on the system behaving properly
+ The probability that the system will operate as expected over a

specified interval
> A relative property

(a system has a mean time between failure of 3 weeks)

• Robustness
+ A system is robust if it behaves reasonably even in circumstances that

were not specified
> A vague property (once you specify the abnormal circumstances

they become part of the requirements)

13

See [Ghez02] — Representative Qualities

6.Testing

Terminology (1/3)
• Avoid the term “Bug” (*)

+ Implies mistakes creeping into the software from the outside
+ imprecise because mixes various “mistakes”

14

https://commons.wikimedia.org/wiki/File:First_Computer_Bug,_1945.jpg

6.Testing

Terminology (2/3)
To be more precise (Terminology not standard!) : IEEE Glossary / ISTQB
• Defect / Fault (NL = DEFECT, GEBREK, NALATIGHEID)

+ A design or coding mistake that may cause abnormal behaviour
- abnormal behaviour = deviations from specification (incl. surprises!)

+ Faults by omission: something is missing in the design, model, code, …
+ Faults by commission: incorrect entry in design, model, code, …

• Failure (NL = MISLUKKING, FALING)
+ A deviation between the specification and the running system
+ A manifestation of a defect during system execution
+ Inability to perform required function within specified limits

• Error (NL = FOUT)
+ The input that causes a failure

- Transient occurs only with certain input combination
- Permanent occurs with all inputs of a given class

15

6.Testing

Bug Tracking Workflow

16

Error

Operator
Error

Defect Fault Fix

Usability Issue

Entered in Defect
Tracking System
(Bugzilla, Jira, …)

Root cause identified
Fault location known

Repair

Reject

Cannot Reproduce
Works for me
Feature request

Subtle deviations of terminology

Something went
wrong

6.Testing

Terminology (3/3)
• Component (Component under Test)

+ part of the system that can be isolated for testing
- an object, a group of objects, one or more subsystems

• Test Case
+ set of inputs and expected results that exercise a component with the purpose of

causing failures
- predicate that answers “true” when the component answers with the expected

results for the given input and “false” otherwise
> “expected results” includes exceptions, error codes,...

• Test Stub
+ partial implementation of components on which the tested component depends

- dummy code providing necessary input values and behaviour

• Test Driver
+ partial implementation of a component that depends on the tested component

- a “main()” function that executes a number of test cases

• Test Fixture
+ fixed state of software under test, baseline for running test

- all that is needed to set-up the appropriate test context

17

6.Testing

gTest Example: findLast
Find.cpp
#include <vector>

int findLast(std::vector<int> x, int y) {
 if (x.size() == 0)
 return -1;
 for (int i = x.size() - 1; i >= 0; i—)
 if (x[i] == y)
 return i;
 return -1;
}

Tests.cpp
#include <vector>
#include <gtest/gtest.h>

#include "find.cpp"

TEST(FindLastTests, noOccurrence) {
 EXPECT_EQ(-1, findLast({1, 2, 42, 42, 63}, 99));
}

TEST(FindLastTests, doubleOccurrence) {
 EXPECT_EQ(3, findLast({1, 2, 42, 42, 63}, 42));
}

TEST(FindLastTests, emptyVector) {
 EXPECT_EQ(-1, findLast({}, 3));
}

18

O
Are these tests sufficiently strong?
(Discuss with your neighbour)

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

19

6.Testing

White Box Testing
• a.k.a. Structural testing, Testing in the small

+ Treat a component as a
“white box”, i.e. you can
inspect its internal structure

+ Internal structure is also
design specs; e.g. sequence
diagrams, state charts, …

+ Derive test cases to
maximize coverage
of that structure, yet
minimize number of test cases

+ Coverage criteria
- every statement at least once
- all portions of control flow (= branches) at least once
- all possible values of compound conditions at least once
- all portions of data flow at least once
- all loops, iterated at least 0, once, and N times

20

Test Data

Test Output

Component

Code/Design

Derive test data

Run tests

Produce output

6.Testing

Basis Path Testing (1/2)
+ 1. Draw a control flow graph

- nodes = sequences of non branching statements (assignments, procedure calls)
- edges = control flow

Guiding principle: make sure that the control flow graphs stays as close as possible to
the actual source code. This allows for better traceability when demonstrating that the
test suite is well designed.
Clarification

+ Empty nodes (= an empty sequence of non-branching statement)
- Removing them graph does not affect the cyclomatic complexity
- But it hinders traceability

+ What with an if-then (without an else branch)
- Then you can remove the empty else branch

21

if-then-else

[cc = 2]

while

[cc = 2]

case-of

[cc = 3]

and/or

= if-then-else

[cc = 2]

6.Testing

Basis Path Testing (2/2)
+ …
+ 2. Compute the Cyclomatic Complexity

= #(edges) - #(nodes) + 2
= number of binary conditions + 1
= # regions

+ 3. Determine a set of independent paths (= at least one new edge in every path)
[name independent stems from a mathematical vector basis for the complete graph]
- Several possibilities: upper bound = Cyclomatic Complexity

+ 4. Prepare test cases that force each of these paths
- Choose values for all variables that control the branches.
- Predict the result in terms of values and/or exceptions raised

+ 5. Write test driver for each test case

22

6.Testing

Example - Code
public boolean find(int key) { //Binary Search
int bottom = 0; // (1)
int top = _elements.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == _elements[lastIndex];
while ((bottom <= top) && !found) { // (2) (3)

mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) { // (5)

lastIndex = mid; // (6)
} else {

if (_elements[mid] < key) { // (7)
bottom = mid + 1; // (8)

} else {
top = mid - 1; } // (9)

} // (10) (11)
} // (4) (12)
return found; // (13)

}

23

(*) (4) and (12) are needed to close the control flow path because the condition in (2) and (3)
must be split up in two primitive conditions: (2) (bottom <= top) and (3) !found.
Remember: A boolean expression involving an “and” or “or” is equivalent to an if statement.

6.Testing

Example - Flow Graph
set of independent paths of a flow graph ⇒ try to cover all the edges in the graph.

Heuristic for constructing such a set
• upper bound for size = 16 - 13 + 2 = 4 + 1 = 5
• pick most simple entry/exit path: {1,2,12,13}
• add new paths until upper bound;

each addition includes an extra edge

• possible set of independent paths
+ {1, 2, 3, 4, 12,13}
+ {1,2,3,5,6,11,2,12,13}
+ {1,2,3,5,7,8,10,11,2,12,13}
+ {1,2,3,5,7,9,10,11,2,12,13}

24

4

5

12

1

2

3

(bottom <= top)

6

7

8 9

10

11

13

!found

(key == _elements[mid]

_elements[mid] < key

6.Testing

Example - Test Cases

25

Path Input Output

{1,2,12,13} _elements = []; key = 5 false / index out of bounds

{1,2,3,4,12,13} _elements = [1, 5, 9]; key = 5 TRUE

{1,2,3,5,6,11,2,12,13}
{1,2,3,5,7,9,10,11,2,3,
5,6,11,2,12,13}

_elements = [1, 5, 9]; key = 1
actual path is not intended path(*) TRUE

{1,2,3,5,7,8,10,11,2,12,13} _elements = [5]; key = 9 FALSE

{1,2,3,5,7,9,10,11,2,12,13} _elements = [5]; key = 1 FALSE

(*) The intended path resulting from the heuristic is {1,2,3,5,6,11,2,12,13}.
However, this path can never be forced by any input value.
Therefore the actual path is a little different and takes an extra cycle.

6.Testing

Basis Path Testing: Evaluation

26

• Pros
+ coverage = (most of the times) every statement + all portions of control flow

(branches)
* reasonable coverage for reasonable effort

+ tool support exists (computing cyclomatic complexity + drawing flow graph)
* possibility to estimate testing complexity

• Cons
+ construction is a heuristic: does not necessarily result in set of independent paths
+ it is possible to get the same coverage with less paths
+ it is sometimes not feasible to exercise all required paths
+ it does not necessarily cover all entry-exit paths

+ not all cc independent paths will cover all statements and all branches
(see “Summary”; Perform basis path with a nested conditional of 2 levels deep.)

For crucial code, complement basis path with condition and loop testing

if (x + y < 3)

 {x := 3} else {x := 5};

if (x + y < 3)

 {y := 3} else {y := 5};

• cc = 3 but 4 different

 entry-exit paths !

• Situation gets worse with

 nested conditionals

6.Testing

Condition Testing
• For complex boolean expressions, Basis Path Testing is not enough!

• Input
+ {x = 3, y=4, z = 4}, {x = 4, y=3, z = 3}, {x = 4, y=4, z = 3}
+ exercises all paths ...

* but several important conditions (assertions) are not triggered
(e.g. {x = 3, y=3, z=3})

• Condition Testing
+ Condition coverage: all true/false combinations for whole condition expressions
+ Multiple condition coverage: all true/false combinations for all simple conditions
+ Domain Testing: all combinations of true/false + almost “true/false”

for each occurrence of a < b, a <= b, a == b, a <> b, a >= b, 3 tests
* test cases {a < b; a == b; a > b}

27

1.public void helloWorld (int x, y, z) {
2. assert((x <> y) && (x <> z));
3. while (x > y) && (x > z) {
4. printf(‘’Hello World’’);
5. x = x - 1;
6. };
7. assert((x == y) || (x == z));
8.}

6.Testing

Condition Testing - Test Cases
Condition Coverage

line 2: (x <> y) && (x <> z): {x = 3, y=3, z = 3} and {x = 4, y=3, z = 3}
line 3: (x > y) && (x > z) and line 7: (x == y) || (x == z) are exercised by same values

Multiple Condition Coverage
line 2: {x = 3, y=3, z = 3}, {x = 4, y=3, z = 3}, {x = 4, y=4, z = 3},
{x = 2, y = 3, z = 4}
line 3 and line 7: are exercised by same values

Domain Testing

28

x = z x < z x > z

x = y x = 3, y = 3, z = 3 x = 2, y = 2, z = 3 x = 4, y = 4, z = 3

x < y x = 2, y = 3, z = 2 y = z: x = 2, y = 3, z = 3 y = z: --- not possible

y < z: x = 2, y = 3, z = 4 y < z: --- not possible

y > z: x = 2, y = 4, z = 3 y > z: x = 3, y = 4, z = 2

x > y x = 4, y = 3, z = 4 y = z: --- not possible y = z: x = 4, y = 3, z = 3

y < z: x = 3, y = 2, z = 4 y < z: x = 4, y =2, z = 3

y > z: --- not possible y > z: x = 4, y = 3, z = 2

6.Testing

Loop Testing

29

for all loops L, with n allowable passes:
• (i) skip the loop;
• (ii) 1 pass through the loop;
• (iii) 2 passes through the loop;
• (iv) m passes where 2 < m < n;
• (v) n-1, n, n+1 passes

Test cases for binary search: n = log2(size (_elements)) = log2(16) = 4

(*) The actual test cases are left as an exercise

Path Input Output (*)

skip the loop _elements = [1, 3, ..., 29, 31]; key = ...

1 pass through the loop _elements = [1, 3, ..., 29, 31]; key = ...

2 passes through the loop _elements = [1, 3, ..., 29, 31]; key = ...

m passes where 2 < m < n _elements = [1, 3, ..., 29, 31]; key = ...

n-1 _elements = [1, 3, ..., 29, 31]; key = ...

n passes _elements = [1, 3, ..., 29, 31]; key = ...

n+1 passes _elements = [1, 3, ..., 29, 31]; key = ...

6.Testing

White Box Testing and Objects (1/2)

30

Pure white box testing is less relevant in an object-oriented context.
• Internal structure embedded in object compositions and polymorphic method

invocations

generateHTML (tableSpec:

 String, outStream: Stream,

 renderer: HTMLRenderer)

fetchTable (tableSpec: String):

 Table {abstract}

Database

{abstract}

fetchTable (tableSpec: String): Table

PhoneDatabase

fetchTable (tableSpec: String): Table

ProjectDatabase

tbl = this.fetchTable(tableSpec);

renderer.renderHTML(tbl,

 outStream)

Number of paths, conditions, loops = 1
Yet, masks an important conditional

6.Testing

White Box Testing and Objects (2/2)

31

… but: sequence & collaboration diagrams may serve better

⇒ Identify polymorphic messages representing a conditional

⇒ plug-in instances of appropriate subclasses to exercise branches

The distinction between white-box and black-box testing is not that sharp.

: User d : Database

this.fetchTable ()

tbl: Table
tbl:= query()

renderHTML()

renderer
Represents a

conditional

Represents a

conditional

generate
HTML()

6.Testing

Question

32

White Box Testing
Techniques

Basis Path Testing

What are the differences and similarities between basis path testing,
condition testing and loop testing?

Condition Testing Loop Testing

Cover Control Flow

all portions of control
flow (= branches) at

least once

all possible values of
compound conditions

at least once

all loops, iterated at
least 0, once, and N

times

O

6.Testing

Code Coverage: Strength of a Test Suite

33

Input

New slide

Expected output
= Oracle

Code Coverage:
The degree to which code is exercised by a test

suite, expressed as a percentage.

6.Testing

Code Coverage

34

c++

java

Tools to measure line coverage, statement coverage, function
coverage, branch coverage readily exist CAPSTONE PROJECT

6.Testing

Modified Condition/Decision Coverage (MC/DC)

• Condition ≈ Condition on Input to the function/component under test
• Decision ≈ Output of the function/component under test

MC/DC is required by most software standards for safety critical software.
(DO-178C: Avionics Safety Standard; ISO 26262: Road vehicles – Functional safety; ISO/IEC 62304: medical device software)

MC/DC requires all of the below during testing:
• Each entry and exit point is invoked.
• Each decision takes every possible outcome.
• Each condition in a decision takes every possible outcome.
• Each condition in a decision is shown to independently affect the

outcome of the decision.
+ Independence of a condition is shown by proving that only one

condition changes at a time.

35

6.Testing

MC/DC Example
int isReadyToTakeOff(int a, int b, int c, int d) {
if(((a == 1) ||(b == 1)) && ((c == 1) || (d == 1))) return 1; else return 0;

}
2 decisions: “return 1” or “return 0”

4 inputs: a, b, c, d
4 conditions: (a == 1) / (b == 1) / (c == 1) / (d == 1)

Decision Coverage
• 2 test cases, one for each decision

Condition Coverage
• 2 test cases, one for all conditions to be true, one for all conditions to be false

Condition/Decision Coverage
• 3 test cases, all decisions at least once + all conditions once true, once false

Modified Condition/Decision Coverage
• n + 1 test cases (for a decision with n conditions)

Multiple Condition Coverage
• 2n test cases (for a decision with n conditions)

+ Usually too large to handle

36

Condition/Decision Coverage

a==1
1

b==1 c==1 d==1 decision
FALSE TRUE TRUE TRUE return 1

FALSE FALSE FALSE TRUE return 0

TRUE FALSE FALSE FALSE return 0

Modified Condition/Decision Coverage

a==1
1

b==1 c==1 d==1 decision
TRUE FALSE TRUE FALSE return 1

+ row 4 shows effect of c

TRUE FALSE FALSE TRUE return 1

+ row 5 shows effect of a

FALSE TRUE FALSE TRUE return 1

+ row 5 shows effect of b

TRUE FALSE FALSE FALSE return 0

+ row 2 shows effect of d

FALSE FALSE FALSE TRUE return 0

6.Testing

Mutation Testing: Metaphor

37

© Brussels Airlines

© "The Good, the Bad and the Ugly: Evaluating Convolutional Neural Networks for Prohibited Item Detection
Using Real and Synthetically Composite X-ray Imagery” Neelanjan Bhowmik, Qian Wang, Yona Falinie A. Gaus,
Marcin Szarek, Toby P. Breckon

How to test the quality assurance?
Inject synthetic problematic items.

6.Testing

Code Coverage

38

100% line coverage
100% statement coverage
100% branch coverage
100% MC/DC coverage

… all tests passed

gTest Example: findLast

6.Testing

Inject Mutant (Survived - Live)

39

01 int findLast(std::vector<int> x, int y) {  
02 if (x.size() == 0)  
03 return -1;  
04 for (int i = x.size() - 1; i > 0; i--)  
05 if (x[i] == y)  
06 return i;  
07 return -1;  
08 }

[==========] 3 tests from 1 test suite ran. (0 ms total)
[PASSED] 3 tests.

Relational Operator Replacement (ROR)
“i >= 0” becomes “i > 0”

⇒ One of these tests should fail!
But all of them pass: the mutant survives.

6.Testing

Extra test kills the mutant
Find.cpp
#include <vector>

int findLast(std::vector<int> x, int y) {
 if (x.size() == 0)
 return -1;
 for (int i = x.size() - 1; i >= 0; i—)
 if (x[i] == y)
 return i;
 return -1;
}

Tests.cpp
#include <vector>
#include <gtest/gtest.h>

#include "find.cpp"

TEST(FindLastTests, noOccurrence) {
 EXPECT_EQ(-1, findLast({1, 2, 42, 42, 63}, 99));
}

TEST(FindLastTests, doubleOccurrence) {
 EXPECT_EQ(3, findLast({1, 2, 42, 42, 63}, 42));
}

TEST(FindLastTests, emptyVector) {
 EXPECT_EQ(-1, findLast({}, 3));
}

40

TEST(FindLastTests, occurrenceOnBoundary) {
 EXPECT_EQ(0, findLast({1, 2, 42, 42, 63}, 1));
}

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

41

6.Testing

Black Box Testing

42

• a.k.a. Functional testing, Testing
in the large
+ Treat a component as a a

“black box” whose behaviour
can be determined only by
studying its inputs and
outputs.

+ Test cases are derived from
the external specification of
the component

+ Derive test cases to maximize
coverage of elements in the
spec, yet minimize number of
test cases

+ Coverage criteria
⇒ all exceptions

Input
Values

Output
Values

Component

Outputs revealing
presence of defects

Ie

Oe

Inputs causing
anomalous
behaviour

6.Testing

Equivalence Partitioning
& Boundary Value Analysis

• 1. Divide input domain in classes of data, according to input condition.
Input condition may require:
+ a range ⇒ 1 valid (in the range) and 2 invalid equivalence classes

+ a value ⇒ 1 valid (= value) and 2 invalid equivalence classes

+ a set ⇒ 1 valid (in the set) and 1 invalid equivalence class

+ a boolean ⇒ 1 valid and 1 invalid equivalence class

• 2. Choose test data corresponding to each equivalence class
+ Normal equivalence partitioning chooses test data at random
+ Boundary Value Analysis choose values at the “edge” of the class, e.g., just above

and just below the minimum and maximum of a range
• 3. Predict the corresponding output and derive test case
• 4. Write test driver

You can partition the output domain as well and apply the same technique

43

6.Testing

Equivalence Partitioning : Example
• Example: Binary search

• Check input partitions:
+ Do the inputs satisfy the pre-conditions?
+ Is the key in the array?

* leads to (at least) 2x2 equivalence classes

• Check boundary conditions
+ Is the array of length 1?
+ Is the key at the start or end of the array?

* leads to further subdivisions
(not all combinations make sense)

44

private int[] _elements;
public boolean find(int key) { ... }
•pre-condition(s)

- Array has at least one element
- Array is sorted

•post-condition(s)
(The element is in _elements and the result is true)
or (The element is not in _elements and the result is false)

6.Testing

Equivalence Partitioning: Test Data

45

Generate test data that cover all meaningful equivalence partitions.

Test Cases Input Output

Array length 0 key = 17, elements = { } FALSE

Array not sorted key = 17, elements = { 33, 20, 17, 18 } exception

Array size 1, key in array key = 17, elements = { 17 } TRUE

Array size 1, key not in array key = 0, elements = { 17 } FALSE

Array size > 1, key is first element key = 17, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key is last element key = 33, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key is in middle key = 20, elements = { 17, 18, 20, 33 } TRUE

Array size > 1, key not in array key = 50, elements = { 17, 18, 20, 33 } FALSE

… … …

5. Design by Contract

+ Pre- and post-conditions are part of the interface of a component.
- Part of black-box testing, not white-box testing

> Do not include assertions in basis-path testing
> Borderline case: include assertions in condition testing

+ Example

+ Equivalence partition with boolean
- = condition testing: 2 inputs cover all conditions
- (test case 1 = non-empty stack / value on the top
- (test case 2 = empty stack / assertion exception)

Design by Contract — Tests

46

public char pop() throws AssertionException {
assert(!this.isEmpty());
return _store[_size--];

}

Repeat
 fro

m

(Chapter
 5. D

esi
gn by

Contra
ct)

6.Testing

Fuzz Testing

47

New slide

Crash / Freeze / …

Fuzz Testing:
A software testing technique used to discover security vulnerabilities

by inputting massive amounts of random data, called fuzz, to the
component or system.

6.Testing

Fuzz-Testing: Open Source Libraries

48

OSS-Fuzz: Continuous Fuzzing for Open Source Software

Trophies
As of August 2023, OSS-Fuzz has helped identify and fix over 10,000
vulnerabilities and 36,000 bugs across 1,000 projects.

https://github.com/google/oss-fuzz

New slide

6.Testing

Fuzz-Testing: REST-API

49

RESTler: first stateful REST API fuzzing tool
https://github.com/microsoft/restler-fuzzer

New slide

• Use-after-free rule. A resource that has been deleted must no
longer be accessible.

• Resource-hierarchy rule. A child resource of a parent
resource must not be accessible from another parent resource.

• …

In an Azure service, we found the following use-after-free violation.
 1) Create a new resource R (with a PUT request).
 2) Delete resource R (with a DELETE request).
 3) Create a new child resource of the deleted resource R
and of a specific type (with another PUT request).
This sequence of requests results in a “500 Internal Server Error”.

In an Office365 messaging service where users can post messages and then reply and edit these, the resource-hierarchy
checker detected the following bug.
 1) Create a first message msg-1 (with a request POST /api/posts/msg-1).
 2) Create a second message msg-2 (with a request POST /api/posts/msg-2).
 3) Create a reply reply-1 to the first message
 (with a request POST /api/posts/msg-1/replies/reply-1).
 4) Edit the reply reply-1 with a PUT request using msg-2 as message identifier
 (with a request PUT /api/posts/msg-2/replies/reply-1).
Surprisingly, the last request in Step 4 returns a “200 Allowed” response while it must have returned a “404 Not Found”
response.

CAPSTONE PROJECT

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

50

6.Testing

Unit Testing

51

+ Why?
- Identify local defects (= within a unit) fast

+ Who?
- Person developing the unit writes the tests.

+ When? At the latest when a unit is delivered to the rest of the team
- No test ⇒ no unit

- Test drivers & stubs are part of the system ⇒ configuration management

- Today fully automated

• *** Write the test first,
+ i.e. before writing the unit.
+ It will encourage you to design the component interface right

Unit under
Test Driver

StubStub Results
Test CasesTest CasesTest CasesTest Cases

Black- &
White-Box

Testing
techniques

6.Testing

Integration Testing

+ Why?
- The sum is more then its parts,

i.e. interfaces (and calls to them) may contain defects too.
+ Who?

- Person developing the module writes the tests.
+ When?

- Top-down: main module before constituting modules
- Bottom-up: constituting modules before integrated module
- In practice: a little bit of both

• ## The distinction between unit testing and integration testing is not that sharp!

52

Module
under Test Driver

ModuleStub Results
Test CasesTest CasesTest CasesTest Cases

Black- &
White-Box

Testing
techniques

Module

6.Testing

Regression Testing
Regression Testing ensures that all things that used to work still work after changes.

• Regression Test
+ = re-execution of some subset of tests to ensure that changes have not caused

unintended side effects
+ tests must avoid regression (= degradation of results)
+ Regression tests must be repeated often (after every change, every night, with each

new unit, with each fix,...)
+ Regression tests may be conducted manually

- Execution of crucial scenarios with verification of results
- Manual test process is slow and cumbersome

* preferably completely automated

• Advantages
+ Helps during iterative and incremental development

+ during maintenance
• Disadvantage

+ Up front investment in maintainability is difficult to sell to the customer

53

6.Testing

Acceptance Testing
• Acceptance Tests

+ conducted by the end-user (representatives)
+ check whether requirements are correctly implemented

- borderline between verification (“Are we building the system right?”)
and validation (“Are we building the right system?”)

• Alpha- & Beta Tests
+ acceptance tests for “off-the-shelves” software

(many unidentified users)
- Alpha Testing

> end-users are invited at the developer’s site
> testing is done in a controlled environment

- Beta Testing
> software is released to selected customers
> testing is done in “real world” setting,

without developers present

54

6.Testing

Question

55

Test Strategies

Unit Testing

What are the differences and similarities between
unit testing and regression testing?

Regression Testing

Optimal Fault Localisation
Automate as much as possible

Exercise small component
(“unit under test”)

Exercise complete system
(“no regressions”)

O
New slide

6.Testing

More Testing Strategies
• Recovery Testing / Resilience Testing

+ Test forces system to fail and checks whether it recovers properly
- For fault tolerant systems

• Stress Testing (Overload Testing)
+ Tests extreme conditions

- e.g., supply input data twice as fast and check whether system fails

• Performance Testing
+ Tests run-time performance of system

- e.g., time consumption, memory consumption
> first do it, then do it right, then do it fast

• Back-to-Back Testing
+ Compare test results from two different versions of the system

- requires N-version programming or prototypes

56

6.Testing

CHAPTER 5 – Testing
• Introduction

+ When, Why, What & Who?
- The V-Model

+ What is “Correct”?
+ Terminology

• Testing Techniques
+ White Box

- basis path, conditions, loops
+ Coverage

- Code Coverage
- MC/DC Coverage
- Mutation Coverage

+ Black Box
- equivalence partitioning

+ Fuzz Testing

• Testing Strategies
+ Unit & Integration Testing
+ Regression Testing
+ Acceptance Testing
+ More Testing Strategies

• Miscellaneous
+ When to Stop?
+ Tool Support

• Agile Testing (DevOps)
+ Flipping the V
+ 4-Quadrants
+ FIT Tables

• Conclusion
+ More Good Reasons

57

6.Testing

When to Stop?
When are we done testing? When do we have enough tests?

• Cynical Answers (sad but true)
+ You’re never done: each run of the system is a new test

> Each bug-fix should be accompanied by a new test
+ You’re done when you are out of time/money

> Include test in project plan
 AND DO NOT GIVE IN TO PRESSURE

> ... in the long run, tests SAVE time

• Statistical Testing
+ Test until you’ve reduced failure rate under risk threshold

* Testing is like an insurance company calculating risks

58

Test Time

Defects
per hour

6.Testing

Tool Support for Testing
• Test Harness

+ Deterministic tests without any user intervention
- all input is generated by stubs/all output is absorbed by stubs
- input/output behaviour is entirely predictable

+ A test-case is a predicate taking one parameter; an output stream
- Answers true (component passed test successfully) or false (component did not

pass the test + report on the output stream)
- For each change in requirements, for each bug report

> Adapt test cases
* Takes a lot of work: more test code than production code

• Code coverage tools
+ Instrument code to see which parts are (not) executed by a test suite

- More coverage ≠ revealing more defects
+ Mutation coverage

- Systematically inject faults and execute test suite

• Capture-playback tools
+ A tool records all UI-actions and their results
+ Possibility to replay recordings and verify results

* Vulnerable to modifications in UI

59

6.Testing

Agile Testing (DevOps)

60

6.Testing

Flipping the V

61

Acceptance Tests
(GUI Tests)

System Tests
Integration Tests

Unit Tests

70%

20%

10%

10%

20%

70%

Test Automation

6.Testing

4 Quadrants

62

Su
pp

or
tin

g
Te

am

Functional Tests
Examples
Story Tests
Prototypes
Simulation

Exploratory Testing
Scenarios
Usability Testing
Acceptance Testing
Alpha / Beta

Unit Tests
Integration Tests

Performance Testing
Load Testing
Security Testing
“ility” Testing

Technology Facing

Business Facing

C
ritique Product

Automated & Manual Manual

Automated Tools

6.Testing

Definition of Done

63

As a <user role>
I want to <goal>
so that <benefit>.

• …
• …
• …

✔ Tested

✔ …

✔ Acceptance tested

Conditions of Satisfaction

Acceptance Test
Scenarios via FIT tables

6.Testing

FIT(*) Tables

64

Browse Music

Play Music

Browse Music

start eg.music.browser

enter library

check total songs 37

Browse Music

enter select 1

check title Akila

check artist Toure Kunda

enter select 2

check title American Tango

check artist Weather Report

check album Mysterious Traveller

check year 1974

Example: Acceptance Test Cases
http://fit.c2.com

Play Music

start eg.music.Realtime

press play

check status loading

pause 2

check status playing

(*) FIT = Framework for Integrated Testing

6.Testing

Tool Support

65

CAPSTONE PROJECT

6.Testing

Test Coverage ≠ Code Coverage

66

uncovered

Input Expected
output

covered
Code Coverage

line, statement, …,
MC/DC, mutation

Requirement Coverage
FIT-tables, FMEA-tables

Test Coverage
Test Plan

• How many of the planned test cases did we specify?
• How many of the specified test cases did we execute?

6.Testing

Conclusion: Correctness & Traceability & …
• Correctness

+ Obviously (are we building the product right)

Besides verifying that the implementation corresponds with
the specification, there are other good reasons to test

• Traceability
+ Naming conventions between tests and requirements

specification is a way to trace back from components
to the requirements that caused their presence

• Maintainability
+ Regression tests verify that post-delivery changes

do not break anything

• Understandability
+ If you are a newcomer to the system, reading the

test code is a good place to see what it actually does
+ Write the tests first, and you’ll be the first user of

your component interface, encouraging you to
make it very readable

67

6.Testing

Summary (i)
You should know the answers to these questions

• What is (a) Testing, (b) a Testing Technique, (c) a Testing Strategy
• What is the difference between an error, a failure and a defect?
• What is a test case? A test stub? A test driver? A test fixture?
• What are the differences and similarities between basis path testing, condition testing

and loop testing?
• How many tests should you write to achieve MC/DC coverage? And multiple condition

coverage?
• Where do you situate alpha/beta testing in the four quadrants model?
• What are the differences and similarities between unit testing and regression testing?
• How do you know when you tested enough?
• What is Alpha-testing and Beta-Testing? When is it used?
• What is the difference between stress-testing and performance testing?

You should be able to complete the following tasks
• Complete test cases for the Loop Testing example (Loop Testing on page 19).
• Rewrite the binary search so that basis path testing and loop testing becomes easier.
• Write a piece of code implementing a quicksort. Apply all testing techniques (basis path

testing, conditional testing [3 variants], loop testing, equivalence partitioning) to derive
appropriate test cases.

• Write FIT test cases for the user stories in you Bachelor Capstone Project
• Apply fuzz testing to the REST-API of your project

68

CAPSTONE PROJECT

6.Testing

Summary (ii)
Can you answer the following questions?

• You’re responsible for setting up a test program. To whom will you assign the
responsibility to write tests? Why?

• Why do we distinguish between several levels of testing in the V-model?
• Explain why basis path testing, condition testing and loop testing complement each

other.
• Why is mutation coverage a better criterion for assessing the strength of a test suite?
• Explain fuzzing (fuzz testing) in your own words.
• Explain what FIT tables are.
• When would you combine top-down testing with bottom-up testing? Why?
• When would you combine black-box testing with white-box testing? Why?
• Is it worthwhile to apply white-box testing in an OO context?
• What makes regression testing important?
• Is it acceptable to deliver a system that is not 100% reliable? Why (not)?
• Explain the subtle difference between code coverage and test coverage.

69

7.Formal Specifications

• Introduction
+ When, Why and What?
⇒ Design by contract & Testing

• Input/Output Specifications
+ Pre- and postconditions +

invariants
+ Theorem proving
+ Weakest Possible Precondition

- Statements, if-statements,
loops, function calls

+ Experience report: JDK sort
method

• State-Based Specifications
+ Statecharts
+ Guards, Nested states
+ Complete, Consistent,

Unambiguous
+ Deduce test cases

• Formal Verification in Practice
• Conclusion

+ Correctness & Traceability

CHAPTER 7 – Formal Specification

1

Chapter completely revised

7.Formal Specifications

Literature

2

Books
+ [Ghez02] In particular, chapters “Specification” and “Verification - Analysis”
+ [Somm05] In particular, chapters “Formal Specification” & “Verification and

Validation”
+ [Pres00] In particular chapters “Formal Methods” & “Cleanroom Software

Engineering“

Articles
+ D. Cofer et al., "A Formal Approach to Constructing Secure Air Vehicle Software," in

Computer, vol. 51, no. 11, pp. 14-23, Nov. 2018, doi: 10.1109/MC.2018.2876051.

+ de Gouw, S., de Boer, F.S., Bubel, R. et al. “Verifying OpenJDK’s Sort Method for
Generic Collections.” Journal of Automated Reasoning 62, 93–126 (2019). doi.org/
10.1007/s10817-017-9426-4

7.Formal Specifications

Your Opinion?
What was the most effective means to achieve “provably secure against cyberattacks”?

✓ 1. Modeling the system architecture and formal verification of its key security and safety
properties.

✓ 2. synthesis of software components using languages that guarantee important security
properties.

✓ 3. use of a formally verified micro-kernel to guarantee enforcement of communication
and separation constraints specified in the architecture.

✓ 4. automatically building the final system from the verified architecture model and
component specifications.

✓ 5. To assess the security of the software produced, we worked with a Red Team of
professional penetration testers who evaluated our software and attempted to identify
vulnerabilities.

3

O

7.Formal Specifications

When Formal Specification?

4

Mistakes are possible (likely!?)
• while transforming requirements into a system

Formal Specification is used for
• (detailed) design

+ specify and verify key properties of system under design
- e.g. State-based Specifications

• formal verification
+ mathematical proof: code is “correct”

- e.g. Input/output specifications

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

7.Formal Specifications

• Software projects rely more and more on “Buy” than on “Build”
+ Cheaper, more reliable, ...
+ Companies focus in-house development on core business

- Buy 3rd party components for functionality outside the core
+ 3rd party components evolve

- require well-specified interface

• Buy vs. Build
+ But if we buy we need to specify

- clearly
- unambiguously
- completely

⇒ Formally

Why Formal Specification?

5

7.Formal Specifications

Why do we Care?

6

It is possible to build high-quality products without formal specifications!
(And it is possible to build low-quality products with formal specifications)

• Fact
+ For most systems it is more cost effective to apply other techniques (reviews,

tests, ...)
- business systems, information systems, ...
- Most software development is in that area

• Fact
+ For some areas, the benefits more than outweigh the costs

- high-risk systems: human lives depend on the software
> (because reliability is such a big issue)

- embedded systems: software controlling hardware
> (because components evolve at different rates)

- standards: defining information exchange protocols
> (because the same specification is reused by a lot of implementations)

Sooner or later you will be confronted with one of these!

Cyber-Physical
Systems}

7.Formal Specifications

What are Formal Specifications?
• What is a ...

+ Specification. A description of desired system properties.
- Preferably the “what” and not the “how”

+ Informal specification. Specification in natural language.
- augmented with figures, tables, examples, scenarios

+ Semi-formal specification. Specification based on a notation with
precise syntax but loose semantics.
- e.g. UML class & sequence diagrams

+ Formal Specification. Specification based on a formal model with
precise syntax & semantics.

7

7.Formal Specifications

Testing and Design by Contract
Formal foundation: formal syntax + formal semantics
• Possible to mathematically prove that a given system satisfies the

specification

A system is correct with respect to its specification !
Note: faults (omissions!) in the specification are still possible

Testing
• Formal specifications ⇒ black-box testing

test-cases: complete coverage, thus highest probability of finding
mistakes

Design by Contract
• Formal specifications ⇒ natural pre- and post conditions

8

7.Formal Specifications

Is this Valid? Output?

9

 <p>

 Hello World

 </p>

 <p>

 Hello World

 </p>

O

7.Formal Specifications

• include logic assertions (pre & post-conditions + invariants) inside an algorithm
•verify termination and correctness via stepwise formal reasoning

Example: Input/Output Specification for a binary search procedure

procedure Binary_search (Key : ELEM ; T: ELEM_ARRAY;
 Found : out BOOLEAN; L: out ELEM_INDEX) ;

Pre-condition
 T’LAST - T’FIRST ≥ 0 and -- not empty
 for_all i, -- universal qualifier
 T’FIRST ≤ i ≤ T’LAST-1, T (i) ≤ T (i + 1) --sorted

Post-condition
 (Found and T (L) = Key) or
 (not Found and
 not (exists i, -- existential qualifier
 T’FIRST ≤ i ≤ T’LAST, T (i) = Key))

A) Input/Output Specifications

10

7.Formal Specifications

Proving Correctness
Goal:

• mathematically prove that post-condition is always satisfied when pre-condition is true

Termination?
• While loop terminates if Found or Bott > Top
• If an element = key exists, Found is set true
• In a loop execution either Found := true, Bott >> or Top <<
• Initially, Top > Bott thus (if Found remains false) eventually Bott > Top

Correctness?
• Loop invariant is “true” on entry to the loop.
• Assertion 2 follows because of the successful test Key = Mid
• Assertion 3 follows because the array is ordered. If T (Mid) < Key all values up to T

(Mid) must also be less than the key
• Assertion 4 follows by substituting Bott-1 for Mid (if T(mid) != Key)
• Assertions 5 and 6. Similar argument to 3 and 4
• After loop execution, either the key has been found or there is no value in the array

which has been searched which matches the key. However, Bott > Top so all the array
has been searched

⇒ Therefore, the binary search routine code conforms to its specification

11

7.Formal Specifications

Intermediate Assertions
01. Bott := T’FIRST; Top := T’LAST ;
02. L := (T’FIRST + T’LAST) mod 2; Found := T(L) = Key;
03. -- 1 . ASSERT (Found and T(L) = Key) or ((not Found)
04. -- and (not Key in T(T’FIRST..Bott-1, Top+1..T’LAST)));
05. while Bott <= Top and not Found loop
06. Mid := (Top + Bott) / 2;
07. if T(Mid) = Key then
08. Found := true; L := Mid;
09. -- 2. ASSERT Key = T(Mid) and Found;
10. elsif T(Mid) < Key then
11. -- 3. ASSERT not Key in T(T’FIRST..Mid);
12. Bott := Mid + 1;
13. -- 4. ASSERT not Key in T(T’FIRST..Bott-1);
14. else
15. -- 5. ASSERT not Key in T(Mid..T’LAST);
16. Top := Mid - 1;
17. -- 6. ASSERT not Key in T(Top+1..T’LAST);
18. end if;
19. end loop;

12

7.Formal Specifications

Automated Theorem Provers

13

https://dafny.org/

Compiler support to prove that
when pre-condition is true post-condition will (should) always be satisfied.

(Sometimes counter examples when proof does not hold.)

ethereum

VeriFast
solidity

5. Design by Contract

Hoare Logic (revisited)

14

Let:
 S series of statements
 {P} and {Q} are properties

{P} is the precondition
{Q} is the postcondition

Then:
 {P} S {Q}
 is a Hoare Triple meaning
 “Any execution of A starting in a state where P holds,
 must should terminate in a state where Q holds”

Example: ∀ x positive Integer
 {x = 5} x := x * 2 {x > 0}

Adapted
 fro

m

Chapter
 5. D

esi
gn by

Contra
ct

7.Formal Specifications

Partially Correct / Totally Correct
Then:
 {P} S {Q}
 is a Hoare Triple meaning
 “Any execution of A starting in a state where P holds,
 should terminate in a state where Q holds”

The implementation of S with respect to its specification is …

• Partially correct.
+ Assuming the precondition is true just before the function executes,

then if the function terminates, the postcondition is true.
- Infinite loops, raising exceptions, … is allowed

• Totally correct.
+ Again assuming the precondition is true before function executes, the

function is guaranteed to terminate and when it does, the
postcondition is true.

15

5. Design by Contract

Let {P1} and {P2} be conditions expressed via predicates

• {P1} is stronger then {P2} iff
+ {P1} ≠ {P2}
+ {P1} ⇒ {P2}

• {P1} is weaker then {P2} iff
+ {P1} ≠ {P2}
+ {P2} ⇒ {P1}

• example
+ {x = 5} x := x * 2 {x > 0}
+ {x = 5} x := x * 2 {x > 5 and X < 20}

- {x > 5 and X < 20} is stronger than {x > 0}
> stronger is better for a post-condition

(it is more precise about the outcome)

Stronger (and Weaker)

16

Adapted
 fro

m

Chapter
 5. D

esi
gn by

Contra
ct

5. Design by Contract

Consider the Hoare triple
{P} S {Q}

if ∀ Q’ such that {P} S {Q’}, Q ⇒ Q’

then Q is the strongest postcondition of S with respect to P

Denoted with sp(S, Q)

Strongest Postcondition

17

5. Design by Contract

• example
+ {x = 5} x := x * 2 {x > 0}
+ {x = 5} x := x * 2 {x > 5 and X < 20}

What is the strongest postcondition for this Hoare triple?

+ {x = 5} x := x * 2 {……………………}

Quizz

18

O

5. Design by Contract

Consider the Hoare triple
{P} S {Q}

When we know {P} and S we can deduce sp(S,P)

For assignment
{P} x:= E {x = E}

Assignment with operation
{x+y = 5} x := x + z {x’ + y = 5 and x = x’ + z}

x’ represents the “old” value of x, thus before S executes

Deducing the Strongest Postcondition

19

5. Design by Contract

Weakest Precondition
For proving correctness it makes more sense(*) to calculate the inverse:
• Given a statement S and a postcondition Q,

+ what is the weakest possible precondition?

Consider the Hoare triple
{P} S {Q}

If ∀ P’ such that {P’} S {Q}, P’ ⇒ P, then

P is the weakest precondition of S with respect to Q.

Denoted with wp(S, Q)

(*) Why does it make more sense to find the weakest possible precondition?
• It represents the least amount of work to prove correctness
• Too strong a pre-condition may imply that we cannot prove correctness

20

5. Design by Contract

Weakest Precondition (assignment)
Consider the Hoare triple

{P} x:= E {Q}

Then the weakest precondition means that we should
• replace each occurrence of x in Q with E

- denoted with [E/x] Q
• and then substitute in the precondition.

Thus {[E/x] Q} x := E; {Q}

21

O {………} x := x - 2; {x > 0}
Fill in the weakest
precondition for {………}

5. Design by Contract

Weakest Precondition (multiple statements)
Consider the Hoare triple

{P} S1; S2; … Sn {Q}

Then the weakest precondition is deduced backwards.
{P} = wp(S1; S2; … Sn, Q)

= wp(S1; S2; …Sn-1, wp(Sn, Q))
= wp(S1, wp(S2, wp(… wp(Sn, Q)…)))

22

{P} x:= z + 1; y:= x + y {y > 5}

 step 1: wp(y := x + y, y > 5)
[x + y / y] y > 5
(x + y > 5)

 step 2: wp(x := z + 1, x + y > 5)
[………… / …………] x + y > 5
(……………………… > 5)

O
Fill in the weakest
precondition for {P}

5. Design by Contract

Weakest Precondition (if statement)
Consider the Hoare triple

{P} if C then S else T; {Q}

Then the weakest precondition means that we should
• calculate the result depending on C being true or false
• and then substitute in S or T branch.

Thus wp (if C then S else T, Q)
= (c ⇒ wp(S, Q)) ⋀ (¬c ⇒ wp(T, Q))

= (c ⋀ wp(S, Q)) ⋁ (¬c ⋀ wp(T, Q))

23

O {………} if (x> y) then z := x else z := y; {z = max(x,y)}
Fill in the weakest
precondition for {………}

Legend
⋀ logical and
⋁ logical or
¬ negation (not)

5. Design by Contract

Loops
Consider the Hoare triple

{P} while C do S; {Q}

Proof by induction - introduce (i) loop invariant and (ii) loop variants
• (i) loop invariant I — what will ensure the postcondition?

+ The invariant is initially true (base case): P ⇒ I

+ Each loop step preserves the invariant (inductive step): {I ⋀ C} S {I}
+ After the loop terminates the postcondition is true: {¬C ⋀ I) ⇒ Q

• (ii) loop variant — what guarantees that the loop terminates?
= a monotonically decreasing function integer-value function v

+ a strictly decreasing with every step: {I ⋀ C ⋀ v = V} S {I ⋀ v < V}
+ when v reaches zero the loop terminates: {I ⋀ v ≤ 0} ⇒ ¬C

24

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

in pseudo code
function int useless_loop(x int) {

 require (………………);

 while (x > 0)do x := x - 1;

 ensure (x == 0);

}

Quizz

25

O

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

• establish loop invariant I where {I ⋀ C} S {I}
+ {I ⋀ (x > 0)} x := x -1 {I}

• look for the weakest pre-condition
+ I ⋀ (x > 0) = wp(x := x -1, I)
+ I ⋀ (x > 0) = [x - 1 / x] I

• Which I would resolve the above?
+ I = …………………
+ ………………

• Does it terminate the loop? {¬C ⋀ I) ⇒ Q

+ {¬C ⋀ ……………) ⇒ x = 0

Quizz — step 1 - loop invariant

26

O

5. Design by Contract

What is the weakest precondition for the following loop?

+ {………………} while (x > 0) do x := x-1; {x = 0}

• establish loop variant so that {I ⋀ C ⋀ v = V} S {I ⋀ v < V}
+ {(x ≥ 0) ⋀ (x > 0) ⋀ v = V} x := x-1; {x ≥ 0 ⋀ v < V}

• choose x for v
+ {(x ≥ 0) ⋀ (x > 0) ⋀ x = V} x := x-1; {x ≥ 0 ⋀ x < V}

• substitute x-1 for x in the postcondition; always true?
+ ……………………
+ ……………………

• when v reaches zero the loop terminates: {I ⋀ v ≤ 0} ⇒ ¬C

+ {(x ≥ 0) ⋀ x ≤ 0} ⇒ ¬(x > 0)

+ …………………
+ …………………

Quizz — step 2 - loop variant

27

O

5. Design by Contract

Function (Procedure) Calls
Consider the Hoare triple

{P} Sprev; F(…); Snext; {Q}
where F is a function call / procedure call / method invocation / …

> F is considered a black box
> We need a pre- and postcondition for F

* Must be provided by the developer of F

Postcondition for F? = weakest precondition for Snext.
Postcondition for Sprev? = strongest precondition for F.

28

7.Formal Specifications

Example

29

7.Formal Specifications

Your Opinion?
What do you think happened with the bug report on the broken
Java.utils.Collection.sort ()?

The suggested fix was correctly incorporated; the sort method now is
provably correct.

They fixed the symptom and not the root cause; the risk is reduced but
still not correct.

The bug report was ignored because the fault could not be reproduced
(i.e. "Works for me”).

The bug report was closed without fix, because it was a low risk bug.

30

O

7.Formal Specifications

What actually happened …
We favored the second suggestion which is to formalize the invariant as originally intended
and to fix the code of the method mergeCollapse that is responsible for reestablishing the
invariant. We were able to formally and mechanically prove that this fixed version of the
algorithm is correct in the sense that the stack lengths are sufficient and no
ArrayIndexOutOfBoundsException is thrown. We describe this fix and its verification in Sect.
4.3 below.

In the aftermath of our discovery, it turned out that the bug was present in several
implementations of TimSort. Besides in (Open)JDK, the bug was present in

(1) its original Python implementation,
(2) Android,
(3) an independent Java implementation used by Apache Lucene, as well as
(4) a Haskell implementation.

All of these projects fixed the bug within a short time frame. The OpenJDK project was the
only one where the bug was fixed by just increasing the allocated array lengths, which is in
our opinion sub-optimal, and there is no machine checked proof of that fix. All other
projects implemented our second suggestion and fixed the underlying problem.

Cited from … (with slight lay-out changes)
• de Gouw, S., de Boer, F.S., Bubel, R. et al. “Verifying OpenJDK’s Sort Method for Generic Collections.” Journal of Automated

Reasoning 62, 93–126 (2019). doi.org/10.1007/s10817-017-9426-4

31

(a) suggested fix was correctly incorporated
(b) fixed the symptom not the root cause

7.Formal Specifications

B) State-Based Specifications

32

Typically based on the notion of finite state machines
• describes the sequence of states a system is supposed to go through

… in response to external stimuli (a.k.a. events)

StateCharts
• widely used: present in UML
• commonly used in real-time systems

• Definitions
+ state = a condition an object satisfies

(i.e. a predicate computing its result with the
attribute values of the object)

> The state can be observed from the outside !

+ transition = a change of state triggered by an event, condition or time

7.Formal Specifications

Sequence Diagrams

33

a) happy day scenario: pop of
a non-empty stack

• What are acceptable message sequences for a stack?
• What is the union of all possible scenarios?
⇒ A statechart allows to specify all valid (also all invalid) scenarios

b) secondary scenario: pop of
an empty stack

Stack

push(9)

isEmpty ()
pop()

9

Stack

isEmpty ()
pop()

exception

7.Formal Specifications

push(value)
empty loaded

error

pop()

Statechart for a Stack

34

start marker:
object starts
in this state

when in
“empty” state,
only
acceptable
message is
“push”

by consuming
the “push()”
event, the
copy will
switch to
other state

⇒

postcondition
for push

when in
“empty” state,
pop returns an
error

⇒ precondition

for pop

no event
above
transition, thus
fires
automatically

termination

What about a pop() on a loaded stack?

7.Formal Specifications

Guarded Transition

35

2 pop() transitions
leaving from
“loaded”
⇒ Indeterministic?

What about destructors on empty/loaded state?

Deterministic because of
guard expressions
[size() ...]

Constructor
& Destructor

empty loaded

error

pop()

Stack()

~Stack()

push(value)

pop() [size()=1]

/ return top()

pop() [size()>1]

/ return top()

7.Formal Specifications

Nested State

36

State with Nested
States

shorthand for multiple
transitions with same
events and target
states

empty loaded

error

pop()

initialized

~Stack()

push(value)

pop() [size()=1]

/ return top()

pop() [size()>1]

/ return top()

Stack()

7.Formal Specifications

Quiz

37

switch-on

…………

red

greenyellow

O Complete the Traffic Light Statechart

…………

…………

…………

7.Formal Specifications

Consistent / Complete / Unambiguous

38

When is a state-based specification …

• Complete
+ every event/state pair has a transition

- Create table: events (incl. guards) x state
one cell contains target state

- all cells should have a target state

• Consistent
+ every state is reachable from initial state

& final state is reachable from every other state
- Breadth-first spanning tree; root is initial state
- all leaf nodes of the graph should be terminal state

• Unambiguous (= deterministic)
+ same event (incl. guard) does not appear on more than one transition

leaving any given state
- Verify using table created in completeness

7.Formal Specifications

Deducing Test Cases

39

Test cases
+ cover all state transitions at least once (*)

• define a predicate for each state,
+ which answers whether object is in that state

- (Thus initialized() — empty() — loaded() — error())

• test-cases must cover the breadth-first spanning tree
+ construct with same table used to verify completeness

- rows and columns = events (incl. guards) x state
cell contains target state

(*) Stronger coverage is possible:
- cover all sequences of state transitions of length n
- force all guards
- force all guards with boundary values
- …

7.Formal Specifications

Test cases for Statechart “Stack” (1/2)

40

empty

error
error

initial

error

error

terminated~Stack terminatedterminated
error (??)errorpop() [size()>1] loaded

pop() [size()=1] error (??)error empty
loadedpush error (??)loaded

error
errorloaded (??)

loaded
empty (??)
empty

Stack()

Stack()
empty

~Stack()

error
pop()

loaded
push(1)

~Stack()

~Stack()

pop()

push(2)

push(2)

empty
~Stack()

loaded
~Stack()

loaded loaded
~Stack()pop()

7.Formal Specifications

Test cases for Statechart “Stack” (2/2)
s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
s.~Stack();

s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
pop(s);
assertTrue(error(s));
s.~Stack();

s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
push(s, 1);
assertTrue(loaded(s));
s.~Stack();

s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
push(s, 1);
assertTrue(loaded(s));
pop(s);
assertTrue(empty(s));
s.~Stack();

s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
push(s, 1);
assertTrue(loaded(s));
push(s, 2);
assertTrue(loaded(s));
s.~Stack();

s := Stack();
assertTrue(initialised(s));
assertTrue(empty(s));
push(s, 1);
assertTrue(loaded(s));
push(s, 2);
assertTrue(loaded(s));
pop(s);
assertTrue(loaded(s));
s.~Stack();

41

7.Formal Specifications

State-based Specifications Revisited

42

State-based Specifications

• Are particularly suitable for specifying “acceptable” message sequences
+ unify effect of all possible scenarios on one class in one statechart
+ “unacceptable” implies precondition
+ state change implies postconditions

> Design by Contract

• Specify acceptable message sequences as paths through a graph
> cover all paths
> Path Testing

7.Formal Specifications

Example (advanced): Traffic Light (1/2)

43

switch-on

switch-off

red

greenyellow
timer-event
(1,5 min)

timer-event
(0,5 min)

timer-event
(2 min)

O What is the starting state of this statechart?
Is this what you want?

7.Formal Specifications

Example (advanced): Traffic Light (2/2)

44

• safety: “something bad never happens”
• liveness: “something good eventually happens”
• fairness: “if something may happen frequently, it will happen” } formal verification

+ simulation
+ testing

7.Formal Specifications

Formal Verification in Practice (1/2)

45

SDV was applied later in the cycle after
all other tools, yet found 270 real bugs
in 140 WDM and WDF drivers.

A lightweight model of the C++ code and the Z specification of
the component was manually developed in the theorem prover
PVS. As a result, some essential mismatches between
specification and code were identified.

7.Formal Specifications

Formal Verification in Practice (2/2)

46

A tool to detect bugs in Java and C/C+
+/Objective-C code before it ships

We are committed to helping you achieve the highest levels
of security in the cloud. We’ve developed automated
reasoning tools that use mathematical logic to answer
critical questions about your infrastructure to detect
misconfigurations that could potentially expose your data.
We call this provable security because it provides higher
assurance in the security of the cloud and in the cloud.

6.Testing

The Verification Landscape

47

Are we building the product right?

Formal
Specifications

Simulation Testing

Copied

06.Software Testing

7.Formal Specifications

• Correctness
+ Are we building the system right?

- Formal specifications allow to verify presence of
desired properties

* Mathematical proof
* Semi-automatic generation of test-cases

- Faults (omissions!) in the specification are still possible

+ Are we building the right system?
- (Some) formal specifications can be simulated / animated

* May play the role of a prototype
* Counterexamples to illustrate corner case behaviour

• Traceability
+ Requirements ⇔ System?

- Formal specification is an intermediate representation
* Traceability depends on usage and discipline

Correctness & Traceability

48

7.Formal Specifications

Summary(i)

49

You should know the answers to these questions
• Why is an UML class diagram a semi-formal specification?
• What is an automated theorem prover?
• What is the distinction between “partially correct” and “totally correct”?
• Give the mathematical definition for the weakest precondition of Hoare triple {P} S {Q}
• Why is it necessary to complement sequence diagrams with statecharts?
• What is the notation for the start and termination state on a state-chart? What is the

notation for a guard expression on an event?
• What does it mean for a statechart to be

(a) consistent, (b) complete, and (c) unambiguous?
• How does a formal specification contribute to the correctness of a given system?

You should be able to complete the following tasks
• Use a theorem prover (Daphny) to prove that a given piece of code is correct.
• Create a statechart specification for a given problem.
• Given a statechart specification, derive a test model using path testing.

8. Domain Modelling

Summary (ii)

40

• Can you answer the following questions?
+ How does domain modeling help to validate and analyze the requirements?
+ What’s the problem with “god classes”?
+ Why are many responsibilities, many collaborators and deep inheritance hierarchies

suspicious?
+ Can you explain how role-playing works? Do you think it helps in creative thinking?
+ Can you compare Use Cases and CRC Cards in terms of the requirements

specification process?
+ Do CRC cards yield the best possible class design? Why not?
+ Why are CRC cards maintained with paper and pencil instead of electronically?
+ What would be the main benefits for thinking in terms of “system families” instead of

“one-of-a-kind development? What would be the main disadvantages?
+ Can you apply scrum to develop a product line? Argue your case.

8. Domain Modelling

CHAPTER 8 – Domain Modelling

1

• Introduction
+ When, Why, How, What

• CRC-Cards
+ Problem Decomposition

- Functional vs. Object-Oriented
- Classes, Responsibilities & Collaborations, Hierarchies

+ Group work
- Creative thinking
- Brainstorming & Role-playing

• Product Lines
+ Commonalities and Variations
+ Feature Diagrams
+ Linux as a product line
+ “clone and own”

- Benefits drawbacks
- Github

• Conclusion
+ Correctness & Traceability

8. Domain Modelling

Literature (1/2)

2

• Books
+ [Ghez02], [Somm05], [Pres00]

- Chapters on Specification / (OO)Analysis/ Requirements + Validation

• CRC Cards
+ [Booc94] Object-oriented analysis and design: with applications, Grady Booch,

Addison-Wesley, 1994
> A landmark book on what object-oriented decomposition is about.

+ [Bell97] The CRC Card Book, David Bellin and Susan Suchman Simone, Addison-
Wesley, 1997.
- An easy to read and practical guide on how apply CRC cards in brainstorm sessions

with end users.

• Product Lines
+ [Pohl2005] Software Product Line Engineering: Foundations,

Principles and Techniques, 2005. Klaus Pohl, Günter Böckle,
Frank J. van der Linden
- An overview of all aspects of product line engineering

(from domain modelling over testing to organisational aspects)

8. Domain Modelling

Literature (2/2)

3

• [Travis2019] “How the Boeing 737 Max Disaster Looks to a Software
Developer" Gregory Travis. IEEE Spectrum, April 2019.
+ A sad example on how various political forces around a product ultimately leads to

disastrous consequences

Product Lines
• “Product Line Hall of Fame”

+ http://splc.net/fame.html

• “Software Product Lines Online Tools”
+ http://www.splot-research.org/

• [She10] She, Steven; Lotufo, Rafael; Berger, Thorsten; Wasowski, Andrzej; Czarnecki,
Krzysztof. The Variability Model of The Linux Kernel. Workshop on Variability Modelling
of Software-intensive Systems (VAMOS 2010)
+ Illustrating large scale variability

http://splc.net/fame.html
http://www.splot-research.org/

8. Domain Modelling

When Domain Modeling?

4

A requirements specification must be validated
• Are we building the right system?

A requirements specification must be analyzed
• Did we understand the problem correctly?

= Are we modeling the problem domain adequately?

8. Domain Modelling

Why Domain Modeling?

5

The 30++ years of software development taught us one fundamental lesson...
• The customers don’t know what they want!
• And if they do, they will certainly change their mind.

Function

Time

User needs System
capability

t0 t1 t2 t3 t4

8. Domain Modelling

• Develop an information system for a
transportation company in 1860.
+ “Pony Express” Use Cases

- refresh horse
- replace whip
- clean pistol

• 100 years later, “Pony Express” is still
operating in the transportation business
…
+ How about the Use Cases?

- refresh horse
 ⇒ add fuel

- replace whip
 ⇒ perform repair

- clean pistol
 ⇒ include protection

Why Use Cases are not Sufficient?

6

8. Domain Modelling

Domain Models help to anticipate changes, are more robust.
• Focus on the what (goal), not on the how (procedure)!

How Domain Modeling?

7

How? Open door, break lock, …
… jump over the wall

What? Get on the other
side of wall.

8. Domain Modelling

What is Domain Modeling?

8

• Examples
+ CRC Cards

- Model the concepts in the problem domain in object-oriented terms.
> Classes and Inheritance

+ Feature Diagrams
- Model the requirements of a family of systems

> Commonalities and variations

Model of Problem Domain
• Requirements Model

+ Focus on WHAT

vs. Model of Solution Domain
• Design Model

+ Focus on HOW

8. Domain Modelling

CRC = Class-Responsibility-Collaborations

What are CRC Cards?

9

+ a short description of the purpose of the class on the back of the card

• CRC Cards
+ compact, easy to manipulate, easy to modify or discard!
+ easy to arrange, reorganize
+ easy to retrieve discarded classes

• Usually CRC cards are not maintained electronically
+ May be used by computer illiterates

Class: Name

superclass: list of superclasses
subclass: list of subclasses

responsibility 1
responsibility 2
…

collaborations required to achieve responsibility1
collaborations required to achieve responsibility2
…

8. Domain Modelling

Problem Decomposition (1/2)

10

Object-Oriented Decomposition Functional Decomposition

Decompose according to the objects a system
must manipulate.
⇒ several coupled “is-a” hierarchies

Decompose according to the functions a
system must perform.
⇒ single “subfunction-of” hierarchy

Example: Order-processing software for mail-order company

Order
 - place
 - price
 - cancel
Customer
 - name
 - address
LoyalCustomer
 - reduction

OrderProcessing
 - OrderMangement
 • placeOrder
 • computePrice
 • cancelOrder
 - CustomerMangement
 • add/delete/update

8. Domain Modelling

Problem Decomposition (2/2)

11

Object-Oriented Decomposition Functional Decomposition

 ⇒ distributed responsibilities ⇒ centralized responsibilities

Example: Order-processing software for mail-order company

Order::price(): Amount
 {sum := 0
 FORALL this.items do
 {sum := sum + item. price}
 sum:=sum-(sum*customer.reduction)
 RETURN sum
 }

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }Customer::reduction(): Amount

 { RETURN 0%}
LoyalCustomer::reduction(): Amount
 { RETURN 5%}

8. Domain Modelling

Quizz

12

Object-Oriented Decomposition Functional Decomposition

Example: Order-processing software for mail-order company

Order::price(): Amount
 {sum := 0
 FORALL this.items do
 {sum := sum + item. price}
 sum:=sum-(sum*customer.reduction)
 RETURN sum
 }

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }Customer::reduction(): Amount

 { RETURN 0%}
LoyalCustomer::reduction(): Amount
 { RETURN 5%}

O Which one do you prefer? Why?

8. Domain Modelling

• Functional Decomposition
+ Good with stable requirements or single function (i.e., “waterfall”)
+ Clear problem decomposition strategy
+ However

- Naive: Modern systems perform more than one function
> What about “produceQuarterlyTaxForm”?

- Maintainability: system functions evolve ⇒ cross-cuts whole system

> How to transform telephone ordering into web order-processing?
- Interoperability: interfacing with other system is difficult

> How to merge two systems maintaining customer addresses?

• Object-Oriented Decomposition
+ Better for complex and evolving systems
+ Encapsulation provides robustness against typical changes

Functional vs. Object-Oriented

13

How to find
the objects?

8. Domain Modelling

God Classes

14

getName
getAddress

Participant

isLoyalCustomer

Customer
Shipping
Company

placeOrder
computePrice
registerComplaint
cancelOrder
returnProduct
sendCatalogue

OrderManager

• ... or how to do functional decomposition with an object-oriented syntax

• Symptoms
+ Lots of tiny “provider” classes, mainly providing accessor operations

- most of operations have prefix “get”, “set”
+ Inheritance hierarchy is geared towards data and code-reuse

- “Top-heavy” inheritance hierarchies
+ Few large “god” classes doing the bulk of the work

- suffix “System”, “Subsystem”, “Manager”, “Driver”, “Controller”

8. Domain Modelling

Responsibility - driven Design in a Nutshell

15

• Responsibility-driven design is the analysis method using CRC Cards.

• How do you find objects and their responsibilities?
+ Use nouns & verbs in requirements as clues.

- Noun phrases lead to objects
- Verb phrases lead to responsibilities

+ Determine how objects collaborate to fulfill their responsibilities.
- To collaborate objects will play certain roles

+ Why is this important?
- Objects lead to classes
- Responsibilities lead to operations
- Collaborations & Roles lead to associations

+ Is it that simple?
- No requires creative thinking!

8. Domain Modelling

Good problem decomposition requires creative thinking.

Creative Thinking

16

2 string puzzle
Within one large empty room, there are two long ropes are
hanging from the ceiling. The ropes are too far away to reach
the one while holding the other. A woman comes in holding a
pair of scissors and she ties the ropes together.
How did she achieve this?

See Communications of the ACM, Vol. 43(7), July 2000, p. 113

O

8. Domain Modelling

Identifying Objects

17

+ Start with requirements specification/scope description/....
+ 1. Look for noun phrases:

- separate into obvious classes, uncertain candidates, and nonsense
+ 2. Refine to a list of candidate classes. Some guidelines are:

- Model physical objects — e.g. disks, printers
- Model conceptual entities — e.g. windows, files
- Choose one word for one concept —

what does it mean within the domain?
- Be wary of adjectives — does it really signal a separate class?
- Be wary of missing or misleading subjects — rephrase in active

voice
- Model categories of classes — delay modeling of inheritance
- Model interfaces to the system — e.g., user interface, program

interfaces
- Model attribute values, not attributes —

e.g., Customer vs. Customer Address

8. Domain Modelling

Identifying Objects: Example (1/2)

18

“We are developing order-processing software for a mail-order
company called National Widgets, which is a reseller of products
purchased from various suppliers.
• Twice a year the company publishes a catalogue of products,

which is mailed to customers and other interested people.
• Customers purchase products by submitting a list of

products with payment to National Widgets. National Widgets
fills the order and ships the products to the customer’s
address.

• The order-processing software will track the order from the
time it is received until the product is shipped.

• National Widgets will provide quick service. They should be
able to ship a customer’s order by the fastest, most efficient
means possible.”

8. Domain Modelling

Identifying Objects: Candidate Classes (2/2)

19

Nouns & Synonyms Candidate Class Name

software -: don’t model the system

mail-order company, company, reseller Company (?: model ourselves)

products Product (+: core concept)

suppliers Supplier (+: core concept)

catalogue of products Catalogue (+: core concept)

customers, interested people Customer (+: core concept)

list of products, order, customer’s order Order (+: core concept)

payment Payment (+: core concept)

customer’s address Address (?: customer’s attribute)

time it is received -: attribute of Order

time product is shipped -: attribute of Order

quick service -: attribute of Company

*** Expect the list to evolve as analysis proceeds.
• Record why you decided to include/reject candidates
• Candidate Class list follows configuration management & version control

8. Domain Modelling

Responsibilities/Collaborations

20

• What are responsibilities?
+ The public services an object may provide to other objects,

- the knowledge an object maintains and provides
- the actions it can perform

+ ... not the way in which those services may be implemented
- specify what an object does, not how it does it
- don’t describe the interface yet, only conceptual responsibilities

• What are collaborations?
+ other objects necessary to fulfill a responsibility

- when collaborating these other objects play a role
- to play this role, other objects must have certain responsibilities

+ empty collaborations are possible
- can you argue this responsibility in terms of the class description?

8. Domain Modelling

• To identify responsibilities (and the associated collaborations):
+ Scenarios and Role Play.

- Perform scenario walk-throughs of the system where different persons “play” the
classes, thinking aloud about how they will delegate to other objects.

+ Verb phrase identification.
- Similar to noun phrase identification, except verb phrases are candidate

responsibilities.
+ Class Enumeration.

- Enumerate all candidate classes and come up with an initial set of responsibilities.
+ Hierarchy Enumeration.

- Enumerate all classes in a hierarchy and compare how they fulfill responsibilities.

• Design guideline(s)
+ *** Distribute responsibilities uniformly over classes

(Classes with more than 12 responsibilities are suspicious)
+ *** A class should have few collaborators

(Classes with more than 8 collaborators are suspicious)

Identifying Responsibilities

21

8. Domain Modelling

Hierarchies

22

+ Look for “kind-of” relationships
- Liskov Substitution principle:

You may substitute an instance of a subclass for any of its superclasses.
- Does the statement “every subclass is a superclass” make sense

> “Every Rectangle is a Square” vs. “Every Square is a Rectangle”
+ Factor out common responsibilities

- Classes with similar responsibilities may have a common superclass
+ “kind-of” hierarchies are different from “part-of” relationships

- Often, the whole will share responsibilities with its part
(suggesting “kind-of” instead of “part-of”)

+ Name key abstractions
- Not finding a proper name for the root is a symptom for an improper “kind-of”

hierarchy Design guideline(s)

• Design guideline(s)
+ *** Avoid deep and narrow hierarchies

Classes with more than 6 superclasses are suspicious

8. Domain Modelling

Brainstorming

23

• Team
+ Keep small: five to six persons
+ Heterogeneous:

- 2 domain-experts (involved in day-to-day work; not management)
- 2 analysts (build connections, abstractions and metaphors)
- 1 experienced OO-designer (programmer ⇒ involvement)

- 1 facilitator (chairs the meeting)

• Tips
+ All ideas are potentially good (i.e., may trigger the creative thinking)
+ No censorship (even on yourself), no rejection
+ Think fast, ponder later
+ Produce as many ideas as possible
+ Give every voice a turn
+ round-robin (with an optional “pass” policy)

• Design Guideline(s)
 ** Use white-boards and paper CRC Cards for smooth communication.

8. Domain Modelling

Role-playing

24

• Role-playing is a way to achieve common understanding between all
parties involved (domain experts, analysts, ...)

• Basic Steps
+ 1. Create list of scenarios
+ 2. Assign Roles
+ 3. Each member receives a number of CRC Cards
+ 4. Repeat
+ 4.1 Rehearse Scenarios

- Script = Responsibilities on CRC Cards
+ 4.2 Correct CRC Cards and revise scenarios

- Rehearsals will make clear which parts are confusing
+ 4.3 Until scenarios are clear
+ 5. Perform final scenario

• Guideline(s)
*** For tips and techniques concerning role-play, see [Bell97]

8. Domain Modelling

Role-playing: Example

25

USE CASE 5 Place Order

Goal in Context Customer issues request by phone to National Widgets; expects goods
shipped and to be billed.

Class: Customer

provideInfo CustomerRep

Class: CustomerRep

acceptCall Customer

Class: Catalogue Class: Product

Class: …………………… Class: ………………

O

8. Domain Modelling

Use cases versus CRC-Cards

26

• Use cases are a requirements specification technique.
• CRC Cards are a requirements validation technique.

Use cases & CRC cards complement each other!

Use-Case

Goal

Use-Case

Scenario

CRC-Cards

8. Domain Modelling

Families of Systems

27

handcrafting
one-of-a-kind

solutions

assembling
components

using product lines

Single System System Families

Examples from “Product Line Hall of Fame”
(http://splc.net/fame.html)

• Mobile phones (Nokia) [1 new phone every day!]
• Television sets, medical systems (Philips)
• Gasoline Systems Engine Control (Bosch)
• Telephone switches (Philips, Lucent)
• …

8. Domain Modelling

Feature Models

28

• Feature
+ a prominent or distinctive user-visible aspect, quality, or characteristic of a software

system or system

• Feature Models:
+ define a set of reusable and configurable requirements for specifying the systems in a

domain
+ = a model that defines features and their dependencies, typically in the form

of a feature diagram
+ = defines the commonalities and variations between the members of a

software product line

• Feature Diagram
+ = a visual notation of a feature model, which is basically an and-or tree.

(Other extensions exist: cardinalities, feature cloning, feature attributes, …)

• Product Line
+ = a family of products designed to take advantage of their common aspects and

predicted variabilities

8. Domain Modelling

What is a Feature?

29

• Feature
+ a prominent or distinctive user-visible aspect, quality, or characteristic

of a software system or system

List the 3 most
important features of

your phone. O

8. Domain Modelling

Feature Diagram: Example

30

Car

Transmission Horsepower Air Conditioning

Manual Automatic

Mandatory
Features

Optional
Features

Alternative
Features

Composition Rule:
“Air Conditioning” requires

“horsepower” > 100

Rationale:
“Manual” more fuel efficient.

8. Domain Modelling

Linux as a Product Line

31

xconfig configurator

© [She10] She, Steven; Lotufo, Rafael; Berger, Thorsten; Wasowski, Andrzej; Czarnecki, Krzysztof. The Variability Model of
The Linux Kernel. Workshop on Variability Modelling of Software-intensive Systems (VAMOS 2010)

The 2.6.28.6 version of the kernel contains
more than 5000 features!

8. Domain Modelling

“clone and own”

32

Variant-1

Variant-2

Variant-3

Variant-4

Cloning an existing product variant, then modifying it to add and/or remove
some functionalities, in order to obtain a new product variant.

8. Domain Modelling

The good, the bad and the ugly

33

[Dubi13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czarnecki. 2013. An
Exploratory Study of Cloning in Industrial Software Product Lines. In Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering (CSMR '13). IEEE Computer Society, Washington, DC, USA, 25-34.

Advantages Disadvantages

Efficiency
- Saves time and reduces costs
- Provides independence
- Readily available

Overhead
- Propagating changes
- Adapting the clone is difficult
- Repetitive tasks are common

- Bug fixing
- Which variant to clone from?

Barriers

Short-Term Thinking
- Lack of Planning
- Lack of Resources
- Unawareness

(Lack of) Governance
- Lack of reuse tracking
- Lack of organizational roles and processes
- Lack of measurement

8. Domain Modelling

Social Coding Platforms (git based)

34

8. Domain Modelling

Social Forks versus Variant Forks

35

Social Fork

Social Fork

Original project

Social Forks Variant Forks

Variant 2

Original project

Variant 1

Social Fork

Social Fork

Pull
request

1. Fork is created
2. Modifications (branching)

+ Bug fix, security patch, new features
3. Pull request (merge in main branch)
4. Social fork ceases to be maintained

1. Fork(s) are created
2. Maintained separately

+ Via social forks
3. Duplicated effort

+ bug fixes, security patches

8. Domain Modelling

Master Student Work

36

Mined 8,323 patches from 364 source variants on GitHub
• Classify into

+ Missed Opportunity
- fix applied in one variant but not the other

+ Effort Duplication
- fix applied in both variants

+ …

8. Domain Modelling

2 examples

37

linkedin/kafka (fork)apache/kafka (upstream)

• MO – Missed opportunity
• ED – Effort duplication
• SP – Split Patch (Both buggy and patched lines)
• NI – Non Interesting
• CC – Unhandled programming language
• NE – Missing file in target
• EE – Error

NI

microsoft/azure-tools-for-java (upstream) JetBrains/azure-tools-for-intellij (fork)

NI

8. Domain Modelling

• Correctness
+ Are we building the system right?

- Good maintainability via a robust model
of the problem domain.
> Specifying the “what” not the “how”

• Are we building the right system?
+ Model the problem domain from the customer perspective
+ Role-playing scenarios helps to validate use cases

- Paper CRC Cards are easy to reorganize
+ Feature Diagrams focus on commonalities/variations

- Makes product differences (and choices) explicit

• Traceability
+ Requirements ⇔ System?

- Via proper naming conventions
- Especially names of classes and operations

Correctness & Traceability

38

8. Domain Modelling

Summary (i)

39

• You should know the answers to these questions
+ Why is it necessary to validate and analyze the requirements?
+ What’s the decomposition principle for functional and object-oriented decomposition?
+ Can you give the advantages and disadvantages for functional decomposition? What

about object-oriented decomposition?
+ How can you recognize “god classes”?
+ What is a responsibility? What is a collaboration?
+ Name 3 techniques to identify responsibilities.

+ What do feature models define?
+ Give two advantages and disadvantages of a “clone and own” approach
+ Explain the main difference between a social fork and a variant fork

+ How does domain modeling help to achieve correctness? Traceability?

• You should be able to complete the following tasks
+ Apply noun identification & verb identification to (a part of) a requirements

specification.
+ Create a feature model for a series of mobile phones.

7.Formal Specifications

Summary(ii)
Can you answer the following questions?

• (Based on the article “A Formal Approach to Constructing Secure Air Vehicle Software”.)
+ What is according to you the most effective means to achieve “provably secure

against cyberattacks”?
• Why is it likely that you will encounter formal specifications?
• Explain why we need both the loop variant and the loop invariant for proving total

correctness of a loop?
• What do you think happened with the bug report on the broken Java.utils.Collection.sort

()? Why do you think this happened?
• Explain the relationship between “Design By Contract” on the one hand “State based

specifications” on the other hand.
• Explain the relationship between “Testing” on the one hand and “State based

specifications” on the other hand.
• You are part of a team build a fleet management system for drones transporting medical

goods between hospitals. You must secure the system against cyber-attacks. Your boss
asks you to look into formal specs; which ones would you advise and why?

50

9. Software Quality

Universiteit restaurant: Kwaliteit of Niet?

1

O

9. Software Quality

CHAPTER 9 – Software Quality

2

• Introduction
+ When, Why and What?
+ Product & Process Attributes
+ Internal & External Attributes

• Typical Quality Attributes
+ Overview
+ Definitions

• Quality Control
+ Quality Control Assumption
+ Quality Plan
+ Reviews & Inspections

• Quality in Scrum
+ Continuous Improvement

• Quality Standards
+ Quality System
+ ISO 9000, CMM, CMMI

• Conclusion

9. Software Quality

CHAPTER 9 – Quality Control

3

• Introduction
+ When, Why and What?
+ Product & Process Attributes
+ Internal & External Attributes

• Typical Quality Attributes
+ Overview
+ Definitions

• Quality Control
+ Quality Control Assumption
+ Quality Plan
+ Reviews & Inspections

• Quality in Scrum
+ Continuous Improvement

• Quality Standards
+ Quality System
+ ISO 9000, CMM, CMMI

• Conclusion
© dilbert.com

http://dilbert.com

9. Software Quality

Literature

4

+ [Ghez02] In particular, chapter “Software: Its Nature and Qualities”
+ [Pres00] In particular, chapter “Software Quality Assurance”
+ [Somm05] In particular, chapters “Quality Management” & “Process

Improvement”

• Web-Resources
+ ISO [http://www.iso.org/]

- ISO 9000 family
> [https://www.iso.org/iso-9001-quality-management.html]

+ CMM (Capability Maturity Model)
- Paulk, Mark C.; Weber, Charles V; Curtis, Bill; Chrissis, Mary Beth (February

1993). "Capability Maturity Model for Software (Version 1.1)" (PDF). Technical
Report. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.
CMU/SEI-93-TR-024 ESC-TR-93-177.

+ CMMI® (Capability Maturity Model Integration)
- [https://cmmiinstitute.com]

http://www.iso.org
https://www.iso.org/iso-9001-quality-management.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11955
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11955
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11955
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11955
https://cmmiinstitute.com

9. Software Quality

Famous Quality Incidents

5

Mature engineering
disciplines learn from

their mistakes
Tacoma Narrows Bridge Denver International

Airport Baggage
Handling System

Ariane 5 FBI Sentinel Project

9. Software Quality

When Quality Control?

6

quality in the final system ⇔ control quality of all intermediate steps.

However ... Quality control ⇔ High-quality system

Quality control tries to eliminate coincidence
⇒ Quality control makes achieving quality repeatable

Requirement
Specification System

/

9. Software Quality

Your personal future is
at stake (e.g., Y2K

lawsuits)

Huge amounts of money
are at stake

(e.g., Ariane V crash)

Why Quality Control?

7

Lives are at stake
(e.g., automatic pilot)

Corporate success or failure is at stake
(e.g., telephone billing,

VTM launching 2nd channel)

Software became Ubiquitous
Our society is vulnerable!

9. Software Quality

Quality vs. Requirements

8

“Simplistic” Definition: Software Quality =
• Deliver

+ (a) what’s required
+ (b) on time
+ (c) within budget

> Cover quality in the “non-functional” requirements

Acoustics Earthquake resistant

9. Software Quality

Consider requirements/implementation table
• Requirement a car, quite cheap a car, price unimportant

• Implementation

> Both adhere to their specifications ...
> ... but do they have the same quality?

• Covering quality in the “non-functional” requirements is too simplistic
+ How to assess the quality of the requirements?

- “Are we building the right product”
vs. “Are we building the product right”

+ Development team has (implicit) requirements too
- Maintainability etc. are usually not specified

Quality ≠ Requirements

9

9. Software Quality

• To side step the quality vs. requirements discussion
+ Define quality via hierarchical quality model, i.e. set of quality

attributes (a.k.a. quality factors, quality aspects, ...)
+ Choose quality attributes (and weights) depending on the project

context
> Nevertheless: variation of simplistic quality = requirements

• choose your own set of
quality attributes

• may be further refined
into subattributes, ...

Hierarchical Quality Model

10

Software
Quality

Portability

Maintainability

Usability

Efficiency

Reliability

…

Quality attributes

9. Software Quality

Quality attributes apply both to the product and the process.
• product: delivered to the customer
• process: produces the software product

Underlying assumption: a quality process leads to a quality product
(cf. metaphor of manufacturing lines)

Product vs. Process Attribute

11

Process

Product

9. Software Quality

The distinction between the two is not as sharp as it seems!

Quality attributes can be external or internal.
• External: Derived from relation between environment

and system/process.
> To derive, the system or process must have run to completion.

• Internal: Derived immediately from the product or process description.
> To derive, it is sufficient to have the description.

Underlying assumption: internal quality leads to external quality
(cf. metaphor of manufacturing lines)

External vs. Internal Attributes

12

External
Quality Attributes

Internal
Quality Attributes

9. Software Quality

Quality Attributes Overview

13

See [Ghez02], section 2.2 Representative Qualities

Product Process External Internal

Product / External

Correctness, Reliability,
Robustness x x

Efficiency x (x) x

Usability x (x) x

Maintainability x x

• Repairability x x

• Evolvability x (x) x

• Portability x x

Product / Internal

Verifiability x (x) x

Understandability x (x) x

Process

Productivity x x

Timeliness x x

Visibility x (x) x

9. Software Quality

Correctness, Reliability, Robustness

14

3 external product attributes

Correctness
• A system is correct if it behaves according to its specification

+ An absolute property (i.e., a system cannot be “almost correct”)
+ ... in theory and practice undecidable

Reliability
• The user may rely on the system behaving properly
• The probability that the system will operate as expected over a specified interval

+ A relative property (a system has a mean time between failure of 3 weeks)

Robustness
• A system is robust if it behaves reasonably even in circumstances that were not

specified
+ A vague property (once you specify the abnormal circumstances they become part of

the requirements)

(This slide is a copy from Chapter 5 — Testing)

9. Software Quality

Efficiency, Usability
2 external attributes, mainly product - sometimes also process

Efficiency (Performance)
• Use of resources such as computing time, memory

+ Affects user-friendliness and scalability
+ Hardware technology changes fast!

- (Remember: First do it, then do it right, then do it fast)
• For process, resources are man-power, time and money

+ relates to the “productivity” of a process

Usability (User Friendliness, Human Factors, Human Engineering)
• The degree to which the human users find the system (process) easy to use

+ Depends a lot on the target audience (novices vs. experts)
+ Often a system has various kinds of users (end-users, operators, installers)
+ Typically expressed in “amount of time to learn the system”

15

9. Software Quality

Maintainability
external product attributes (evolvability also applies to process)

Maintainability
• How easy it is to change a system after its initial release

+ software entropy
> maintainability gradually decreases over time

Often refined in ...
Repairability

• How much work is needed to
correct a defect (= corrective maintenance)

Adaptability (Evolvability)
• How much work is needed to

adapt to changing requirements
(= perfective maintenance)

> both system and process
Portability

• How much work is needed to
port to new environment or platforms
(= adaptive maintenance)

16

Maintenance costs

Adaptive
18%

Perfective
65%

Corrective
17%

9. Software Quality

Verifiability, Understandability
internal (and external) product attribute

Verifiability
• How easy it is to verify whether desired attributes are there?

+ internally: e.g., verify requirements, code inspections
+ externally: e.g., testing, efficiency

Understandability
• How easy it is to understand the system

+ internally: contributes to maintainability
+ externally: contributes to usability

17

9. Software Quality

Productivity, Timeliness, Visibility
external process attribute (visibility also internal)

Productivity
• Amount of product produced by a process for a given number of resources

+ productivity among individuals varies a lot
+ often: productivity (∑ individuals) < ∑ productivity (individuals)

Timeliness
• Ability to deliver the product on time

+ important for marketing (“short
time to market”)

+ often a reason to sacrifice other
quality attributes

+ incremental development may
provide an answer

Visibility (Transparency, Glasnost)
• Current process steps and

project status is accessible
+ important for management;

also deal with staff turn-over

18

Function

Time

User needs System
capability

t0 t1 t2 t3 t4

9. Software Quality

Productivity, Timeliness, Visibility

• Time to market = The time that is needed between requirements
specification (feature, user story, use case) agreed upon and
deploying said requirement in production

• Short time to market = we can release the requested features fast

• Productivity
+ Amount of product produced by a process for a given number of resources

• Timeliness
+ Ability to deliver the product on time

• Visibility (Transparency, Glasnost)
+ Current process steps and project status is accessible

19

O
What is meant with “short time to market”?

Can you name 3 related quality attributes and
provide definitions for each of them?

9. Software Quality

Quality Control Assumption

20

Project Concern = Deliver on time and within budget

External (and Internal)
Product Attributes

Process
Attributes

⇒ ⇒

Control during project Obtain after project

Otherwise, quality is mere coincidence!

• Internal Quality
• Process Quality

• External Quality
• Product Quality

9. Software Quality

Quality Plan

21

Project Concern = Deliver on time and within budget

A quality plan should:
• set out desired product qualities and how these are assessed

+ define the most significant quality attributes
(cf. Quality Attributes Overview)

• set out which organizational standards should be applied
+ typically by means of check-lists and standards

• define the quality assessment process
+ typically done via quality reviews after internal release

Project Plan

schedule: plan time
budget: plan money

quality plan: plan quality

9. Software Quality

Types of Quality Reviews

• Reviews should be recorded and records maintained
+ Software or documents may be “signed off” at a review
+ Progress to the next development stage is thereby approved

22

Review type Principal purpose

Formal Technical
Reviews
(a.k.a. design or
program inspections)

Driven by checklist
• detect detailed errors in any product
• mismatches between requirements and product
• check whether standards have been followed.

Progress reviews

Driven by budgets, plans and schedules
• check whether project runs according to plan
• requires precise milestones
• both a process and a product review

9. Software Quality

Review Meetings and Minutes
• (See [Pres00])

Review meetings should:
• typically involve 3-5 people
• require a maximum of 2 hours advance preparation

+ reviewers use checklists to evaluate products
• last less than 2 hours

The review minutes should summarize:
• 1. What was reviewed
• 2. Who reviewed it?
• 3. What were the findings and conclusions?
• 4. Decision

+ Accepted without modification
+ Provisionally accepted, subject to corrections (no follow-up review)
+ Rejected, subject to corrections and follow-up review

23

9. Software Quality

Review Guidelines
• 1. Review the product, not the producer

> Quality is a team responsibility
• 2. Set an agenda and maintain it
• 3. Limit debate and rebuttal

> Consensus is not required
• 4. Identify problem areas, but don’t attempt to solve every problem

noted
• 5. Take written notes

> Blackboard or electronic white-boards for group awareness
• 6. Limit the number of participants and insist upon advance preparation
• 7. Develop a checklist for each product that is likely to be reviewed
• 8. Allocate resources and time schedule for reviews

> Including time for the modifications after the review
• 9. Conduct meaningful training for all reviewers
• 10. Review your early reviews

> Customise the review process by learning from your early
attempts

24

9. Software Quality

Sample Review Checklists (i)
Project Plan

• 1. Is software scope unambiguously defined and bounded?
• 2. Are resources adequate for scope?
• 3. Have risks in all important categories been defined?
• 4. Are tasks properly defined and sequenced?
• 5. Is the basis for cost estimation reasonable?
• 6. Have historical productivity and quality data been used?
• 7. Is the schedule consistent?
• ...

Requirements Specification
• 1. Is information domain analysis complete, consistent and accurate?
• 2. Does the data model properly reflect data objects, attributes and relationships?
• 3. Are all requirements traceable to system level?
• 4. Has prototyping been conducted for the user/customer?
• 5. Are requirements consistent with schedule, resources and budget?
• ...

25

9. Software Quality

Sample Review Checklists (ii)
Design

• 1. Has modularity been achieved?
• 2. Are interfaces defined for modules and external system elements?
• 3. Are the data structures consistent with the information domain?
• 4. Are the data structures consistent with the requirements?
• 5. Has maintainability been considered?
• …

Code
• 1. Does the code reflect the design documentation?
• 2. Has proper use of language conventions been made?
• 3. Have coding standards been observed?
• 4. Are there incorrect or ambiguous comments?
• …

Testing
• 1. Have test resources and tools been identified and acquired?
• 2. Have both white and black box tests been specified?
• 3. Have all the independent logic paths been tested?
• 4. Have test cases been identified and listed with expected results?
• 5. Are timing and performance to be tested?
• ...

26

9. Software Quality

Sample Review Process: ATAM

27

ATAM = Architecture Tradeoff Analysis Method (see chapter “Software Architecture”)

Review these …

… to arrive at these!

9. Software Quality

Product and Process Standards

28

Product standards define characteristics that all components should exhibit.
Process standards define how the software process should be conducted.

Problems
• Not always seen as relevant and up-to-date by software engineers
• May involve too much bureaucratic form filling
• May require tedious manual work if unsupported by software tools

Product standards Process standards

Design review form Design review conduct

Document naming standards (++) Configuration management (++)

Procedure header format Version release process

Coding conventions standard (++) Project plan approval process

Project plan format Change control process (++)

Change request form (+) Test recording process (+)

9. Software Quality

Sample Java Code Conventions
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

4.2 Wrapping Lines
• When an expression will not fit on a single line, break it according to

these general principles:
+ Break after a comma.
+ Break before an operator.
+ Prefer higher-level breaks to lower-level breaks.
+ Align the new line with the beginning of the expression at the same

level on the previous line.
+ If the above rules lead to confusing code or to code that’s squished up

against the right margin, just indent 8 spaces instead.
…

10.3 Constants
• Numerical constants (literals) should not be coded directly, except for -1,

0, and 1, which can appear in a for loop as counter values.

29

9. Software Quality

Quality Culture: Continuous Improvement

30

Product
Backlog

Sprint
Backlog

Sprint
Execution

Working Increment
of Product

24h

Sprint
Planning

Sprint
Review

Sprint
Retrospective

• What worked well this sprint that we want to continue doing?
• What didn’t work well this sprint that we should stop doing?
• What should we start doing or improve?

9. Software Quality

 Retrospective

31

KALM (Keep - Add - Less - More)

Add

DAKI (Drop - Add - Keep - Improve)

Drop Add

Keep Improve

More

Keep

Less

CAPSTONE PROJECT

9. Software Quality

Code Review on Pull Requests

32

© Amber Frauenholtz - Bitbucket — 5 elements of a perfect pull request

9. Software Quality

When starting a project, the project
will include a Quality Plan
• Ideally, such plan is an instance

of the organization’s Quality
System

Certain customers require an
externally reviewed quality system
• An organization may request to

certify its quality system

Quality System & Certification

33

Standards &
Procedures

Quality Manual

Quality System

…
Quality Plan X

Project Plan X

Quality Standards
(ISO 9001, CMM)

External
Body

Accreditation
Body

Feedback

& ImproveInstantiates

Influences

Audit

certification

request

9. Software Quality

ISO 9000
ISO 9000
• is an international set of standards for quality management applicable to

a range of organisations from manufacturing to service industries.
ISO 9001
• is a generic model of the quality process, applicable to organisations

whose business processes range all the way from design and
development, to production, installation and servicing;

• ISO 9001 must be instantiated for each organisation
• ISO 9000-3 interprets ISO 9001 for the software developer

ISO = International Organisation for Standardization
• ISO main site: ISO [http://www.iso.org/]
• ISO 9000 family

+ [https://www.iso.org/iso-9001-quality-management.html]

34

http://www.iso.org
https://www.iso.org/iso-9001-quality-management.html

9. Software Quality

ISO 9001
• Describes quality standards and procedures for developing products

of any kind:

35

Management responsibility Quality system

Control of non-conforming products Design control

Handling, storage, packaging & delivery Purchasing

Purchaser-supplied products Product identification & traceability

Process control Inspection and testing

Inspection and test equipment Inspection and test status

Contract review Corrective action

Document control Quality records

Internal quality audits Training

Servicing Statistical techniques

9. Software Quality

Capability Maturity Model
• Process maturity model from SEI (Software Engineering institute)

+ Initiated in 1991
+ Version 1.1 completed in January 1993

• Tool to evaluate the ability of government contractors to perform a contracted software
project
+ assess how well contractors manage software processes
+ says little on individual projects
+ not necessarily applicable to commercial-off-the-shelf (COTS)

• CMM is now superseded by CMMI
+ CMMI = Capability Maturity Model Integration
+ Integrate software quality standard with standards other disciplines
+ Version 1.1 in 2002 – Version 1.2 in August 2006

• Essentially CMMI consists of
+ 5 maturity levels

- Separate standards for development / services / acquisition
+ Core Process Area

- identifies a cluster of related activities that, when performed collectively, achieve a
set of goals considered important

36

9. Software Quality

CMMI: Overview

37

Level 1: Initial (Ad Hoc)
No effective QA procedures, quality is luck

Level 2: Managed (Repeatable)
Formal QA procedures in place (reactive)

Level 3: Defined
QA process defined and institutionalized

Level 4: Quantitatively Managed
QA Process + quantitative data collection

Level 5: Optimizing
Improvement is fed back into QA process

Quality depends on
individuals

Quality depends on
individual project
managers

Quantitative
data is
necessary for
improvement

Organisation is
Pro-active

Continuous
improvement

9. Software Quality

Core Process Areas

38

Abbr. Name Area Level

CM Configuration Management Support 2

MA Measurement and Analysis Support 2

PMC Project Monitoring and Control Project Management 2

PP Project Planning Project Management 2

PPQA Process and Product Quality Assurance Support 2

REQM Requirements Management Project Management 2

DAR Decision Analysis and Resolution Support 3

IPM Integrated Project Management Project Management 3

OPD Organizational Process Definition Process Management 3

OPF Organizational Process Focus Process Management 3

OT Organizational Training Process Management 3

RSKM Risk Management Project Management 3

OPP Organizational Process Performance Process Management 4

QPM Quantitative Project Management Project Management 4

CAR Causal Analysis and Resolution Support 5

OPM Organizational Performance Management Process Management 5

9. Software Quality

Core Process Areas

39

Abbr. Name Area Level

CM Configuration Management Support 2

MA Measurement and Analysis Support 2

PMC Project Monitoring and Control Project Management 2

PP Project Planning Project Management 2

PPQA Process and Product Quality Assurance Support 2

REQM Requirements Management Project Management 2

DAR Decision Analysis and Resolution Support 3

IPM Integrated Project Management Project Management 3

OPD Organizational Process Definition Process Management 3

OPF Organizational Process Focus Process Management 3

OT Organizational Training Process Management 3

RSKM Risk Management Project Management 3

OPP Organizational Process Performance Process Management 4

QPM Quantitative Project Management Project Management 4

CAR Causal Analysis and Resolution Support 5

OPM Organizational Performance Management Process Management 5

use-cases??

testing??
O

9. Software Quality

Conclusion: Reviews
Reviews and Inspections
• Low on ceremony, high on external product quality
• Side-effect: team ownership

• Very effective
+ Empirical evidence shows that reviews find more errors than tests

(+ reviews usually indicate a solution)

• Very cost effective
+ Empirical evidence shows that reviews find errors more cheaply than

tests

• However: tests find other errors than reviews
> Reviews must supplement testing

40

9. Software Quality

Conclusion: Quality Standards
Quality Standards (ISO9000 and CMMI)

• No guarantee for external product quality
+ There is NO empirical evidence that ISO, CMMI actually improve quality

• Adequate for process quality
+ ... on time and within budget

• Does not scale down
+ developing a quality system is an overhead
+ difficult for small enterprises (where most software development is done)

• Eliminate coincidence
+ ... eliminates creativity (to some degree)
+ often obstructed by people doing the work

• Tendency towards high ceremony
+ difficult for rapidly changing contexts (e-commerce)

Is a means, not a goal
Illustrates that quality is an important issue

Certification is a driving force

41

9. Software Quality

Summary (i)
You should know the answers to these questions

• Why is software quality more important than it was a decade ago?
• Can a correctly functioning piece of software still have poor quality? Why?
• If quality control can’t guarantee results, why do we bother?
• What’s the difference between an external and an internal quality attribute? And

between a product and a process attribute?
• What’s the distinction between correctness, reliability and robustness?
• How can you express the “user friendliness” of a system?
• Can you name three distinct refinements of “maintainability”? What do each of these

names mean?
• What is meant with “short time to market”? Can you name 3 related quality attributes

and provide definitions for each of them?
• Name four things which should be recorded in the review minutes.
• Explain briefly the three items that should be included in a quality plan.
• What’s the relationship between ISO9001, CMMI standards and an organization’s quality

system? How do you get certified?
• Can you name and define the 5 levels of CMMI?
• Where would “use-cases” as defined in chapter 3 fit in the table of core process areas

(p. 32)? Motivate your answer shortly.

42

9. Software Quality

Summary (ii)
You should be able to complete the following tasks

• Given a piece of code and a coding standard, review the code to verify whether the
standard has been adhered to.

Can you answer the following questions?
• Given the Quality Attributes Overview table, argue why the crosses and blanks occur at

the given positions.
• Why do quality standards focus on process and internal attributes instead of the desired

external product attributes?
• Why do you need a quality plan? Which topics should be covered in such a plan?
• How should you organize and run a review meeting?
• Why are coding standards important?
• What would you include in a documentation review checklist?
• How often should reviews by scheduled?
• Could you create a review check-list for ATAM?
• Would you trust software from an ISO 9000 certified company? And if it were CMMI?
• You are supposed to develop a quality system for your organization. What would you

include?
• Where would “testing” fit in the table of core process areas (p. 32). Does it cover a

single row or not? Argue why (not)?

43

10.Software Metrics

CHAPTER 10 – Software Metrics
• Introduction

+ When, Why and What?
- Measurement Theory
- GQM Paradigm

• Effort Estimation
+ Algorithmic Cost Modeling
+ COCOMO
+ Putnam’s model (SLIM)
+ Size Measures

- Lines of Code, Function Points
- Use case points
- Story Points

• Quality Control
+ Quantitative Quality Model
+ Sample Quality Metrics

• Conclusion
+ Metrics for Effort Estimation

& Quality Control

1

10.Software Metrics

Does this make sense?

2

New Slide

(Quizz)

O

10.Software Metrics

Literature
• [Ghez02] In particular, section 6.9 “Verifying Other Software Properties” and 8.2

“Project Planning”
• [Pres00] In particular, chapters “Software Process and Project Metrics” and “Software

Project Planning“
• [Somm05] In particular, chapters “Software Cost Estimation” and “Process

Improvement”

Other
• [Fent96] Norman E. Fenton, Shari l. Pfleeger, “Software Metrics: A rigorous & Practical

Approach”, Thompson Computer Press, 1996.
+ Thorough treatment of measurement theory with lots of advice to make it digestible.

• [Putn03] Lawrence H. Putnam and Ware Myers, “Five Core Metrics - The intelligence
behind Successful Software Management”, Dorset House Publishing, 2003.
+ Software estimation: Time and Effort are dependent variables !

• [Schn98] Applying Use Cases - a Practical Guide, Geri Schneider, Jason, P. Winters,
Addison-Wesley, 1998.
+ Chapter 8 describes early work on estimation based on use cases.

3

10.Software Metrics

Literature (bis)
Fingers in the air: a Gentle Introduction to Software Estimation

estimate vs. target vs. commitment
accuracy vs. precision
cone of uncertainty

4

New Slide

(Quizz)

O

10.Software Metrics

Why Metrics?

5

10.Software Metrics

When Metrics?

6

Requirement
Specification System

Effort (and Cost) Estimation
• Measure early in the life-cycle to

deduce later production efforts

Quality Assessment and Improvement
• Control software quality attributes during development
• Compare (and improve) software production processes

10.Software Metrics

Why (Software) Metrics?

7

You cannot control what you cannot measure [De Marco]

What is not measurable, make measurable [Galileo Galilei, 1564-1642]

• Measurement quantifies concepts
+ understand, control and improve

• Example:
+ historical advances in temperature measurement

Time Measurement Comment

2000 BC Rankings “hotter than” By touching objects, people could compare
temperature

1600 AD Thermometer “hotter
than”

A separate device is able to compare
temperature

1720 AD Fahrenheit scale Quantification allows to log temperature,
study trends, predict phenomena (weather
forecasting), ...1742 AD Celsius scale

1854 AD Kelvin scale Absolute zero allows for more precise
descriptions of physical phenomena

10.Software Metrics

What are Software Metrics?
Software metrics

• Any type of measurement which relates to a software system, process or related
documentation
+ Lines of code in a program
+ the Fog index (calculates readability of a piece of documentation)

- 0.4 *(# words / # sentences) + (percentage of words >= 3 syllables)
+ number of person-days required to implement a use-case

• According to measurement theory, Metric is an incorrect name for Measure
+ a Metric m is a function measuring distance between two objects such that

m(x,x) = 0; m(x,y) = m(y,x); m(x,z) <= m(x,y) + m(y,z)

Direct Measures
• Measured directly in terms of the observed attribute (usually by counting)

+ Length of source-code
+ Duration of process
+ Number of defects discovered

Indirect Measures
• Calculated from other direct and indirect measures

+ Module Defect Density = Number of defects discovered / Length of source
+ Temperature is usually derived from the length of a liquid or metal

8

10.Software Metrics

How to Lie with Statistics

9

A Misleading Graph Creating An Extreme Trend Where There is Only a Small Increase

© Will Koehrsen, “Lessons on How to Lie with Statistics”, Jul 28, 2019
[https://towardsdatascience.com/lessons-from-how-to-lie-with-statistics-57060c0d2f19]

https://towardsdatascience.com/lessons-from-how-to-lie-with-statistics-57060c0d2f19

10.Software Metrics

Possible Problems
Example:
Compare productivity of programmers in lines of code per time unit.

• Preciseness (a): Do we use the same units to compare?
+ What is a “line of code”? What exactly is a “time unit”?

• Preciseness (b): Is the context the same?
+ Were programmers familiar with the language?

• Representation Condition: Is “code size” really what we want to have?
+ What about code quality?

• Scale and Scale Types: How do we want to interpret results?
+ Average productivity of a programmer?
+ Programmer X is more productive than Y?
+ Programmer X is twice as productive as Y?

• GQM-paradigm: What do we want to do with the results?
+ Do you reward “productive” programmers?
+ Do you compare productivity of software processes?

Measurement theory will help us to answer these questions...

10

10.Software Metrics

Empirical Relations

11

Observe true/false relationships between (attributes of) real world entities
Empirical relations are complete, i.e. defined for all possible combinations

Example: empirical relationships between height attributes of persons

“is taller than” binary relationship “is tall” unary relationship

“is much taller than” binary relationship
“... is higher than ... + ...”

ternary relationship

Frank “is taller
than” Laura

Joe “is not taller
than” Laura

Frank
“is tall”

Laura
“is tall”

Joe “is
not tall”

Frank “is not much
taller than” Laura

Frank “is much taller
than” Joe

Frank “is not higher than”
Joe on Laura’s shoulders

10.Software Metrics

Measure & Measurement

12

• A measure is a function mapping
- an attribute of a real world entity

(= the domain)
+ onto

- a symbol in a set with known
mathematical relations (= the range).

• A measurement is then the symbol assigned
to the real world attribute by the measure.

• A metric is a measure with as range the real
numbers and which satisfies

- m(x,x) = 0
- m(x,y) = m(y,x)
- m(x,z) <= m(x,y) + m(y,z)

Purpose
• Manipulate symbol(s) in the range
⇒ draw conclusions about attribute(s) in the domain

Preciseness
• To be precise, the definition of the measure must specify

+ domain: do we measure people’s height or width?
+ range: do we measure height in centimeters or inches?
+ mapping rules: do we allow shoes to be worn?

Frank

Joe

Laura

1.80

1.65

1.73

Example: measure mapping
“height” attribute of person on a
number representing “height in
meters”.

10.Software Metrics

Representation Condition
To be valid …

• a measure must satisfy the representation condition
+ empirical relations (in domain) ⇔ mathematical relations (in range)

In general
• the more empirical relations, the more difficult it is to find a valid measure.

13

Frank

Joe

Laura

1.80

1.65

1.73

Frank

Joe

Laura

1.80

1.70

1.73M
e
a
su

re
 2

M
e
a
su

re
 1

Empirical Relation Measure 1 Measure 2

is-taller-than x > y ??? x > y ???

Frank, Laura TRUE 1.80 > 1.73 TRUE 1.80 > 1.73 TRUE

Joe, Laura FALSE 1.65 > 1.73 FALSE 1.70 > 1.73 FALSE

is-much-taller-than x > y + 0.10 x > y + 0.10

Frank, Laura FALSE 1.80 > 1.73 + 0.10 FALSE 1.80 > 1.73 + 0.10 FALSE

Frank, Joe TRUE 1.80 > 1.65 + 0.10 TRUE 1.80 > 1.70 + 0.10 FALSE

10.Software Metrics

Scale
Scale
• = the symbols in the range of a measure + the permitted manipulations

+ When choosing among valid measures, we prefer a richer scale
(i.e., one where we can apply more manipulations)

+ Classify scales according to permitted manipulations ⇒ Scale Type

Typical Manipulations on Scales
• Mapping:

+ Transform each symbol in one set into a symbol in another set
> {false, true} ➤ {0, 1}

• Arithmetic:
+ Add, Subtract, Multiply, Divide

> It will take us twice as long to implement
use-case X than use-case Y

• Statistics:
+ Averages, Standard Deviation, ...

> The average air temperature in Antwerp this winter was 8oC

14

10.Software Metrics

Scale Types

15

Name Characteristics
 / Permitted Manipulations

Example
 / Forbidden Manipulations

Nominal - n different symbols
- no ordering

{true, false}
{design error, implementation error}

- all one-to-one transformations - no magnitude, no ordering
 - no median, no percentile

Ordinal - n different symbols
- ordering is implied

{trivial, simple, moderate, complex}
{superior, equal, inferior}

- order preserving transformations
- median, percentile

- no arithmetic
- no average, no deviation

Interval Difference between any pair is preserved
by measure Degrees in Celsius or Fahrenheit

- Addition (+), Subtraction (-)
- Averages, Standard Deviation
- Mapping have the form M = aM’ + b

 - no Multiplication (*) nor Division (/)
(“20oC is twice as hot as 10oC” is
forbidden as expression)

Ratio
 Difference and ratios between any pair is
preserved by measure. There is an
absolute zero.

Degrees in Kelvin
Length, size, …

- all arithmetic
- Mappings have the form M = aM’ nihil

10.Software Metrics

Scales

16

• What kind of measurement scale would you need to say
+ “A specification error is worse than a design error”?

• And what if we want to say
+ “A specification error is twice as bad as a design error?” O

10.Software Metrics

GQM

17

Goal - Question - Metrics approach
- V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"

in IEEE Transactions on Software Engineering, vol. SE-10, no. 6, pp. 728-738, Nov. 1984,
doi: 10.1109/TSE.1984.5010301.

• Define Goal
+ e.g., “How effective is the coding standard XYZ?”

• Break down into Questions
+ “Who is using XYZ?”
+ “What is productivity/quality with/without XYZ?”

• Pick suitable Metrics
+ Proportion of developers using XYZ
+ Their experience with XYZ ...
+ Resulting code size, complexity, robustness ...

10.Software Metrics

Effort Estimation — Cone of Uncertainty

18

© 2006 Steven C. McConnell

10.Software Metrics

Estimation techniques
Estimation Strategies

• Expert judgement: Consult experts and compare estimates
> Cheap and very accurate, but unpredictable

• Estimation by analogy: Compare with other projects in the same domain
> Cheap and quite accurate, but limited applicability

• Parkinson's Law: Work expands to fill the time available
> pessimistic management strategy

• Pricing to win: You do what you can with the budget available
> requires trust between parties

• Empirical Estimation: You estimate based on an empirical data

Empirical Estimation
• (“Decomposition” and “Algorithmic cost modeling” are used in combination)
• Decomposition: Estimate costs for components + integrating costs ...

> top-down or bottom-up estimation
• Algorithmic cost modeling: Exploit database of historical facts

to map component size on costs
> requires correlation data

19

10.Software Metrics

Algorithmic Cost Modeling
1) Choose system model

• Formula consisting of product and process attributes + parameters
+ product attributes

- requirements specification size:
typically some form of word count

- code size: typically in Lines of Code or Function Points
+ process attribute

- number of persons available
- complexity of project

2) Calibrate system model
• Choose values for parameters based on historical costing data

3) Measure (or estimate) attributes
• Some attributes are fixed, others may vary

> choose to fit project needs

4) Calculate Effort
• ... and iterate until satisfied

Examples
• COCOMO (Constructive Cost Model)
• Putnam’s model; the SLIM tool (Software Lifecycle Management)

20

10.Software Metrics

COCOMO Model (before calibration)

21

Model: Effort = C x PMS

• C is a complexity factor
• PM is a product size metric

+ size (lines of code)
+ functionality (function points)

• exponent S is close to 1, but increasing for difficult projects

Values for C and S?
• regression analysis against database of more than 60 projects

Effort

PM

10.Software Metrics

COCOMO Regression analysis

22

• Gather “time required” (E) and “number of source code instructions” (PM) for 60 projects
• Projects were classified as EASY, HARDER and HARD
• Afterwards regression analysis to find values for C and S in E = C x PMS

E(ffort)

P(roduct) M(etric)

Harder

Hard

Easy

x x
x

x

x

x

xx

x x

x

x

10.Software Metrics

COCOMO Model (with calibration)

23

Organic mode
• Small teams, familiar environment, well-understood applications, no difficult non-

functional requirements (EASY)
> Effort = 2.4 (KDSI) 1.05 x M

[KDSI = Kilo Delivered Source Instructions]

Semi-detached mode.
• Project team may have experience mixture, system may have more significant non-

functional constraints, organization may have less familiarity with application (HARDER)
> Effort = 3 (KDSI) 1.12 x M

Embedded Hardware/software systems.
• Tight constraints, unusual for team to have deep application experience (HARD)

> Effort = 3.6 (KDSI) 1.2 x M

M (between 0.7-1.66) is calibration factor for fine-tuning
• taking into account quality attributes (reliability, performance)
• and project constraints (tool usage, fast to market)

10.Software Metrics

• Based on + 7.200 projects !

• Size: quantity of function; typically size (lines of code; function points)
- a product at a given defect rate (reliability is implicitly implied)

• Process Productivity: amount of functionality for time and effort expended
• Effort: the amount of work expended (in person-months)
• β: A calibration factor, close to 1.

- > 1: for large, complex projects with large teams
- < 1: for small, simple projects with small teams

• Time: the duration of the project (in calendar months)
 (in the right-hand side of the equation, this is the *scheduled* time for the project)

Putnam’s Model

24

Time

Size

Effort

Size

10.Software Metrics

- If you want to finish earlier (= decrease scheduled time), you should
> increase / decrease

- the effort
>a lot / a little .

Time & Effort are interdependent

25

O
increase a lot

decrease a little

don’t know don’t know

10.Software Metrics

Putnam’s Model: Deriving Productivity

26

Productivity is normally defined as Size / Effort

10.Software Metrics

Productivity is normally defined as Size / Effort

Conventional productivity (Size / Effort)
is dependent on (scheduled) Time !

• Time: is raised to the fourth power
+ increase scheduled time a little

> will increase productivity a lot !
+ decrease scheduled time a little

> will decrease productivity a lot !

• Process Productivity: is raised to the 3rd power
- having good people with good tools and process has a lot of impact

• Size: is raised to the 2nd power in denominator
- smaller projects have better productivity

Putnam’s Model: Productivity

27

10.Software Metrics

• Assume that the size and process productivity are given
(i.e. specification is complete; tools & process is defined)

• Time is raised to the power (4/3)
+ To finish earlier, you must invest MANY more man months
+ To decrease the cost, you must spend A LOT more time

- If you don’t: reliability (implicitly implied in Size) will adapt

Time & Effort are interdependent

28

Effort
(person
months)

Time
(months)

impractical

impos-
sible

β

10.Software Metrics

Time & Effort are interdependent

29

Effort
(person
months)

Time
(months)

impractical

impos-
sible

• size and process productivity are estimated

> degree of uncertainty (inherent in calibration factor β)
• Time is raised to the power (4/3)

+ Project bidding with reduced time: uncertainty has larger effect
+ Close to the “Impossible” region: risk of entering into it

β

10.Software Metrics

Size: Lines of code
Lines of Code (LOC) as a measure of system size?
• Counter intuitive for effort estimation

+ Once you know the lines of code, you have done the effort
+ Typically dealt with by “estimating” the lines of code needed

• Easy to measure; but not well-defined for modern languages
+ What's a line of code?
+ What modules should be counted as part of the system?

• Assumes linear relationship between system size and volume of
documentation
+ Documentation is part of the product too!

• A poor indicator of productivity
+ Ignores software reuse, code duplication, benefits of redesign
+ The lower level the language, the more productive the programmer
+ The more verbose the programmer, the higher the productivity

Yet, lines of code is the size metric that is used most often ...
because it is very tangible (representation condition)

30

10.Software Metrics

Size: Function points
Function Points (FP)
• Based on a combination of program characteristics:

+ external inputs (e.g., screens, files) and outputs (e.g., reports)
+ user interactions (inquiries)
+ external interfaces (e.g., API)
+ files used by the system (logical files, database tables, ...)

• A weight is associated with each of these depending on complexity
• Function point count is sum, multiplied with complexity

31

Weighting Factor

Item Simple Average Complex

External Inputs ... x 3 = x 4 = x 6 = ... sum(left)

External Outputs ... x 4 = x 5 = x 7 = ... sum(left)

Inquiries ... x 3 = x 4 = x 6 = ... sum(left)

External Interfaces ... x 5 = x 7 = x 10 = ... sum(left)

Logical Files ... x 7 = x 10 = x 15 = ... sum(left)

Unadjusted Function Points sum(above)

Adjusted Function Points x Complexity factor (0.65...1.35)

10.Software Metrics

Function Points: Trade-offs
Points in Favor

• Can be measured after design
+ not after implementation

• Independent of implementation
language

• Measure functionality
+ customers willing to pay

• Works well for data-processing

Points Against
• Requires subjective expert judgement

• Cannnot be calculated automatically

Counter argument
• Requires fully specified design

+ not in the early life cycle
• Dependent on specification method
• Counterintuitive

+ 2000 FP is meaningless
• Other domains less accepted

Counter argument
• International Function Point Users

Group
+ publishes rule books

• Backfire LOC in FP via table of average
FP for a given implementation language

32

Conclusion
• To compare productivity, defect density, ...

+ Function Points are preferable over Lines of Code
• To estimate effort, Function Points come quite late in the life-cycle

10.Software Metrics

Size: Use Case Points
• (see [Schn98]; Chapter 8: Use Cases and the Project Plan)

Use CasePoints (UCP)
• Based on a combination of use case characteristics (actors & use cases)
• A weight is associated with each of these depending on complexity

+ Actors:
- API = simple; command line or protocol = average; GUI = complex

+ use cases
- number of transactions: <= 3 = simple; <= 7 average; > 7 complex
- or number of CRC-cards: <= 5 = simple; <= 10 average; > 10 complex

• sum = Unadjusted Use Case Points

33

Weighting Factor

Item Simple Average Complex Total

Actors ... x 1 = x 2 = x 3 = ... sum(left)

Use Cases ... x 5 = x 10 = x 15 = ... sum(left)

Unadjusted Use Case Points sum(above)

Adjusted Use Case Points x Technical Complexity factor [0.6 … 1.3]
x Environmental Complexity Factor [1.4 … 2.75] ...

10.Software Metrics

Use Case Points: Technical Complexity factor

34

Calculation of technical complexity factor.
Rate every complexity factor on a scale from 0 (irrelevant) to 5 (essential).

Complexity factor Rating (0 .. 5) Weight Total

Distributed system ... x 2 =

Performance objectives ... x 1 =

End-use efficiency ... x 1 =

Complex internal processing ... x 1 =

Code must be reusable ... x 1 =

Easy to install ... x 0.5 =

Easy to use ... x 0.5 =

Portable ... x 2=

Easy to change ... x 1 =

Concurrent ... x 1 =

Special security ... x 1 =

Direct access for 3rd parties ... x 1 =

Special user training ... x 1 =

Total Technical Complexity = sum(above)

Technical Complexity factor TCF = 0.60 + (Total Technical Complexity x 0.01)

Maximum
possible is 70

10.Software Metrics

Use Case Points: Environmental Complexity factor

35

Calculation of environmental complexity factor.
Rate every factor on a scale from 0 (no experience) to 5 (expert).

Complexity factor Rating (0 .. 5) Weight Total

Familiarity with development process
used

... x 1.5 =

Application experience ... x 0.5 =

Object-oriented experience of team ... x 1 =

Lead analyst capability ... x 0.5 =

Motivation of the team ... x 1 =

Stability of requirements ... x 2 =

Part-time staff ... x -1 =

Difficult programming language ... x -1=

Total Environmental Complexity = sum(above)

Environmental Complexity factor ECF = 1.4 + (Total Environmental Complexity x -0.03)

Maximum
possible is 22,5

10.Software Metrics

Story Points (Planning Poker)

36

1/2 1 2 3 5 8 13 20 40 100 ♾

• Choose one representative item of size 1.
• Compare items against representative.
• Put in the corresponding bin.
• Bins are classified according to the fibonacci series.
• Group game with physical cards.

Public Domain

CAPSTONE PROJECT

10.Software Metrics

Velocity

37

= Amount of business value created for a given time interval
Typically: amount of story points for a sprint

Relative measure
• Absolute values are meaningless but trends are important
• Do not compare across teams!

0

5,25

10,5

15,75

21

Sprint 1 Sprint 2 Sprint 3 Sprint 4

10.Software Metrics

Steps (Repeat every day)
• 1. Calculate remaining effort

> # days + # work hours per day
• 2. Track daily progress

> # story points completed per work day
• 3. Calculate remaining effort

> # unfinished story points * velocity per work hour

BurnDown Charts

38

Pablo Straub Wikipedia

10.Software Metrics

Quizz

39

Give three metrics for measuring size of a software product. O
Product =System
• Lines of code

Product = Requirements
• Function Points
• Use case points
• Story points

Requirement
Specification

System

10.Software Metrics

Quantitative Quality Model

40

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

Error tolerance

Accuracy

Consistency

Simplicity

Modularity

defect density
=#defects / size

correction
time

correction impact
= #components

changed

ISO 9126 Quality
Factor

Quality
Characteristic Metric

Quality according to ISO 9126 standard
• Divide-and conquer approach via “hierarchical quality model”
• Leaves are simple metrics, measuring basic attributes

10.Software Metrics

“Define your own” Quality Model
• Define the quality model with the development team

+ Team chooses the characteristics, design principles, metrics...
+ ... and the thresholds

41

Maintainability Modularity

design class as
an abstract
data-type

encapsulate all
attributes

avoid complex
interfaces

Quality
Factor

Quality
Characteristic

Design
Principle

#private attributes
]2, 10[

#public attributes
[0, 0[

Metric

#public methods
]5, 30[

average number of
arguments [0, 4[

10.Software Metrics

Sample Size Metrics

42

Class

AttributeMethod acess

belongsTo

inherits

invokes

Inheritance Metrics
• hierarchy nesting level (HNL)
• # immediate children (NOC)
• # inherited methods, unmodified (NMI)
• #overridden methods (NMO)

Class Size Metrics
• # methods (NOM)
• # attributes, instance/class (NIA, NCA)
• # ∑ of method size (WMC)

Method Size Metrics
• # invocations (NOI)
• # statements (NOS)
• # lines of code (LOC)
• # arguments (NOA)

These are Internal Product Metrics

10.Software Metrics

These are Internal Product Metrics

+ Following definitions stem from
- S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," in

IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, June
1994, doi: 10.1109/32.295895.

Coupling Between Objects (CBO)
• CBO = number of other class to which given class is coupled

+ Interpret as “number of other classes required to compile”

Lack of Cohesion in Methods (LCOM)
• collect local methods not accessing same attribute
• LCOM = number of disjoint sets

Beware
• Disagreement whether coupling/cohesion metrics satisfy the representation condition

+ Classes that are observed to be cohesive may have a high LCOM value
- due to accessor methods

+ Classes that are not much coupled may have high CBO value
- no distinction between data, method or inheritance coupling

Sample Coupling & Cohesion Metrics

43

10.Software Metrics

Sample External Quality Metrics
Correctness (Product Metric)

• a system is correct or not, so one cannot measure correctness
• Proxy metric: defect density = # known defects / product size

+ product size in LOC or FP
+ # known defects is a time based count!

• do NOT compare across projects unless you’re data collection is sound!

Maintainability (Product Metric)
• #time to repair certain categories of changes

+ “average time to repair”
• beware for the units

+ categories of changes is subjective
+ measuring time precisely is difficult

- problem recognition time + administrative delay time +
problem analysis time + change time + testing & reviewing time

Productivity (Process Metric)
• functionality / time
• functionality in LOC or FP; time in hours, weeks, months
• be careful to compare: the same unit does not always represent the same concept
• Does not take into account the quality of the functionality!

44

10.Software Metrics

Developer Productivity: Multi-Faceted

Myths
1. Productivity is all about developer

activity
2. Productivity is only about

individual performance
3. One productivity metric can tell

us everything
4. Productivity Measures ARE useful

only for managers
5. Productivity is only about

engineering systems and
developer tools

Dimensions
1. Satisfaction
2. Performance
3. Activity
4. Communication and collaboration
5. Efficiency and flow

45

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck,
and Jenna Butler. 2021. The SPACE of developer productivity. Commun. ACM 64, 6 (June 2021),
46–53. https://doi.org/10.1145/3453928

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck,
and Jenna Butler. 2021. The SPACE of developer productivity. Commun. ACM 64, 6 (June 2021),
46–53. https://doi.org/10.1145/3453928

10.Software Metrics

Conclusion: Metrics for Effort Estimation
Question:
• Can metrics be used for effort estimation?

Yes, but...
• Come a bit too late in the life-cycle

+ Require a quite complete “Requirements Specification”
• Requires database of historical facts about projects

+ small numbers statistics is required if you do it yourself
+ or hire external estimation consultants (which have such database)

• Can never be the sole basis for estimating
+ models allow “trial and error” estimation
+ complement with “Expert Judgement” or “Estimate by Analogy”

However...
• Collecting historical data is a good idea anyway

+ Provides a basis for Quantitative analysis of processes
+ “Levels 4 & 5” of CMM

47

10.Software Metrics

Conclusion: Metrics for Quality Assurance (i)
Question:
• Can internal product metrics reveal which components

have good/poor quality?

Yes, but...
• Not reliable

+ false positives: “bad” measurements, yet good quality
+ false negatives: “good” measurements, yet poor quality

• Heavy weight approach
+ Requires team to develop/customize a quantitative quality model
+ Requires definition of thresholds (trial and error)

• Difficult to interpret
+ Requires complex combinations of simple metrics

However...
• Cheap once you have the quality model and the thresholds
• Good focus (± 20% of components are selected for further inspection)

+ Note: focus on the most complex components first

48

10.Software Metrics

Conclusion: Metrics for Quality Assurance (ii)
Question:
• Can external product/process metrics reveal quality?

Yes, ...
• More reliably then internal product metrics

However...
• Requires a finished product or process
• It is hard to achieve preciseness

+ even if measured in same units
+ beware to compare results from one project to another

49

10.Software Metrics

Summary (i)
You should know the answers to these questions

• Can you give three possible problems of metrics usage in software engineering? How
does the measurement theory address them?

• What’s the distinction between a measure and a metric?
• Can you give an example of a direct and an indirect measure?
• What kind of measurement scale would you need to say “A specification error is worse

than a design error”? And what if we want to say “A specification error is twice as bad as
a design error?”

• Explain the need for a calibration factor in Putnam’s model.
• Fill in the blanks in the following sentence. Explain briefly, based on the Putnam’s

model.
+ If you want to finish earlier (= decrease scheduled time), you should ... the effort

• Give three metrics for measuring size of a software product.
• Discuss the main advantages and disadvantages of Function Points.
• What does it mean for a coupling metric not to satisfy the representation condition?
• Can you give 3 examples of impreciseness in Lines of Code measurements?

You should be able to complete the following tasks
• Given a set of use cases (i.e. your project) calculate the use case points.
• Given a set of user stories, perform a poker planning session.

50

CAPSTONE PROJECT

10.Software Metrics

Summary (ii)
Can you answer the following questions?

• During which phases in a software project would you use metrics?
• Why is it so important to have “good” product size metrics?
• Can you explain the two levels of calibration in COCOMO (i.e. C & S vs. M)? How can

you derive actual values for these parameters?
• Can you motivate why in software engineering, productivity depends on the scheduled

time? Do you have an explanation for it?
• Can you explain the cone of uncertainty? And why is it so relevant to cost estimation in

software projects?
• How can you decrease the uncertainty of a project bid using Putnam’s model?
• Why do we prefer measuring Internal Product Attributes instead of External Product

Attributes during Quality Control? What is the main disadvantage of doing that?
• You are a project manager and you want to convince your project team to apply

algorithmic cost modeling. How would you explain the technique?
• Where would you fit coupling/cohesion metrics in a hierarchical quality model like ISO

9126?
• Why are coupling/cohesion metrics important? Why then are they so rarely used?
• Do you believe that “defect density” says something about the correctness of a

program? Motivate your answer?

51

11.Refactoring

CHAPTER 11 – Refactoring

1

• Introduction
+ When, Why, What?
+ Which Refactoring Tools?

• Demonstration: Internet Banking
+ Iterative Development Life-cycle
+ Prototype
+ Consolidation: design review
+ Expansion: concurrent access
+ Consolidation: more reuse

• Miscellaneous
+ Tool Support
+ Code Smells
+ Refactoring God Class

- An empirical study
+ Scrum: Technical Debt

• Conclusion
+ Correctness & Traceability

11.Refactoring

• [Somm05]: Chapter “Software Evolution”
• [Pres00], [Ghez02]: Chapters on Reengineering / Legacy Software

• [Fowl99] Refactoring, Improving the Design of Existing Code
by Martin Fowler, Addison-Wesley, 1999.
+ A practical book explaining when and how

to use refactorings to cure typical code-smells.

• [Deme02] Object-Oriented Reengineering
Patterns by Serge Demeyer, Stéphane
Ducasse and Oscar Nierstrasz,
Morgan Kaufmann, 2002.
+ A book describing how one can

reengineer object-oriented
legacy systems.

Web-Resources
• Following web-site lists a number of relevant code smells

(= symptoms in code where refactoring is probably worthwhile)
https://wiki.c2.com/?CodeSmell

Literature

2

https://wiki.c2.com/?CodeSmell

11.Refactoring

When Refactoring?

3

Any software system must be maintained
• The worst that can happen with a software system is that the people actually use it.

+ >> Users will request changes ...
+ >> Intangible nature of software

> … makes it hard for users to understand the impact of changes

11.Refactoring

Why Refactoring? (1/2)

4

requirements design coding testing maintenance

x 1 x 5 x 10
x 20

x 200

Relative Effort of Maintenance [Lien80]
• Between 50% and 75% of available effort is spent on

maintenance.

Relative Cost of Fixing Mistakes [Davi95]
⇒ Changes cost tremendously while your project proceeds

11.Refactoring

Why Refactoring? (2/2)

5

Perfective
(new functionality)

65%

Adaptive
(new environments)

18%

Corrective
(fixing errors)

17%

50-75% of maintenance
budget concerns
Perfective Maintenance
(= new functionality, which
you could not foresee when
you started)

⇒New category of maintenance

Preventive Maintenance

11.Refactoring

Why Refactoring in OO?

6

New or changing requirements will gradually degrade original design, ...
… unless extra development effort is spent to adapt the structure.

New functionality

Hack it
in …

First …
• refactor
• restructure
• reengineer

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

yes no

Take a loan on your software
(pay back via reengineering)

Investment for future adaptability
(paid back during maintenance)

Technical
Debt

11.Refactoring

What is Refactoring?

7

Two Definitions
• VERB: The process of changing a software system in such a way that it

does not alter the external behaviour of the code, yet improves its
internal structure [Fowl99]

• NOUN: A behaviour-preserving source-to-source program transformation
[Robe98]

> Primitive refactorings vs. Composite refactorings

Typical Primitive Refactorings
Class Refactorings Method Refactorings Attrute Refactorings

add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

pull up pull up

push down push down

add parameter to method create accessors

move method to component abstract variable

extract code in new method

11.Refactoring

Quizz

8

Can you explain why
+ add class
+ add method
+ add attribute

… are behaviour preserving? O

11.Refactoring

Tool support
Change Efficient

Refactoring
• Source-to-source program

transformation
• Behaviour preserving
⇒ improve the program structure

Programming Environment
• Fast edit-compile-run cycles
• Support small-scale reverse

engineering activities
⇒ convenient for “local” ameliorations

Failure Proof

Regression Testing
• Repeating past tests
• Tests require no user interaction
• Tests are deterministic

(Answer per test is yes / no)
⇒ improvements do not break anything

Configuration & Version Management
• keep track of versions that represent

project milestones
⇒ go back to previous version

9

11.Refactoring

Iterative Development Life-cycle

10

Change is the norm,

not th
e exception!

More Reuse

New/Changing
Requirements

Initial Requirements

PROTOTYPING

EXPANSION

CONSOLIDATION

11.Refactoring

Example: Banking - Requirements

11

+ a bank has customers
+ customers own account(s) within a bank
+ with the accounts they own, customers may

- deposit / withdraw money
- transfer money
- see the balance

• Non-functional requirements
+ secure: only authorised users may access an account
+ reliable: all transactions must maintain consistent state

11.Refactoring

Example: Banking - Class Diagram

12

customerNr():int

customerNr : int

IBCustomer

accountNr (): int

getBalance():int

setBalance (amount:int)

accountNr : int

balance : int = 0

IBAccount

validCustomer(cust:IBCustomer) : boolean

createAccountForCustomer(cust:IBCustomer): int

customerMayAccess(cust:IBCustomer, account:int) : boolean

seeBalance(cust:IBCustomer, account:int) : int

transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)

checkSumAccounts() : boolean

IBBank

11.Refactoring

Example: Banking - Contracts

IBBank
invariant: checkSumAccounts()

IBBank::createAccountForCustomer(cust:IBCustomer): int
precondition: validCustomer(cust)
postcondition: customerMayAccess(cust, <<result>>)

IBBank::seeBalance(cust:IBCustomer, account:int) : int
precondition: (validCustomer(cust)) AND

(customerMayAccess(cust, account))
postcondition: true

IBBank::transfer(cust:IBCustomer, amount:int, fromAccount:int, toAccount:int)
precondition: (validCustomer(cust))

AND (customerMayAccess(cust, fromAccount))
AND (customerMayAccess(cust, toAccount))

postcondition: true

13

Ensure the “secure” and “reliable”
requirements.

11.Refactoring

Example: Banking - CheckSum

14

Bookkeeping systems always maintain two extra accounts, “incoming” and “outgoing”
• ⇒ the sum of the amounts of all transactions is always 0 ⇒ consistency check

MyAccount

date amount

1/1/2000 +100

1/2/2000 +200

1/3/2000 -250

OutGoing

date amount

1/3/2000 +250

Incoming

date amount

1/1/2000 -100

1/2/2000 -200

11.Refactoring

Prototype Consolidation
Design Review (i.e., apply refactorings AND RUN THE TESTS!)

• Rename attribute
+ rename “_balance” into “_amountOfMoney” (run test!)
+ apply “rename attribute” refactoring to the above

> run test!
+ check the effect on source code

- comments + getter/setter methods
• Rename method

+ rename “get_balance” into “get_amountOfMoney”
> run test!

• Change Method Signature
+ change order of arguments for “transfer” (run test!)

• Rename class
+ check all references to “Customer”
+ apply “rename class” refactoring

> rename into “Client”
> run test!

+ check the effect on source code
- file name / makefiles / …
- CustomerTest >> ClientTest??

15

11.Refactoring

What is Refactoring?

16

Class Refactorings Method Refactorings Attrute Refactorings

add (sub)class to hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

pull up pull up

push down push down

add parameter to method create accessors

move method to component abstract variable

extract code in new method

Can you give the pre-conditions for
a “rename method” refactoring? O

11.Refactoring

Expansion
Additional Requirement
• concurrent access of accounts

Add test case for
• Bank

+ testConcurrent: Launches 10 processes that simultaneously transfer
money between same accounts

> test fails!

17

Can you explain why
the test fails? O

11.Refactoring

…
Bank

…
…

Customer

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int, amount:int)
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int): boolean

accountNr : int
balance : int = 0
transactionId: int
workingbalance: int = 0

Account

Expanded Design: Class Diagram

18

1. add attribute(s)

2. add pa-
rameter(s)

3. add method(s)

4. expand
method bodies

5. expand tests!!

11.Refactoring

Expanded Design: Contracts

19

Account
invariant: (isLocked()) OR (NOT isLocked())

Account::get_balance(transaction:int): int
precondition: isLockedBy(transaction)
postcondition: true

Account::inc_balance(transaction:int, amount: int)
precondition: isLockedBy(transaction)

postcondition: peek_balance() = peek_balance() + amount

Account::lock(transaction:int)
precondition: notLocked()
postcondition: isLockedBy(transaction)

Account::commit(transaction:int)
precondition: isLockedBy(transaction)
postcondition: notLocked()

Account::abort(transaction:int)
precondition: isLockedBy(transaction)
postcondition: notLocked()

11.Refactoring

Expanded Implementation
Adapt implementation

• 1. Manually add attributes on Account
+ “transactionId” and “workingBalance”

• 2. apply “change method signature”
+ add “transaction”
+ to “get_balance()” and “inc_balance()”

• 3. apply “add method”
+ lock, commit, abort, isLocked, isLockedBy

• 4. expand method bodies (i.e. careful programming)
+ of “seeBalance()” and “transfer()”

> load “Banking12”

• 5. expand Tests
+ previous tests for “get_balance()” and “inc_balance()”

- should now fail
* adapt tests

+ new contracts, incl. commit and abort
* new tests

testConcurrent works!
> we can confidently ship a new release

20

11.Refactoring

Consolidation: Problem Detection
More Reuse

• A design review reveals that this
“transaction” stuff is a good idea and is
applied to Customer as well.

⇒ Code Smells

• duplicated code
+ lock, commit, abort
+ transactionId

• large classes
+ extra methods
+ extra attributes

⇒ Refactor

• “Lockable” should become a separate
component, to be reused in Customer
and Account

21

get_customerNr():int
getName(transaction : int):String
setName (transaction : int, name:String)
...
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
isLocked() : boolean
isLockedBy (transaction : int) : boolean

customerNr : int
name: String
address: String
password: String

transactionId: int
workingName: String
…

Customer

11.Refactoring

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int,
 amount:int)
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean

accountNr : int
balance : int = 0
transactionId: int = 0
workingbalance: int = 0

Account

lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean

transactionId: int = 0
Lockable

get_accountNr (): int
get_balance(transaction : int):int
inc_balance (transaction : int,
 amount:int)

accountNr : int
balance : int = 0
workingbalance: int = 0

Account

Consolidation: Refactored Class Diagram

22

Sp
lit

 C
la

ss

11.Refactoring

Refactoring Sequence: 1/4
Refactoring: Extract Superclass
• Position on Account

+ superclass name = Lockable
+ members: transactionId + notLocked + isLockedBy

- action = extract
• verify effect on code
• run the tests!

23

…
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean
…

accountNr : int
balance : int = 0
transactionId: int = 0
workingbalance: int = 0

Account

Lockable

11.Refactoring

Refactoring: Pull Up
• apply “pull up …” on “Account”

+ to move “lock / commit / transaction” onto lockable
+ apply “pull up” to “abort:”, “commit:”, “lock:”

> failure: why???

Refactoring Sequence: 2/4

24

…
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
…

Account

Lockable

O

11.Refactoring

Refactoring Sequence: 3/4
Refactoring: Extract Method
• apply “extract method” on

+ groups of accesses to “balance” and “WorkingBalance”

• similar for
+ “abort” (⇒ clearWorkingState) & “commit” (⇒ commitWorkingState)

25

public synchronized void lock(int transaction) {
this.require(this.notLocked(), "No other transaction ….”);
this._transactionId = transaction;
this._workingBalance = this._balance;
this.ensure(this.isLockedBy(transaction), "Lock must ….”);
}

public synchronized void lock(int transaction) {
this.require(this.notLocked(), "No other transaction ….”);
this._transactionId = transaction;
copyToWorkingState();
this.ensure(this.isLockedBy(transaction), "Lock must ….”);
}

protected void copyToWorkingState() {
 this._workingBalance = this._balance;
}

11.Refactoring

lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
notLocked() : boolean
isLockedBy (transaction : int)
 : boolean
clearWorkingState ()
copyToWorkingState ()
commitWorkingState ()

transactionId: int = 0
Lockable

…
…

Account

Refactoring Sequence: 4/4
Refactoring “Pull up…” revisited
• apply “pull up …” on “Account”

+ members clearWorkingState / copyToWorkingState /
commitWorkingState
- action = declare abstract in destination

+ members “abort”, “commit”, “lock”
- action = pull up

Are we done?
• Run the tests ...
• Customer subclass of Lockable

+ expand functionality
to incorporate locking protocol

26

11.Refactoring

Tool Support
Refactoring Philosophy
• combine simple refactorings into

larger restructuring
(and eventually reengineering)

> improved design
> ready to add functionality

• Do not apply refactoring tools in isolation

27

Smalltalk C++ Java

refactoring + - (?) +

rapid edit-compile-run cycles + - +-

reverse engineering facilities +- +- +-

regression testing + + +

version & configuration management + + +

11.Refactoring

Know when is as important as know-how
• Refactored designs are more complex

> Introduce a lot of extra small classes/methods
• Use “code smells” as symptoms for refactoring opportunities

+ Duplicated code
+ Nested conditionals
+ Large classes/methods
+ Abusive inheritance

• Rule of the thumb:
+ All system logic must be stated Once and Only Once

> a piece of logic stated more than once implies refactoring

More about code smells and refactoring
• Wiki-web with discussion on code smells

+ https://wiki.c2.com/?CodeSmell

Code Smells

28

https://wiki.c2.com/?CodeSmell

11.Refactoring

Refactoring God Class: Optimal Decomposition?

29

 Controller

 Controller

 Filter1

 Filter2

 Controller

 Filter1

 Filter2

 MailHeader

 Controller

 Filter1

 Filter2

 MailHeader

 FilterAction

 Controller

 Filter1

 Filter2

 MailHeader

 FilterAction

 NameValuePair

A

B

C

D

E

11.Refactoring

Empirical Validation

30

Controlled experiment with 63 last-year master-level students (CS and ICT)

Independent Variables

Time

Experimental
Task

Institution

Decomposition

Accuracy

“Optimal decomposition” differs with respect to education
• Computer science: preference towards decentralized designs (C-E)
• ICT-electronics: preference towards centralized designs (A-C)

Advanced OO training can induce preference
• Consistent with [Arisholm et al. 2004]

Dependent Variables

11.Refactoring

Floss Refactoring vs. Root-Canal Refactoring

31

E. Murphy-Hill and A. P. Black, "Refactoring Tools: Fitness for Purpose," in IEEE
Software, vol. 25, no. 5, pp. 38-44, Sept.-Oct. 2008, doi: 10.1109/MS.2008.123.

11.Refactoring

Technical Debt

32

New functionality

Hack it
in …

Repay Accrue

yes no

Technical
Debt

0

40

80

Sprint3 Sprint4 Sprint5 Sprint6 Sprint7 Sprint8 Sprint9

11.Refactoring

DevOps: Monitor Technical Debt

33

CAPSTONE PROJECT

11.Refactoring

Correctness & Traceability

Correctness
• Are we building the system right?
• Assured via “behaviour preserving” nature & regression testing

> We are sure the system remains as “correct” as it was before

• Are we building the right system?
+ By improving the internal design we can cope with mismatches

> First refactor (= consolidate) …
> then new requirements (= expand)

Traceability
• Requirements <-> System?

+ Requires a lot of discipline ... thus extra effort!
+ But renaming is refactoring too

> Adjust code to adhere to naming conventions

34

11.Refactoring

Summary (i)
You should know the answers to these questions:

• Can you explain how refactoring differs from plain coding?
• Can you tell the difference between Corrective, Adaptive and Perfective maintenance?

And how about preventive maintenance?
• Can you name the three phases of the iterative development life-cycle? Which of the

three does refactoring support the best? Why do you say so?
• Can you give 4 symptoms for code that can be “cured” via refactoring?
• Can you explain why add class/add method/add attribute are behaviour preserving?
• Can you give the pre-conditions for a “rename method” refactoring?
• Which 4 activities should be supported by tools when refactoring?
• Why can’t we apply a “push up” to a method “x()” which accesses an attribute in the

class the method is defined upon (see Refactoring Sequence on page 27–31)?
You should be able to complete the following tasks

• Two classes A & B have a common parent class X. Class A defines a method a() and
class B a method b() and there is a large portion of duplicated code between the two
methods. Give a sequence of refactorings that moves the duplicated code in a separate
method x() defined on the common superclass X.

• What would you do in the above situation if the duplicated code in the methods a() and
b() are the same except for the name and type of a third object which they delegate
responsibilities too?

• Monitor the technical debt of you bachelor capstone project.

35

CAPSTONE PROJECT

11.Refactoring

Summary (ii)
Can you answer the following questions?

• Why would you use refactoring in combination with Design by Contract and Regression
Testing?

• Can you give an example of a sequence of refactorings that would improve a piece of
code with deeply nested conditionals?

• How would you refactor a large method? And a large class?
• Consider an inheritance relationship between a superclass “Square” and a subclass

“Rectangle”. How would you refactor these classes to end up with a true “is-a”
relationship? Can you generalise this procedure to any abusive inheritance relationship?

36

12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Requirements
+ 3.Software Architecture
+ 4.Project Management
+ 5.Design by Contract
+ 6.Testing
+ 7.Formal Specification
+ 8.Domain Modeling
+ 9.Software Quality
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

1

12.Conclusion

Software Product & Process

2

• Software Process:
+ Requirements Collection + Analysis + Design + Implementation

+ Testing + Maintenance + Quality Assurance
• Software Product:

+ Requirements Specification (= functional & non-functional)
+ System (= executable + code + documentation)

Requirement
Specification System

Requirement
Collection

Analysis

Design
Maintenance

Implementation
Testing

+ Quality
Assurance

+ Quality

Assurance

12.Conclusion

Evaluation Criteria

3

Requirement
Specification System

2 evaluation criteria to assess techniques applied during process

Correctness
• Are we building the right product? = VALIDATION
• Are we building the product right? = VERIFICATION

Traceability
• Can we deduce which product components will be affected by changes?

12.Conclusion

Overview

4

Testing
Testing

Design by Contract
Implementation

Use Cases

Requirements
Collection

Domain Modeling
Analysis

Software Architecture
Formal Specifications

Design

Refactoring
Maintenance

Project Managament
Quality Control
Software Metrics

Quality Assurance

Use Cases & User Stories

12.Conclusion

Requirements
• Use Cases

+ = Specify expected system behavior as a set of generic scenarios
• User Stories

+ = Express expected functionality with the behaviour driven template
- As a <user role> I want to <goal> so that <benefit>.

• Are we building the system right?
+ Well specified scenarios help to verify system against requirements

• Are we building the right system?
+ Validation by means of CRC Cards and role playing.
+ Safety Critical ⇒ Failure Mode and Affect Analysis (FMEA)

• Traceability? Requirements ⇔ System

+ Via proper naming conventions

• Traceability? Requirements ⇔ Project Plan

+ Use cases & User stories form good milestones

5

12.Conclusion

Software Architecture
• Software Architecture

+ = Components & Connectors describing high-level view of a system.
+ Decomposition implies trade-offs expressed via coupling and cohesion.
+ Proven solutions to recurring problems are recorded as patterns.

• Architecture Tradeoff Analysis Method (ATAM)
+ Review: identify risks, non-risks, sensitivity points and trade-off points

• Are we building the system right?
+ For the non-functional parts of the requirements

• Traceability?
+ Extra level of abstraction may hinder traceability

6

12.Conclusion

Project Management
• Project Management

+ = plan the work and work the plan
+ PERT and Gantt charts with various options
+ Critical path analysis and monitoring

• Are we building the system right?
+ Deliver what’s required on time within budget
+ Calculate risk to the schedule via optimistic and pessimistic estimates
+ Monitor the critical path to detect delays early
+ Plan to re-plan to meet the deadline

• Traceability? Project Plan ⇔ Requirements & System

+ The purpose of a plan is to detect deviations as soon as possible
+ Small tasks + Milestones verifiable by customer

7

12.Conclusion

Design by Contract
• Contractual Obligations Explicitly recorded in Interface

+ pre-condition = obligation to be satisfied by invoking method
+ post-condition = obligation to be satisfied by method being invoked
+ class invariant = obligation to be satisfied by both parties

• Are we building the system right?
+ Recorded obligations prevent defects
+ and ... remain in effect during changes

• Consumer-driven contract testing
- Test distributed components in isolation via contractual obligations

• Traceability?
+ Obligations express key requirements in source code

• Liskov Substitution Principle?

8

stronger weaker equal

{I’} vs. {I} x

{P’} vs. {P} x x

{Q’} vs. {Q} x x

12.Conclusion

Testing
• Automated Regression Testing

+ = Deterministic tests (no user intervention), answering whether the
system did regress (red = failing tests) or not (green = all tests pass)

• Are we building the system right?
+ Tests only reveal the presence of defects, not their absence

yet ... Tests verify whether a system is as right as it was before
• Traceability?

+ Link from requirements specification to system source code

• Test techniques
+ Individual test are white box or black box tests

- White box: exploit knowledge of internal structure
> e.g., path testing, condition testing

- Black box: exploit knowledge about inputs/outputs
> e.g., input- and output partitioning + boundary conditions

+ Code Coverage to measure the strength of a test suite
- Line - statement - MC/DC - mutation

9

12.Conclusion

Formal Specifications
• Input/Output Specifications

+ = include logic assertions (pre- and postconditions + invariants) in
algorithm

> prove assertions via formal reasoning

• State-Based Specifications
+ = Specify acceptable message sequences by means of state machine

• Are we building the system right?
+ Makes verification easier

> generation of test cases
> deduction of contractual obligations

• Traceability?
+ Extra intermediate representation may hinder traceability

10

12.Conclusion

Domain Modeling
• CRC Cards

+ = Analyse system as a set of classes
- ... each of them having a few responsibilities
- ... and collaborating with other classes to fulfill these responsibilities

• Feature Model
+ a set of reusable and configurable requirements for specifying system

families (a.k.a. product line)

• Are we building the system right?
+ A robust domain model is easier to maintain

(= long-term reliability).
• Are we building the right system?

+ CRC Cards and role playing validate use cases.
+ Feature diagrams make product differences (and choices) explicit

• Traceability?
+ Via proper naming conventions

11

12.Conclusion

Quality Control

• Quality Control
+ = include checkpoints in the process to verify quality attributes
+ Formal technical reviews are very effective and cost effective!

• Quality Standards (ISO9000 and CMM)
+ = Checklists to verify whether a quality system may be certified

• Are we building the system right?
Are we building the right system?
+ Quality Control eliminates coincidence.

• Traceability?
+ Only when part of the quality plan/system

12

Project Concern = Deliver on time and within budget

External (and Internal)
Product Attributes

Process
Attributes

12.Conclusion

Software Metrics
• Effort and Cost Estimation

+ = measure early products to estimate costs of later products
+ algorithmic cost modeling, i.e. estimate based on previous experience

• Correctness?
+ Algorithmic cost modeling provides reliable estimates (incl. risk factor)

• Traceability?
+ Quantification of estimates allows for negotiations

• Quality Assurance
+ = quantify the quality model
+ Via internal and external product metrics

• Correctness & Traceability?
+ Software metrics are too premature too assure reliable assessment

13

12.Conclusion

Refactoring
• Refactoring Operation

+ = Behaviour-preserving program transformation
+ e.g., rename, move methods and attributes up and down in the

hierarchy
• Refactoring Process

+ = Improve internal structure without altering external behaviour
• Code Smell

+ = Symptom of a not so good internal structure
+ e.g, complex conditionals, duplicated code

• Are we building the system right?
+ Behaviour preserving ⇒ as right as it was before (cfr. tests)

• Are we building the right system?
+ Improve internal structure ⇒ cope with requirements mismatches.

• Traceability?
+ Renaming may help to maintain naming conventions
+ Refactoring makes it (too) easy to alter the code without changing the

documentation

14

12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Requirements
+ 3.Software Architecture
+ 4.Project Management
+ 5.Design by Contract
+ 6.Testing
+ 7.Formal Specification
+ 8.Domain Modeling
+ 9.Software Quality
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

15

12.Conclusion

• Find and read both of the following articles.
Pick the one you liked the most, study it
carefully and compare the article with
the course contents.

• The Quest for the Silver Bullet
+ [Broo87] Frederick P. Brooks, Jr. “No Silver Bullet: Incidents and Accidents in

Software Engineering” IEEE Computer, April 1987.
+ See also [Broo95] Frederick P. Brooks, Jr. “The Mythical Man-Month (20th anniversary

edition)” Addison-Wesley.
- The article is more than 15 years old. Yet, it succeeds in explaining why there will

never be an easy solution for solving the problems involved in building large and
complex software systems.

• The Killer Robot Case
+ [Epst94] Richard G. Epstein, "The use of computer ethics scenarios in software

engineering education: the case of the killer robot.", Software Engineering Education:
Proceedings of the 7th SEI CSEE Conference
- The article is a faked series of newspaper articles concerning a robot which killed

its operators due to a software fault. The series of articles conveys the different
viewpoints one might have concerning the production of quality software.

Assignment: Study an Article of your Choice

16

12.Conclusion

Software Engineering & Society

17

Your personal future is
at stake (e.g., Y2K lawsuits)

Huge amounts of money
are at stake
(e.g., Ariane V crash)

Lives are at stake
(e.g., automatic pilot)

Corporate success or failure is at stake
(e.g., telephone billing,
VTM launching 2nd channel)

Software became Ubiquitous
Our society is vulnerable!
⇒ Deontology, Licensing, …

12.Conclusion

Code of Ethics
• Software Engineering Code of Ethics and Professional Practice

+ ACM-site: http://www.acm.org/serving/se/code.htm
+ IEEE-site: http://computer.org/tab/swecc/code.htm

• Recommended by
+ IEEE-CS (Institute of Electrical and Electronics Engineers - Computer

Society)
+ ACM (Association for Computing Machinery)

• “Software Engineering Code of Ethics is Approved”, Don Gotterbarn,
Keith Miller, Simon Rogerson, Communications of the ACM, October
1999, Vol42, no. 10, pages 102-107.
+ Announces the revised 5.2 version of the Code

• “Using the New ACM Code of Ethics in Decision Making”, Ronald E.
Anderson, Deborah G. Johnson, Donald Gotterbarn, Judith Perrolle,
Communications of the ACM, February 1993, Vol36, no. 2, pages 98-104.
+ Discusses 9 cases of situations you might encounter and how (an older

version of) the code address them

18

http://www.acm.org/serving/se/code.htm
http://computer.org/tab/swecc/code.htm

12.Conclusion

Code of Ethics: 8 Principles
+ ACM-site: http://www.acm.org/serving/se/code.htm
+ IEEE-site: http://computer.org/tab/swecc/code.htm

• 1. PUBLIC
+ Software engineers shall act consistently with the public interest.

• 2. CLIENT AND EMPLOYER
+ Software engineers shall act in a manner that is in the best interests of their client

and employer consistent with the public interest.
• 3. PRODUCT

+ Software engineers shall ensure that their products and related modifications meet
the highest professional standards possible.

• 4. JUDGMENT
+ Software engineers shall maintain integrity and independence in their professional

judgment.
• 5. MANAGEMENT

+ Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.

• 6. PROFESSION
+ Software engineers shall advance the integrity and reputation of the profession

consistent with the public interest.
• 7. COLLEAGUES

+ Software engineers shall be fair to and supportive of their colleagues.
• 8. SELF

+ Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

19

http://www.acm.org/serving/se/code.htm
http://computer.org/tab/swecc/code.htm

12.Conclusion

Case: Privacy - Description
• Case Description

+ You consult a company concerning a database for personnel
management.

+ Database will include sensitive data: performance evaluations, medical
data.

+ System costs too much and company wants to cut back in security.

• What does the code say?
+ 1.03. Approve software only if they have a well-founded belief that it is

safe, meets specifications, passes appropriate tests, and does not
diminish quality of life, diminish privacy or harm the environment. The
ultimate effect of the work should be to the public good.

+ 3.12. Work to develop software and related documents that respect
the privacy of those who will be affected by that software.

> Situation is unacceptable.

20

12.Conclusion

Case study: Privacy - Solution
• Applicable Clauses

+ 1.02. Moderate the interests of the software engineer, the employer, the client and
the users with the public good.

+ 1.04. Disclose to appropriate persons or authorities any actual or potential danger to
the user, the public, or the environment, that they reasonably believe to be
associated with software or related documents.

+ 2.07. Identify, document, and report significant issues of social concern, of which
they are aware, in software or related documents, to the employer or the client.

+ 6.09. Ensure that clients, employers, and supervisors know of the software
engineer's commitment to this Code of ethics, and the subsequent ramifications of
such commitment.

• Actions
+ Try to convince management to keep high security standards.
+ Include in contract a clause to cancel contract when against the code of ethics.
+ Alarm other institutions if you later hear that others accepted the contract.

21

12.Conclusion

Case study: Privacy - Solution

• Actions
+ …
+ Include in contract a clause to cancel contract when against the code

of ethics.
+ …

22

If you are an independent consultant, how can you ensure that you
will not have to act against the code of ethics?

O

12.Conclusion

Case: Unreliability
• Case Description

+ You’re the team leader of a team building software for calculating taxes.
+ Your team and your boss are aware that the system contains a lot of defects.

Consequently you state that the product can’t be shipped in its current form.
+ Your boss ships the product anyway, with a disclaimer “Company X is not responsible

for errors resulting from the use of this program”.

• What does the code say?
+ 1.03. Approve software only if they have a well-founded belief that it is safe, meets

specifications, passes appropriate tests, and does not diminish quality of life, diminish
privacy or harm the environment. The ultimate effect of the work should be to the
public good.

+ 5.11. Not ask a software engineer to do anything inconsistent with this Code.
+ 5.12. Not punish anyone for expressing ethical concerns about a project.

> Disclaimer does not apply: can only be made in “good conscience”.
> In court you can not be held liable.

23

12.Conclusion

VW emissions scandal

24

O

Your mission should you choose to accept.
• You are a software engineer working for volkswagen. Your

management asks to install a so called “defeat device” into
the car to circumvent emission tests.

12.Conclusion

Facebook / Twitter API

25

O

Your mission should you choose to accept.
• You are a master thesis student and you are asked to inject

“spy software” on the API of big social media for research
purposes.

12.Conclusion

CHAPTER 12 – Conclusion
• Overview

+ 1.Introduction
+ 2.Project Management
+ 3.Use Cases
+ 4.Domain Modeling
+ 5.Testing
+ 6.Design by Contract
+ 7.Formal Specification
+ 8.Software Architecture
+ 9.Quality Control
+ 10.Software Metrics
+ 11.Refactoring

• Articles
+ The Quest for the Silver Bullet
+ The Case of the Killer Robot

• Professional Ethics
+ Cases

• The future: Software Engineering Tools

26

12.Conclusion

Innovation

27

Business Models

1971 — Starbucks
(seattle)

(Vienna)
1529 — European coffee house

1475 — Kiva Han coffee house
 (Constantinople)

Underlying Technology

1946 — commerical piston espresso machine

1908 — patent on paper filter

2001 — senseo
2000 — nespresso

12.Conclusion

Innovation

28

Business Models

1971 — Starbucks
(seattle)

(Vienna)
1529 — European coffee house

1475 — Kiva Han coffee house
 (Constantinople)

Underlying Technology

1946 — commerical piston espresso machine

1908 — patent on paper filter

2001 — senseo
2000 — nespresso

Tech
nology ch

anges e
very 20 years

…

Underly
ing busin

ess
models r

arely ch
ange!

12.Conclusion

Innovation in ICT

29

E
m

b
e
d

d
e
d

In
te

rn
e
t

ENIAC, 1945 IBM PC, 1981 iPad, 2010NEC ultralite, 1989

U
n

d
e
rlyin

g

T
e
ch

n
o

lo
g

y

12.Conclusion

Innovation in ICT

30

E
m

b
e
d

d
e
d

In
te

rn
e
t

ENIAC, 1945 IBM PC, 1981 iPad, 2010NEC ultralite, 1989

U
n

d
e
rlyin

g

T
e
ch

n
o

lo
g

y

Tech
nology ch

anges e
very 5 years

…

Underly
ing busin

ess
models c

hange ofte
n!

12.Conclusion

Market pressure in ICT

31

RELIABILITY AGILITY

Measure of innovation
• # products in portfolio younger than 5 years

+ in ICT usually more than 1/2 the portfolio

Significant investment in R&D
• more products … faster

12.Conclusion

Reliability vs. Agility

32

Software is vital to our society ⇒ Software must be reliable

Traditional Software Engineering
Reliable = Software without bugs

Today’s Software Engineering
Reliable = Easy to Adapt

Striving for
RELIABILITY

(Optimise for
perfection)

Striving for
AGILITY

(Optimise for
development speed)

On the Origin
of Species

12.Conclusion

Bugs (& Bug Reports)

33

12.Conclusion

Bugs (& Bug Reports)

34

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

Suggestions?

12.Conclusion

Bug Report Triaging

35

Question Cases Precision Recall

Who should fix this bug? Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug? JBoss

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

What is the severity of
this bug? Mozilla, Eclipse, Gnome

mozilla,
eclipse:67% - 73%

gnome:
75%-82%

mozilla,
eclipse:50% - 75%

gnome:
68%-84%

Artificial
Intelligence

Inside

12.Conclusion

Bug Report Triaging

36

Question Cases Precision Recall

Who should fix this bug? Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug? JBoss

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

What is the severity of
this bug? Mozilla, Eclipse, Gnome

mozilla,
eclipse:67% - 73%

gnome:
75%-82%

mozilla,
eclipse:50% - 75%

gnome:
68%-84%

Irrelevant for

Practitioners

Internal vs.
External  

Bug Reports

Artificial
Intelligence

Inside

12.Conclusion

Story Points (Planning Poker)

37

1/2 1 2 3 5 8 13 20 40 100 ♾

Public Domain

12.Conclusion

Results

38

Human
MMRE: 0.48

(*) Mean Magnitude
of Relative Error

Learning Curve

12.Conclusion

Artificial

Intelligence

Inside

“in vivo” Validation

39

Explainable!

12.Conclusion

Test Amplification

40

System Under TestTest Suite

Code Coverage

System Under TestAmplified Test Suite

12.Conclusion

Example - testDeposit

41

1 def testDeposit (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.get_balance(), 10)  
5 self.b.deposit(100)  
6 self.b.deposit(100)  
7 self.assertEqual(self.b.get_balance() , 210)

Input

Expected output

12.Conclusion

Example - testDeposit_amplified (1/2)

42

1 def testDeposit_amplified (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.
5 get_transactions(), [10])  
6 self.assertFalse(self.b.is_empty ())
7 self.assertEqual(self.b.owner, ’Iwena Kroka’)
8 self.assertEqual(self.b.get_balance(), 10)
 …  

Assertion Amplification

Assertion Amplification = (re)generate appropriate assertions to verify the
actual state of the object under test by observing the run-time behaviour.

12.Conclusion

Example - testDeposit_amplified (2/2)

43

1 def testDeposit_amplified (self) :  
2 self.b.set_owner(’Iwena Kroka’)  
3 self.b.deposit(10)  
4 self.assertEqual(self.b.
5 get_transactions(), [10])  
6 self.assertFalse(self.b.is_empty ())
7 self.assertEqual(self.b.owner, ’Iwena Kroka’)
8 self.assertEqual(self.b.get_balance(), 10)
9 with self.assertRaises(Exception):  
10 self.b.deposit(−56313)
11 self.b.deposit(100)
12 self.b.set_owner(’Guido van Rossum’)  
13 self.assertEqual(self.b.
14 get_transactions(), [10])
…

Input Amplification

Input Amplification = Transform the original test method(*); forcing
previously untested paths.
(*) Change the set-up of the object under test, providing parameters that
represent boundary conditions; inject calls to state-changing methods

⇒ Brute force but optimize via increase in code coverage

12.Conclusion 44

12 pull requests
9 merged
3 pending

12.Conclusion

Q&A support

45

12.Conclusion

Stack Overflow

46

12.Conclusion

Summary (i)
• You should know the answers to these questions

+ Name 3 items from the code of ethics and provide a one-line explanation.
+ If you are an independent consultant, how can you ensure that you will not have to

act against the code of ethics?
+ What would be a possible metric for measuring the amount of innovation of a

manufacturing company?
+ Explain the 2 main steps of test amplification: input amplification and assertion

amplification

47

12.Conclusion

Summary (i) - Continued
“No Silver Bullet”

• What’s the distinction between essential and accidental complexity?
• Name 3 reasons why the building of software is essentially a hard task? Provide a one-

line explanation.
• Why is “object-oriented programming” no silver bullet?
• Why is “program verification” no silver bullet?
• Why are “components” a potential silver bullet?

“Killer Robot”
• Which regression tests would you have written to prevent the “killer robot”?
• Was code reviewing applied as part of the QA process? Why (not)?
• Why was the waterfall process disastrous in this particular case?
• Why was the user-interface design flawed?

48

12.Conclusion

Summary (ii)
• Can you answer the following questions?

+ You are an experienced designer and you heard that the sales people earn more
money than you do. You want to ask your boss for a salary-increase; how would you
argue your case?

+ Software products are usually released with a disclaimer like “Company X is not
responsible for errors resulting from the use of this program”. Does this mean that
you shouldn’t test your software? Motivate your answer.

+ Your are a QA manager and are requested to produce a monthly report about the
quality of the test process. How would you do that?

+ Why is “explainable Artificial Intelligence” so important when creating bots for
software engineering tasks?

• When you chose the “No Silver Bullet” paper
+ Explain why incremental development is a promising attack on conceptual essence.

Give examples from the different topics addressed in the course.
+ “Software components” are said to be a promising attack on conceptual essence.

Which techniques in the course are applicable? Which techniques aren’t?
• When you chose the “Killer Robot” paper

+ Recount the story of the Killer Robot case. List the three most important causes for
the failure and argue why you think these are the most important.

49

12.Conclusion

Summary (i)
• You should know the answers to these questions

+ Name 3 items from the code of ethics and provide a one-line explanation.
+ If you are an independent consultant, how can you ensure that you will not have to

act against the code of ethics?
+ What would be a possible metric for measuring the amount of innovation of a

manufacturing company?
+ Explain the 2 main steps of test amplification: input amplification and assertion

amplification

When you chose the “No Silver Bullet” paper
• What’s the distinction between essential and accidental complexity?
• Name 3 reasons why the building of software is essentially a hard task? Provide a one-

line explanation.
• Why is “object-oriented programming” no silver bullet?
• Why is “program verification” no silver bullet?
• Why are “components” a potential silver bullet?

When you chose the “Killer Robot” paper
• Which regression tests would you have written to prevent the “killer robot”?
• Was code reviewing applied as part of the QA process? Why (not)?
• Why was the waterfall process disastrous in this particular case?
• Why was the user-interface design flawed?

50

12.Conclusion

Summary (ii)
• Can you answer the following questions?

+ You are an experienced designer and you heard that the sales people earn more
money than you do. You want to ask your boss for a salary-increase; how would you
argue your case?

+ Software products are usually released with a disclaimer like “Company X is not
responsible for errors resulting from the use of this program”. Does this mean that
you shouldn’t test your software? Motivate your answer.

+ Your are a QA manager and are requested to produce a monthly report about the
quality of the test process. How would you do that?

+ Why is “explainable Artificial Intelligence” so important when creating bots for
software engineering tasks?

When you chose the “No Silver Bullet” paper
+ Explain why incremental development is a promising attack on conceptual essence.

Give examples from the different topics addressed in the course.
+ “Software components” are said to be a promising attack on conceptual essence.

Which techniques in the course are applicable? Which techniques aren’t?

When you chose the “Killer Robot” paper
+ Recount the story of the Killer Robot case. List the three most important causes for

the failure and argue why you think these are the most important.

51

13
.A

pp
en

di
x

—
 Q

ue
st

io
ns

1
3

.
A

p
p

e
n

d
ix

.
Q

u
e
st

io
n

s
+

01
.

In
tr

od
uc

ti
on

+

02
.

R
eq

ui
re

m
en

ts

+
03

.
S
of

tw
ar

e
A
rc

hi
te

ct
ur

e
+

04
.

Pr
oj

ec
t

M
an

ag
em

en
t

+
05

.
D

es
ig

n
B
y

C
on

tr
ac

t
+

06
.

Te
st

in
g

+
07

.
Fo

rm
al

 S
pe

ci
fic

at
io

ns

+
08

.
D

om
ai

n
M

od
el

s
+

09
.

S
of

tw
ar

e
Q

ua
lit

y
+

10
.

S
of

tw
ar

e
M

et
ri
cs

+

11
.

R
ef

ac
to

ri
ng

+

12
.

C
on

cl
us

io
n

1

13
.A

pp
en

di
x

—
 Q

ue
st

io
ns

E
x
a
m

e
n

2

Tu
ss

en
ti
jd

se
 o

pd
ra

ch
te

n
+

S
ch

ri
ft

el
ijk

 e
xa

m
en

M
on

de
lin

g
M

on
de

lin
g

ei
nd

 r
es

ul
ta

at

[0
,

10
]

ei
nd

 r
es

ul
ta

at

[1
0,

 2
0]

re
su

lt
aa

t
>

 1
2

M
on

de
lin

g
=

 H
er

ka
ns

in
g

•
ex

tr
a

ke
nn

is
vr

ag
en

•

ev
t.

 o
ef

en
in

g

M
on

de
lin

g
=

 D
iv

er
si

fic
at

ie

•
1

a
2

in
zi

ch
ts

vr
ag

en
 (

cf
r.

“C
an

 y
ou

an

sw
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s”
)

•
ev

t.
 1

 c
re

at
ie

ve
 v

ra
ag

S
el

ec
ti
e

(m
in

im
um

no
rm

)
•

1
tu

ss
en

ti
jd

se
 o

pd
ra

ch
t

pe
r

ho
of

ds
tu

k
•

Ti
jd

en
s

he
t

ja
ar

 o
p

te
 le

ve
re

n
•

Pr
es

en
ta

ti
e

+
 K

w
al

it
at

ie
ve

 f
ee

db
ac

k
•

R
es

ul
ta

at
 >

 1
2

•
S
ch

ri
ft

el
ijk

 e
xa

m
en

•

1
ke

nn
is

 v
ra

ag
 p

er
 h

oo
fd

st
uk

•

(c
fr.

 “
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er

to
 t

he
se

 q
ue

st
io

ns
”)

•

be
pe

rk
te

 o
ef

en
in

ge
n

•
R
es

ul
ta

at
 >

 1
2

1.
In

tr
od

uc
ti
on

1
.

In
tr

o
d

u
ct

io
n

 (
1

/
2

)

3

•
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns
:

+
H

ow
 d

oe
s

S
of

tw
ar

e
En

gi
ne

er
in

g
di

ff
er

 f
ro

m
 p

ro
gr

am
m

in
g?

+

W
hy

 is
 p

ro
gr

am
m

in
g

on
ly

 a
 s

m
al

l p
ar

t
of

 t
he

 c
os

t
of

 a
 “

re
al

”
so

ft
w

ar
e

pr
oj

ec
t

?
+

G
iv

e
a

de
fin

it
io

n
fo

r
“t

ra
ce

ab
ili

ty
”.

+

W
ha

t
is

 t
he

 d
iff

er
en

ce
 b

et
w

ee
n

an
al

ys
is

 a
nd

 d
es

ig
n?

+

Ex
pl

ai
n

ve
ri
fic

at
io

n
an

d
va

lid
at

io
n

in
 s

im
pl

e
te

rm
s.

+

W
hy

 is
 t

he
 “

w
at

er
fa

ll”
 m

od
el

 u
nr

ea
lis

ti
c?

 W
hy

 is
 it

 s
ti
ll

us
ed

?
+

C
an

 y
ou

 e
xp

la
in

 t
he

 d
iff

er
en

ce
 b

et
w

ee
n

it
er

at
iv

e
de

ve
lo

pm
en

t
an

d
in

cr
em

en
ta

l
de

ve
lo

pm
en

t?

+
H

ow
 d

o
yo

u
de

ci
de

 t
o

st
op

 in
 t

he
 s

pi
ra

l m
od

el
?

+
H

ow
 d

o
yo

u
id

en
ti
fy

 r
is

k?
 H

ow
 d

o
yo

u
as

se
s

a
ri
sk

?
W

hi
ch

 r
is

ks
 r

eq
ui

re
 a

ct
io

n?

+
W

ha
t

is
 F

ai
lu

re
 M

od
e

an
d

Ef
fe

ct
s

A
na

ly
si

s
(F

M
EA

)?

+
Li

st
 t

he
 6

 p
ri
nc

ip
le

s
of

 e
xt

re
m

e
pr

og
ra

m
m

in
g.

+

W
ha

t
is

 a
 “

sp
ri
nt

”
in

 t
he

 S
C
R
U

M
 p

ro
ce

ss
?

+
G

iv
e

th
e

th
re

e
pr

in
ci

pa
l r

ol
es

 in
 a

 s
cr

um
 t

ea
m

.
Ex

pl
ai

n
th

ei
r

m
ai

n
re

sp
on

si
bi

lit
ie

s.

+
D

ra
w

 a
 U

M
L

cl
as

s
di

ag
ra

m
 m

od
el

lin
g

m
ar

ri
ag

es
 in

 c
ul

tu
re

s
w

it
h

m
on

og
am

y
(1

 w
ife

m

ar
ri
es

 1
 h

us
ba

nd
),

 p
ol

yg
am

y
(p

er
so

ns
 c

an
 b

e
m

ar
ri
ed

 w
it
h

m
or

e
th

an
 o

ne
 o

th
er

pe

rs
on

),
 p

ol
ya

nd
ry

 (
1

w
om

an
 c

an
 b

e
m

ar
ri
ed

 t
o

m
or

e
th

an
 o

ne
 m

an
)

an
d

po
ly

gy
ny

(1

 m
an

 c
an

 b
e

m
ar

ri
ed

 t
o

m
or

e
th

an
 o

ne
 w

om
an

).

+
D

ra
w

 a
 U

M
L

di
ag

ra
m

 t
ha

t
re

pr
es

en
ts

 a
n

ob
je

ct
 “

o”
 w

hi
ch

 c
re

at
es

 a
n

ac
co

un
t

(b
al

an
ce

in

it
ia

lly
 z

er
o)

,
de

po
si

ts
 1

00
$

an
d

th
en

 c
he

ck
s

w
he

th
er

 t
he

 b
al

an
ce

 is
 c

or
re

ct
.

1.
In

tr
od

uc
ti
on

In
tr

o
d

u
ct

io
n

 (
2

/
2

)
•

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
W

ha
t

is
 y

ou
r

pr
ef

er
re

d
de

fin
it
io

n
of

 S
of

tw
ar

e
En

gi
ne

er
in

g?
 W

hy
?

+
W

hy
 d

o
w

e
ch

oo
se

 “
C
or

re
ct

ne
ss

”
&

 “
Tr

ac
ea

bi
lit

y”
 a

s
ev

al
ua

ti
on

 c
ri
te

ri
a?

 C
an

 y
ou

im

ag
in

e
so

m
e

ot
he

rs
?

+
W

hy
 is

 “
M

ai
nt

en
an

ce
”

a
st

ra
ng

e
w

or
d

fo
r

w
ha

t
is

 d
on

e
du

ri
ng

 t
he

 a
ct

iv
it
y?

+

W
hy

 is
 r

is
k

an
al

ys
is

 n
ec

es
sa

ry
 d

ur
in

g
in

cr
em

en
ta

l d
ev

el
op

m
en

t?

+
H

ow
 c

an
 y

ou
 v

al
id

at
e

th
at

 a
n

an
al

ys
is

 m
od

el
 c

ap
tu

re
s

us
er

s’
 r

ea
l n

ee
ds

?
+

W
he

n
do

es
 a

na
ly

si
s

st
op

 a
nd

 d
es

ig
n

st
ar

t?

+
W

he
n

ca
n

im
pl

em
en

ta
ti
on

 s
ta

rt
?

+
C
an

 y
ou

 c
om

pa
re

 t
he

 U
ni

fie
d

Pr
oc

es
s

an
d

th
e

S
pi

ra
l M

od
el

?
+

C
an

 y
ou

 e
xp

la
in

 t
he

 v
al

ue
s

be
hi

nd
 t

he
 A

gi
le

 M
an

ife
st

o?

+
C
an

 y
ou

 id
en

ti
fy

 s
om

e
sy

ne
rg

ie
s

be
tw

ee
n

th
e

te
ch

ni
qu

es
 u

se
d

du
ri
ng

 e
xt

re
m

e
pr

og
ra

m
m

in
g?

+

C
an

 y
ou

 e
xp

la
in

 h
ow

 t
he

 d
iff

er
en

t
st

ep
s

in
 t

he
 s

cr
um

 p
ro

ce
ss

 c
re

at
e

a
po

si
ti
ve

fe

ed
ba

ck
 lo

op
?

+
H

ow
 d

oe
s

sc
ru

m
 r

ed
uc

e
ri
sk

?
+

Is
 it

 p
os

si
bl

e
to

 a
pp

ly
 A

gi
le

 P
ri
nc

ip
le

s
w

it
h

th
e

U
ni

fie
d

Pr
oc

es
s?

+

D
id

 t
he

 U
M

L
su

cc
ee

d
in

 b
ec

om
in

g
th

e
U

ni
ve

rs
al

 M
od

el
in

g
La

ng
ua

ge
?

M
ot

iv
at

e
yo

ur

an
sw

er
.

4

2.
R
eq

ui
re

m
en

ts

2
.

R
e
q

u
ir

e
m

e
n

ts
 (

1
/

2
)

•
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

+
W

hy
 s

ho
ul

d
th

e
re

qu
ir
em

en
ts

 s
pe

ci
fic

at
io

n
be

 u
nd

er
st

an
da

bl
e,

 p
re

ci
se

 a
nd

 o
pe

n?

+
W

ha
t’s

 t
he

 r
el

at
io

ns
hi

p
be

tw
ee

n
a

us
e

ca
se

 a
nd

 a
 s

ce
na

ri
o?

+

C
an

 y
ou

 g
iv

e
3

cr
it
er

ia
 t

o
ev

al
ua

te
 a

 s
ys

te
m

 s
co

pe
 d

es
cr

ip
ti
on

?
W

hy
 d

o
yo

u
se

le
ct

th

es
e

3?

+
W

hy
 s

ho
ul

d
th

er
e

be
 a

t
le

as
t

on
e

ac
to

r
w

ho
 b

en
ef

it
s

fr
om

 a
 u

se
 c

as
e?

+

C
an

 y
ou

 s
up

pl
y

3
qu

es
ti
on

s
th

at
 m

ay
 h

el
p

yo
u

id
en

ti
fy

in
g

ac
to

rs
?

A
nd

 u
se

 c
as

es
?

+
W

ha
t’s

 t
he

 d
iff

er
en

ce
 b

et
w

ee
n

a
pr

im
ar

y
sc

en
ar

io
 a

nd
 a

 s
ec

on
da

ry
 s

ce
na

ri
o?

+

W
ha

t’s
 t

he
 d

ir
ec

ti
on

 o
f
th

e
<

<
ex

te
nd

s>
>

 a
nd

 <
<

in
cl

ud
es

>
>

 d
ep

en
de

nc
ie

s?

+
W

ha
t

is
 t

he
 p

ur
po

se
 o

f
te

ch
ni

ca
l s

to
ri
es

 in
 s

cr
um

?
+

Li
st

 a
nd

 e
xp

la
in

 b
ri
ef

ly
 t

he
 I

N
V
ES

T
cr

it
er

ia
 f
or

 u
se

r
st

or
ie

s.

+
Ex

pl
ai

n
br

ie
fly

 t
he

 t
hr

ee
 le

ve
ls

 o
f
de

ta
il

fo
r

Pr
od

uc
t

B
ac

kl
og

 I
te

m
s

(E
pi

c,
 F

ea
tu

re
s,

S
to

ri
es

).

+
W

ha
t

is
 a

 m
in

im
um

 v
ia

bl
e

pr
od

uc
t?

+

D
ef

in
e

a
m

is
us

e
ca

se
.

+
D

ef
in

e
a

sa
fe

ty
 s

to
ry

.

•
 Y

ou
 s

ho
ul

d
be

 a
bl

e
to

 c
om

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
+

W
ri
te

 a
 r

eq
ui

re
m

en
ts

 s
pe

ci
fic

at
io

n
fo

r
yo

ur
 b

ac
he

lo
r

ca
ps

to
ne

 p
ro

je
ct

.

5

C
A

P
S

T
O

N
E
 P

R
O

JE
C

T

2.
R
eq

ui
re

m
en

ts

R
e
q

u
ir

e
m

e
n

ts
 (

2
/

2
)

•
C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
W

hy
 d

o
us

e
ca

se
s

fit
 w

el
l i

n
an

 it
er

at
iv

e/
in

cr
em

en
ta

l d
ev

el
op

m
en

t
pr

oc
es

s?

+
W

hy
 d

o
w

e
di

st
in

gu
is

h
be

tw
ee

n
pr

im
ar

y
an

d
se

co
nd

ar
y

sc
en

ar
io

s?

+
W

ha
t

w
ou

ld
 y

ou
 t

hi
nk

 w
ou

ld
 b

e
th

e
m

ai
n

ad
va

nt
ag

es
 a

nd
 d

is
ad

va
nt

ag
es

 o
f
us

e
ca

se
s?

+

H
ow

 w
ou

ld
 y

ou
 c

om
bi

ne
 u

se
-c

as
es

 t
o

ca
lc

ul
at

e
th

e
ri
sk

y
pa

th
 in

 a
 p

ro
je

ct
 p

la
n?

+

D
o

us
e-

ca
se

s
w

or
k

w
el

l w
it
h

ag
ile

 m
et

ho
ds

?
Ex

pl
ai

n
w

hy
 o

r
w

hy
 n

ot
.

+
C
an

 y
ou

 e
xp

la
in

 t
he

 u
se

 o
f
a

pr
od

uc
t

ro
ad

m
ap

 in
 s

cr
um

?
+

C
ho

os
e

th
e

th
re

e
m

os
t

im
po

rt
an

t
it
em

s
in

 y
ou

r
“D

ef
in

it
io

n
of

 R
ea

dy
”

ch
ec

kl
is

t.
 W

hy

ar
e

th
es

e
m

os
t

im
po

rt
an

t
to

 y
ou

?
+

C
an

 y
ou

 r
el

at
e

sc
ru

m
 u

se
r

st
or

ie
s

to
 s

om
e

of
 t

he
 p

ri
nc

ip
le

s
in

 t
he

 A
gi

le
 M

an
ife

st
o?

+

H
ow

 w
ou

ld
 y

ou
 t

ur
n

an
 F

M
EA

 a
na

ly
si

s
in

to
 a

 m
is

us
e

ca
se

 d
ia

gr
am

?
+

El
ab

or
at

e
on

 t
he

 r
el

at
io

ns
hi

p
be

tw
ee

n
an

 F
M

EA
 a

na
ly

si
s

an
d

th
e

va
ri
an

ts
 o

f
sa

fe
ty

st

or
ie

s.

6

03
.A

rc
hi

te
ct

ur
e

3
.

A
rc

h
it

e
ct

u
re

 (
1

/
2

)
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

•
W

ha
t’s

 t
he

 r
ol

e
of

 a
 s

of
tw

ar
e

ar
ch

it
ec

tu
re

?

•
W

ha
t

is
 a

 c
om

po
ne

nt
?

A
nd

 w
ha

t’s
 a

 c
on

ne
ct

or
?

•

W
ha

t
is

 c
ou

pl
in

g?
 W

ha
t

is
 c

oh
es

io
n?

 W
ha

t
sh

ou
ld

 a
 g

oo
d

de
si

gn
 d

o
w

it
h

th
em

?

•
W

ha
t

is
 a

 p
at

te
rn

?
W

hy
 is

 it
 u

se
fu

l f
or

 d
es

cr
ib

in
g

ar
ch

it
ec

tu
re

?

•
C
an

 y
ou

 n
am

e
th

e
co

m
po

ne
nt

s
in

 a
 3

-t
ie

re
d

ar
ch

it
ec

tu
re

?
A
nd

 w
ha

t
ab

ou
t

th
e

co
nn

ec
to

rs
?

•

W
hy

 is
 a

 r
ep

os
it
or

y
be

tt
er

 s
ui

te
d

fo
r

a
co

m
pi

le
r

th
an

 p
ip

es
 a

nd
 f
ilt

er
s?

•

W
ha

t’s
 t

he
 m

ot
iv

at
io

n
to

 in
tr

od
uc

e
an

 a
bs

tr
ac

t
fa

ct
or

y?

•
C
an

 y
ou

 g
iv

e
tw

o
re

as
on

s
no

t
to

 in
tr

od
uc

e
an

 A
da

pt
er

 (
W

ra
pp

er
)?

•

W
ha

t
pr

ob
le

m
 d

oe
s

an
 a

bs
tr

ac
t

fa
ct

or
y

so
lv

e?

•
Li

st
 t

hr
ee

 t
ra

de
of

fs
 f
or

 t
he

 A
da

pt
er

 p
at

te
rn

.
•

H
ow

 d
o

yo
u

de
ci

de
 o

n
tw

o
ar

ch
it
ec

tu
ra

l a
lt
er

na
ti
ve

s
in

 s
cr

um
?

•
W

ha
t’s

 t
he

 d
is

ti
nc

ti
on

 b
et

w
ee

n
a

pa
ck

ag
e

di
ag

ra
m

 a
nd

 a
 d

ep
lo

ym
en

t
di

ag
ra

m
?

•
D

ef
in

e
a

se
ns

it
iv

it
y

po
in

t
an

d
a

tr
ad

eo
ff
 p

oi
nt

 f
ro

m
 t

he
 A

TA
M

 t
er

m
in

ol
og

y.

Yo
u

sh
ou

ld
 b

e
ab

le
 t

o
co

m
pl

et
e

th
e

fo
llo

w
in

g
ta

sk
s

•

Ta
ke

 e
ac

h
of

 t
he

 p
at

te
rn

s
an

d
id

en
ti
fy

 t
he

 c
om

po
ne

nt
s

an
d

co
nn

ec
to

rs
.

Th
en

 a
ss

es
s

th
e

pa
tt

er
n

in
 t

er
m

s
of

 c
ou

pl
in

g
an

d
co

he
si

on
.

C
om

pa
re

 t
hi

s
as

se
ss

m
en

t
w

it
h

th
e

tr
ad

eo
ff
s.

7

03
.A

rc
hi

te
ct

ur
e

A
rc

h
it

e
ct

u
re

 (
2

/
2

)
C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
W

ha
t

do
 a

rc
hi

te
ct

s
m

ea
n

w
he

n
th

ey
 s

ay
 “

ar
ch

it
ec

tu
re

 m
ap

s
fu

nc
ti
on

 o
nt

o
fo

rm
”?

 A
nd

w

ha
t

w
ou

ld
 t

he
 in

ve
rs

e
“m

ap
 f
or

m
 in

to
 f
un

ct
io

n”
 m

ea
n?

•

H
ow

 d
oe

s
bu

ild
in

g
ar

ch
it
ec

tu
re

 r
el

at
e

to
 s

of
tw

ar
e

ar
ch

it
ec

tu
re

?
W

ha
t’s

 t
he

 im
pa

ct
 o

n
th

e
co

rr
es

po
nd

in
g

pr
od

uc
ti
on

 p
ro

ce
ss

es
?

•

W
hy

 a
re

 p
ip

es
 a

nd
 f
ilt

er
s

of
te

n
ap

pl
ie

d
in

 C
G

I-
sc

ri
pt

s?

•
W

hy
 d

o
vi

ew
s

an
d

co
nt

ro
lle

rs
 a

lw
ay

s
ac

t
in

 p
ai

rs
?

•

Ex
pl

ai
n

th
e

se
nt

en
ce

 “
R
es

tr
ic

ts
 c

om
m

un
ic

at
io

n
be

tw
ee

n
su

bj
ec

t
an

d
ob

se
rv

er
”

in
 t

he

O
bs

er
ve

r
pa

tt
er

n
•

C
an

 y
ou

 e
xp

la
in

 t
he

 d
iff

er
en

ce
 b

et
w

ee
n

an
 a

rc
hi

te
ct

ur
e

an
d

a
pa

tt
er

n?

•
Ex

pl
ai

n
th

e
ke

y
st

ep
s

of
 t

he
 A

TA
M

 m
et

ho
d?

•

H
ow

 c
an

 y
ou

 b
al

an
ce

 e
m

er
ge

nt
 d

es
ig

n
w

it
h

in
te

nt
io

na
l a

rc
hi

te
ct

ur
e?

•

W
ha

t
ha

pp
en

s
w

he
n

yo
ur

 t
ea

m
 g

oe
s

ou
ts

id
e

th
e

bo
un

da
ri
es

 o
f
th

e
gu

ar
dr

ai
l?

•

H
ow

 w
ou

ld
 y

ou
 o

rg
an

iz
e

an
 a

rc
hi

te
ct

ur
e

as
se

ss
m

en
t

in
 y

ou
r

te
am

?

8

4.
Pr

oj
ec

t
M

an
ag

em
en

t

4
.P

ro
je

ct
 M

a
n

a
g

e
m

e
n

t
(1

/
2

)
•

Yo
u

sh
ou

ld
 k

no
w

 t
he

 a
ns

w
er

s
to

 t
he

se
 q

ue
st

io
ns

+

N
am

e
th

e
fiv

e
ac

ti
vi

ti
es

 c
ov

er
ed

 b
y

pr
oj

ec
t

m
an

ag
em

en
t.

+

W
ha

t
is

 a
 m

ile
st

on
e?

 W
ha

t
ca

n
yo

u
us

e
th

em
 f
or

?
+

W
ha

t
is

 a
 c

ri
ti
ca

l p
at

h?
 W

hy
 is

 it
 im

po
rt

an
t

to
 k

no
w

 t
he

 c
ri
ti
ca

l p
at

h?

+
W

ha
t

ca
n

yo
u

do
 t

o
re

co
ve

r
fr

om
 d

el
ay

s
on

 t
he

 c
ri
ti
ca

l p
at

h?

+
H

ow
 c

an
 y

ou
 u

se
 G

an
tt

-c
ha

rt
s

to
 o

pt
im

iz
e

th
e

al
lo

ca
ti
on

 o
f
re

so
ur

ce
s

to
 a

 p
ro

je
ct

?
+

W
ha

t
is

 a
 “

K
no

w
n

ko
w

n”
,

an
d

“U
nk

no
w

n
kn

ow
n”

 a
nd

 a
n

“U
nk

no
w

n
U

nk
no

w
n”

?
+

H
ow

 d
o

yo
u

us
e

PE
R
T

to
 c

al
cu

la
te

 t
he

 r
is

k
of

 d
el

ay
s

to
 a

 p
ro

je
ct

?
+

W
hy

 d
oe

s
re

pl
ac

in
g

a
pe

rs
on

 im
pl

y
a

ne
ga

ti
ve

 p
ro

du
ct

iv
it
y?

+

W
ha

t’s
 t

he
 d

iff
er

en
ce

 b
et

w
ee

n
th

e
0/

10
0;

 t
he

 5
0/

50
 a

nd
 t

he
 m

ile
st

on
e

te
ch

ni
qu

e
fo

r
ca

lc
ul

at
in

g
th

e
ea

rn
ed

 v
al

ue
?

+
W

hy
 s

ho
ul

dn
’t
 m

an
ag

er
s

ta
ke

 o
n

ta
sk

s
in

 t
he

 c
ri
ti
ca

l p
at

h?

+
W

ha
t

is
 t

he
 “

de
fin

it
io

n
of

 d
on

e”
 in

 a
 S

cr
um

 p
ro

je
ct

?
+

G
iv

e
a

de
fin

it
io

n
fo

r
a

S
qu

ad
,

Tr
ib

e,
 C

ha
pt

er
 a

nd
 G

ui
ld

 in
 t

he
 s

po
ti
fy

 s
cr

um
 m

od
el

.

•
Yo

u
sh

ou
ld

 b
e

ab
le

 t
o

co
m

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
+

dr
aw

 a
 P

ER
T

C
ha

rt
,

in
cl

.
ca

lc
ul

at
in

g
th

e
cr

it
ic

al
 p

at
h

an
d

th
e

ri
sk

 o
f
de

la
ys

+

dr
aw

 a
 G

an
t

ch
ar

t,
 in

cl
.

al
lo

ca
ti
ng

 a
nd

 o
pt

im
iz

in
g

of
 r

es
ou

rc
es

+

dr
aw

 a
 s

lip
 li

ne
 a

nd
 a

 t
im

el
in

e

9

4.
Pr

oj
ec

t
M

an
ag

em
en

t

P
ro

je
ct

 M
a
n

a
g

e
m

e
n

t
(2

/
2

)
•

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
N

am
e

th
e

va
ri
ou

s
ac

ti
vi

ti
es

 c
ov

er
ed

 b
y

pr
oj

ec
t

m
an

ag
em

en
t.

 W
hi

ch
 o

ne
s

do
 y

ou

co
ns

id
er

 m
os

t
im

po
rt

an
t?

 W
hy

?
+

H
ow

 c
an

 y
ou

 e
ns

ur
e

tr
ac

ea
bi

lit
y

be
tw

ee
n

th
e

pl
an

 a
nd

 t
he

 r
eq

ui
re

m
en

ts
/s

ys
te

m
?

+
C
om

pa
re

 P
ER

T-
ch

ar
ts

 w
it
h

G
an

tt
 c

ha
rt

s
fo

r
pr

oj
ec

t
pl

an
ni

ng
 a

nd
 m

on
it
or

in
g.

+

H
ow

 c
an

 y
ou

 d
ea

l w
it
h

“U
nk

no
w

n
U

nk
no

w
ns

”
du

ri
ng

 p
ro

je
ct

 p
la

nn
in

g?

+
C
ho

os
e

be
tw

ee
n

m
an

ag
in

g
a

pr
oj

ec
t

th
at

 is
 e

xp
ec

te
d

to
 d

el
iv

er
 s

oo
n

bu
t

w
it
h

a
la

rg
e

ri
sk

 f
or

 d
el

ay
s,

 o
r

m
an

ag
in

g
a

pr
oj

ec
t

w
it
h

th
e

sa
m

e
re

su
lt
 d

el
iv

er
ed

 la
te

 b
ut

 w
it
h

al
m

os
t

no
 r

is
k

fo
r

de
la

ys
.

C
an

 y
ou

 a
rg

ue
 y

ou
r

ch
oi

ce
?

+
D

es
cr

ib
e

ho
w

 e
ar

ne
d-

va
lu

e
an

al
ys

is
 c

an
 h

el
p

yo
u

fo
r

pr
oj

ec
t

m
on

it
or

in
g.

+

W
ou

ld
 y

ou
 c

on
si

de
r

be
nd

in
g

sl
ip

 li
ne

s
as

 a
 g

oo
d

si
gn

 o
r

a
ba

d
si

gn
?

W
hy

?
+

Yo
u’

re
 a

 p
ro

je
ct

 le
ad

er
 a

nd
 o

ne
 o

f
yo

ur
 b

es
t

te
am

 m
em

be
rs

 a
nn

ou
nc

es
 t

ha
t

sh
e

is

pr
eg

na
nt

.
Yo

u’
re

 g
oi

ng
 t

o
yo

ur
 b

os
s,

 a
sk

in
g

fo
r

a
re

pl
ac

em
en

t
an

d
fo

r
an

 e
xt

en
si

on
 o

f
th

e
pr

oj
ec

t
de

ad
lin

e.
 H

ow
 w

ou
ld

 y
ou

 a
rg

ue
 t

he
 la

tt
er

 r
eq

ue
st

?
+

Yo
u

ha
ve

 t
o

m
an

ag
e

a
pr

oj
ec

t
te

am
 o

f
5

pe
rs

on
s

fo
r

bu
ild

in
g

a
C
+

+
 c

om
pi

le
r.

W
hi

ch

te
am

 s
tr

uc
tu

re
 a

nd
 m

em
be

r
ro

le
s

w
ou

ld
 y

ou
 c

ho
os

e?
 W

hy
?

+
C
an

 y
ou

 g
iv

e
so

m
e

ad
va

nt
ag

es
 a

nd
 d

is
ad

va
nt

ag
es

 o
f
sc

ru
m

 c
om

po
ne

nt
 t

ea
m

s
an

d
sc

ru
m

 f
ea

tu
re

 t
ea

m
s.

10

5.
 D

es
ig

n
by

 C
on

tr
ac

t

5
.

D
e
si

g
n

 b
y

C
o

n
tr

a
ct

 (
1

/
2

)

11

•
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

+
W

ha
t

is
 t

he
 d

is
ti
nc

ti
on

 b
et

w
ee

n
Te

st
in

g
an

d
D

es
ig

n
by

 C
on

tr
ac

t?
 W

hy
 a

re
 t

he
y

co
m

pl
em

en
ta

ry
 t

ec
hn

iq
ue

s?

+
W

ha
t’s

 t
he

 w
ea

ke
st

 p
os

si
bl

e
co

nd
it
io

n
in

 lo
gi

c
te

rm
s?

 A
nd

 t
he

 s
tr

on
ge

st
?

+
If

 y
ou

 h
av

e
to

 im
pl

em
en

t
an

 o
pe

ra
ti
on

 o
n

a
cl

as
s,

 w
ou

ld
 y

ou
 p

re
fe

r
w

ea
k

or
 s

tr
on

g
co

nd
it
io

ns
 f
or

 p
re

-
an

d
po

st
co

nd
it
io

n?
 A

nd
 w

ha
t

ab
ou

t
th

e
cl

as
s

in
va

ri
an

t?

+
If

 a
 s

ub
cl

as
s

ov
er

ri
de

s
an

 o
pe

ra
ti
on

,
w

ha
t

is
 it

 a
llo

w
ed

 t
o

do
 w

it
h

th
e

pr
e-

 a
nd

po

st
co

nd
it
io

n?
 A

nd
 w

ha
t

ab
ou

t
th

e
cl

as
s

in
va

ri
an

t?

+
C
om

pa
re

 T
es

ti
ng

 a
nd

 D
es

ig
n

by
 c

on
tr

ac
t

us
in

g
th

e
cr

it
er

ia
 “

C
or

re
ct

ne
ss

”
an

d
“T

ra
ce

ab
ili

ty
”.

+

W
ha

t’s
 t

he
 L

is
ko

v
su

bs
ti
tu

ti
on

 p
ri
nc

ip
le

?
W

hy
 is

 it
 im

po
rt

an
t

in
 O

O
 d

ev
el

op
m

en
t?

+

W
ha

t
is

 b
eh

av
io

ra
l s

ub
ty

pi
ng

?
+

W
he

n
is

 a
 p

re
-c

on
di

ti
on

 r
ea

so
na

bl
e?

•
Yo

u
sh

ou
ld

 b
e

ab
le

 t
o

co
m

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
+

W
ha

t
w

ou
ld

 b
e

th
e

pr
e-

 a
nd

 p
os

t-
co

nd
it
io

ns
 f
or

 t
he

 m
et

ho
ds

 t
op

 a
nd

 is
Em

pt
y

in
 t

he

S
ta

ck
 s

pe
ci

fic
at

io
n?

 H
ow

 w
ou

ld
 I

 e
xt

en
d

th
e

co
nt

ra
ct

 if
 I

 a
dd

ed
 a

 m
et

ho
d

si
ze

 t
o

th
e

S
ta

ck
 in

te
rf

ac
e?

+

A
pp

ly
 d

es
ig

n
by

 c
on

tr
ac

t
on

 a
 c

la
ss

 R
ec

ta
ng

le
,

w
it
h

op
er

at
io

ns
 m

ov
e(

)
an

d
re

si
ze

()
.

+
W

ri
te

 c
on

su
m

er
-d

ri
ve

n
co

nt
ra

ct
s

fo
r

a
gi

ve
n

R
ES

T-
A
PI

 .

5.
 D

es
ig

n
by

 C
on

tr
ac

t

D
e
si

g
n

 b
y

C
o

n
tr

a
ct

 (
2

/
2

)
•

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
W

hy
 a

re
 r

ed
un

da
nt

 c
he

ck
s

no
t

a
go

od
 w

ay
 t

o
su

pp
or

t
D

es
ig

n
by

 C
on

tr
ac

t?

+
Yo

u’
re

 a
 p

ro
je

ct
 m

an
ag

er
 f
or

 a
 w

ea
th

er
 f
or

ec
as

ti
ng

 s
ys

te
m

,
w

he
re

 p
er

fo
rm

an
ce

 is
 a

re

al
 is

su
e.

 S
et

-u
p

so
m

e
gu

id
el

in
es

 c
on

ce
rn

in
g

as
se

rt
io

n
m

on
it
or

in
g

an
d

ar
gu

e
yo

ur

ch
oi

ce
.

+
If

 y
ou

 h
av

e
to

 b
uy

 a
 c

la
ss

 f
ro

m
 a

n
ou

ts
ou

rc
er

 in
 I

nd
ia

,
w

ou
ld

 y
ou

 p
re

fe
r

a
st

ro
ng

pr

ec
on

di
ti
on

 o
ve

r
a

w
ea

k
on

e?
 A

nd
 w

ha
t

ab
ou

t
th

e
po

st
co

nd
it
io

n?

+
D

o
yo

u
fe

el
 t

ha
t

de
si

gn
 b

y
co

nt
ra

ct
 y

ie
ld

s
so

ft
w

ar
e

sy
st

em
s

th
at

 a
re

 d
ef

ec
t

fr
ee

?
If

yo

u
do

,
ar

gu
e

w
hy

.
If

 y
ou

 d
on

’t
,

ar
gu

e
w

hy
 it

 is
 s

ti
ll

us
ef

ul
.

+
H

ow
 c

an
 y

ou
 e

ns
ur

e
th

e
qu

al
it
y

of
 t

he
 p

re
-

an
d

po
st

co
nd

it
io

ns
?

+
W

hy
 is

 (
co

ns
um

er
-d

ri
ve

n)
 c

on
tr

ac
t

te
st

in
g

so
 r

el
ev

an
t

in
 t

he
 c

on
te

xt
 o

f
m

ic
ro

-
se

rv
ic

es
?

+
A
ss

um
e

yo
u

ha
ve

 a
n

ex
is

ti
ng

 s
of

tw
ar

e
sy

st
em

 a
nd

 y
ou

 a
re

 a
 s

of
tw

ar
e

qu
al

it
y

en
gi

ne
er

 a
ss

ig
ne

d
to

 a
pp

ly
 d

es
ig

n
by

 c
on

tr
ac

t.
 H

ow
 w

ou
ld

 y
ou

 s
ta

rt
?

W
ha

t
w

ou
ld

 y
ou

do

?

12

6.
Te

st
in

g

6
.T

e
st

in
g

 (
1

/
2

)
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

•
W

ha
t

is
 (

a)
 T

es
ti
ng

,
(b

)
a

Te
st

in
g

Te
ch

ni
qu

e,
 (

c)
 a

 T
es

ti
ng

 S
tr

at
eg

y
•

W
ha

t
is

 t
he

 d
iff

er
en

ce
 b

et
w

ee
n

an
 e

rr
or

,
a

fa
ilu

re
 a

nd
 a

 d
ef

ec
t?

•

W
ha

t
is

 a
 t

es
t

ca
se

?
A
 t

es
t

st
ub

?
A
 t

es
t

dr
iv

er
?

A
 t

es
t

fix
tu

re
?

•
W

ha
t

ar
e

th
e

di
ff
er

en
ce

s
an

d
si

m
ila

ri
ti
es

 b
et

w
ee

n
ba

si
s

pa
th

 t
es

ti
ng

,
co

nd
it
io

n
te

st
in

g
an

d
lo

op
 t

es
ti
ng

?
•

H
ow

 m
an

y
te

st
s

sh
ou

ld
 y

ou
 w

ri
te

 t
o

ac
hi

ev
e

M
C
/D

C
 c

ov
er

ag
e?

 A
nd

 m
ul

ti
pl

e
co

nd
it
io

n
co

ve
ra

ge
?

•
W

he
re

 d
o

yo
u

si
tu

at
e

al
ph

a/
be

ta
 t

es
ti
ng

 in
 t

he
 f
ou

r
qu

ad
ra

nt
s

m
od

el
?

•
W

ha
t

ar
e

th
e

di
ff
er

en
ce

s
an

d
si

m
ila

ri
ti
es

 b
et

w
ee

n
un

it
 t

es
ti
ng

 a
nd

 r
eg

re
ss

io
n

te
st

in
g?

•

H
ow

 d
o

yo
u

kn
ow

 w
he

n
yo

u
te

st
ed

 e
no

ug
h?

•

W
ha

t
is

 A
lp

ha
-t

es
ti
ng

 a
nd

 B
et

a-
Te

st
in

g?
 W

he
n

is
 it

 u
se

d?

•
W

ha
t

is
 t

he
 d

iff
er

en
ce

 b
et

w
ee

n
st

re
ss

-t
es

ti
ng

 a
nd

 p
er

fo
rm

an
ce

 t
es

ti
ng

?

Yo
u

sh
ou

ld
 b

e
ab

le
 t

o
co

m
pl

et
e

th
e

fo
llo

w
in

g
ta

sk
s

•
C
om

pl
et

e
te

st
 c

as
es

 f
or

 t
he

 L
oo

p
Te

st
in

g
ex

am
pl

e
(L

oo
p

Te
st

in
g

on
 p

ag
e

19
).

•

R
ew

ri
te

 t
he

 b
in

ar
y

se
ar

ch
 s

o
th

at
 b

as
is

 p
at

h
te

st
in

g
an

d
lo

op
 t

es
ti
ng

 b
ec

om
es

 e
as

ie
r.

•
W

ri
te

 a
 p

ie
ce

 o
f
co

de
 im

pl
em

en
ti
ng

 a
 q

ui
ck

so
rt

.
A
pp

ly
 a

ll
te

st
in

g
te

ch
ni

qu
es

 (
ba

si
s

pa
th

te

st
in

g,
 c

on
di

ti
on

al
 t

es
ti
ng

 [
3

va
ri
an

ts
],

 lo
op

 t
es

ti
ng

,
eq

ui
va

le
nc

e
pa

rt
it
io

ni
ng

)
to

 d
er

iv
e

ap
pr

op
ri
at

e
te

st
 c

as
es

.

•
W

ri
te

 F
IT

 t
es

t
ca

se
s

fo
r

th
e

us
er

 s
to

ri
es

 in
 y

ou
 B

ac
he

lo
r

C
ap

st
on

e
Pr

oj
ec

t
•

A
pp

ly
 f
uz

z
te

st
in

g
to

 t
he

 R
ES

T-
A
PI

 o
f
yo

ur
 p

ro
je

ct

13

C
A

P
S

T
O

N
E
 P

R
O

JE
C

T

6.
Te

st
in

g

T
e
st

in
g

 (
2

/
2

)
C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
Yo

u’
re

 r
es

po
ns

ib
le

 f
or

 s
et

ti
ng

 u
p

a
te

st
 p

ro
gr

am
.

To
 w

ho
m

 w
ill

 y
ou

 a
ss

ig
n

th
e

re
sp

on
si

bi
lit

y
to

 w
ri
te

 t
es

ts
?

W
hy

?
•

W
hy

 d
o

w
e

di
st

in
gu

is
h

be
tw

ee
n

se
ve

ra
l l

ev
el

s
of

 t
es

ti
ng

 in
 t

he
 V

-m
od

el
?

•
Ex

pl
ai

n
w

hy
 b

as
is

 p
at

h
te

st
in

g,
 c

on
di

ti
on

 t
es

ti
ng

 a
nd

 lo
op

 t
es

ti
ng

 c
om

pl
em

en
t

ea
ch

ot

he
r.

•
W

hy
 is

 m
ut

at
io

n
co

ve
ra

ge
 a

 b
et

te
r

cr
it
er

io
n

fo
r

as
se

ss
in

g
th

e
st

re
ng

th
 o

f
a

te
st

 s
ui

te
?

•
Ex

pl
ai

n
fu

zz
in

g
(f

uz
z

te
st

in
g)

 in
 y

ou
r

ow
n

w
or

ds
.

•
Ex

pl
ai

n
w

ha
t

FI
T

ta
bl

es
 a

re
.

•
W

he
n

w
ou

ld
 y

ou
 c

om
bi

ne
 t

op
-d

ow
n

te
st

in
g

w
it
h

bo
tt

om
-u

p
te

st
in

g?
 W

hy
?

•
W

he
n

w
ou

ld
 y

ou
 c

om
bi

ne
 b

la
ck

-b
ox

 t
es

ti
ng

 w
it
h

w
hi

te
-b

ox
 t

es
ti
ng

?
W

hy
?

•
Is

 it
 w

or
th

w
hi

le
 t

o
ap

pl
y

w
hi

te
-b

ox
 t

es
ti
ng

 in
 a

n
O

O
 c

on
te

xt
?

•
W

ha
t

m
ak

es
 r

eg
re

ss
io

n
te

st
in

g
im

po
rt

an
t?

•

Is
 it

 a
cc

ep
ta

bl
e

to
 d

el
iv

er
 a

 s
ys

te
m

 t
ha

t
is

 n
ot

 1
00

%
 r

el
ia

bl
e?

 W
hy

 (
no

t)
?

•
Ex

pl
ai

n
th

e
su

bt
le

 d
iff

er
en

ce
 b

et
w

ee
n

co
de

 c
ov

er
ag

e
an

d
te

st
 c

ov
er

ag
e.

14

7.
Fo

rm
al

 S
pe

ci
fic

at
io

ns

7
.F

o
rm

a
l
S

p
e
ci

fi
ca

ti
o

n
s

(1
/

2
)

15

Yo
u

sh
ou

ld
 k

no
w

 t
he

 a
ns

w
er

s
to

 t
he

se
 q

ue
st

io
ns

•

W
hy

 is
 a

n
U

M
L

cl
as

s
di

ag
ra

m
 a

 s
em

i-
fo

rm
al

 s
pe

ci
fic

at
io

n?

•
W

ha
t

is
 a

n
au

to
m

at
ed

 t
he

or
em

 p
ro

ve
r?

•

W
ha

t
is

 t
he

 d
is

ti
nc

ti
on

 b
et

w
ee

n
“p

ar
ti
al

ly
 c

or
re

ct
”

an
d

“t
ot

al
ly

 c
or

re
ct

”?

•
G

iv
e

th
e

m
at

he
m

at
ic

al
 d

ef
in

it
io

n
fo

r
th

e
w

ea
ke

st
 p

re
co

nd
it
io

n
of

 H
oa

re
 t

ri
pl

e
{P

}
S
 {

Q
}

•
W

hy
 is

 it
 n

ec
es

sa
ry

 t
o

co
m

pl
em

en
t

se
qu

en
ce

 d
ia

gr
am

s
w

it
h

st
at

ec
ha

rt
s?

•

W
ha

t
is

 t
he

 n
ot

at
io

n
fo

r
th

e
st

ar
t

an
d

te
rm

in
at

io
n

st
at

e
on

 a
 s

ta
te

-c
ha

rt
?

W
ha

t
is

 t
he

no

ta
ti
on

 f
or

 a
 g

ua
rd

 e
xp

re
ss

io
n

on
 a

n
ev

en
t?

•

W
ha

t
do

es
 it

 m
ea

n
fo

r
a

st
at

ec
ha

rt
 t

o
be

(a

)
co

ns
is

te
nt

,
(b

)
co

m
pl

et
e,

 a
nd

 (
c)

 u
na

m
bi

gu
ou

s?

•
H

ow
 d

oe
s

a
fo

rm
al

 s
pe

ci
fic

at
io

n
co

nt
ri
bu

te
 t

o
th

e
co

rr
ec

tn
es

s
of

 a
 g

iv
en

 s
ys

te
m

?

Yo
u

sh
ou

ld
 b

e
ab

le
 t

o
co

m
pl

et
e

th
e

fo
llo

w
in

g
ta

sk
s

•
U

se
 a

 t
he

or
em

 p
ro

ve
r

(D
ap

hn
y)

 t
o

pr
ov

e
th

at
 a

 g
iv

en
 p

ie
ce

 o
f
co

de
 is

 c
or

re
ct

.
•

C
re

at
e

a
st

at
ec

ha
rt

 s
pe

ci
fic

at
io

n
fo

r
a

gi
ve

n
pr

ob
le

m
.

•
G

iv
en

 a
 s

ta
te

ch
ar

t
sp

ec
ifi

ca
ti
on

,
de

ri
ve

 a
 t

es
t

m
od

el
 u

si
ng

 p
at

h
te

st
in

g.

7.
Fo

rm
al

 S
pe

ci
fic

at
io

ns

Fo
rm

a
l
S

p
e
ci

fi
ca

ti
o

n
s

(2
/

2
)

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
(B

as
ed

 o
n

th
e

ar
ti
cl

e
“A

 F
or

m
al

 A
pp

ro
ac

h
to

 C
on

st
ru

ct
in

g
S
ec

ur
e

A
ir
 V

eh
ic

le
 S

of
tw

ar
e”

.)

+
W

ha
t

is
 a

cc
or

di
ng

 t
o

yo
u

th
e

m
os

t
ef

fe
ct

iv
e

m
ea

ns
 t

o
ac

hi
ev

e
“p

ro
va

bl
y

se
cu

re

ag
ai

ns
t

cy
be

ra
tt

ac
ks

”?

•
W

hy
 is

 it
 li

ke
ly

 t
ha

t
yo

u
w

ill
 e

nc
ou

nt
er

 f
or

m
al

 s
pe

ci
fic

at
io

ns
?

•
Ex

pl
ai

n
w

hy
 w

e
ne

ed
 b

ot
h

th
e

lo
op

 v
ar

ia
nt

 a
nd

 t
he

 lo
op

 in
va

ri
an

t
fo

r
pr

ov
in

g
to

ta
l

co
rr

ec
tn

es
s

of
 a

 lo
op

?
•

W
ha

t
do

 y
ou

 t
hi

nk
 h

ap
pe

ne
d

w
it
h

th
e

bu
g

re
po

rt
 o

n
th

e
br

ok
en

 J
av

a.
ut

ils
.C

ol
le

ct
io

n.
so

rt

()
?

W
hy

 d
o

yo
u

th
in

k
th

is
 h

ap
pe

ne
d?

•

Ex
pl

ai
n

th
e

re
la

ti
on

sh
ip

 b
et

w
ee

n
“D

es
ig

n
B
y

C
on

tr
ac

t”
 o

n
th

e
on

e
ha

nd
 “

S
ta

te
 b

as
ed

sp

ec
ifi

ca
ti
on

s”
 o

n
th

e
ot

he
r

ha
nd

.
•

Ex
pl

ai
n

th
e

re
la

ti
on

sh
ip

 b
et

w
ee

n
“T

es
ti
ng

”
on

 t
he

 o
ne

 h
an

d
an

d
“S

ta
te

 b
as

ed

sp
ec

ifi
ca

ti
on

s”
 o

n
th

e
ot

he
r

ha
nd

.
•

Yo
u

ar
e

pa
rt

 o
f
a

te
am

 b
ui

ld
 a

 f
le

et
 m

an
ag

em
en

t
sy

st
em

 f
or

 d
ro

ne
s

tr
an

sp
or

ti
ng

 m
ed

ic
al

go

od
s

be
tw

ee
n

ho
sp

it
al

s.
 Y

ou
 m

us
t

se
cu

re
 t

he
 s

ys
te

m
 a

ga
in

st
 c

yb
er

-a
tt

ac
ks

.
Yo

ur
 b

os
s

as
ks

 y
ou

 t
o

lo
ok

 in
to

 f
or

m
al

 s
pe

cs
;

w
hi

ch
 o

ne
s

w
ou

ld
 y

ou
 a

dv
is

e
an

d
w

hy
?

16

8.
 D

om
ai

n
M

od
el

lin
g

8
.

D
o

m
a
in

 M
o

d
e
ll
in

g
 (

1
/

2
)

17

•
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

+
W

hy
 is

 it
 n

ec
es

sa
ry

 t
o

va
lid

at
e

an
d

an
al

yz
e

th
e

re
qu

ir
em

en
ts

?
+

W
ha

t’s
 t

he
 d

ec
om

po
si

ti
on

 p
ri
nc

ip
le

 f
or

 f
un

ct
io

na
l a

nd
 o

bj
ec

t-
or

ie
nt

ed
 d

ec
om

po
si

ti
on

?
+

C
an

 y
ou

 g
iv

e
th

e
ad

va
nt

ag
es

 a
nd

 d
is

ad
va

nt
ag

es
 f
or

 f
un

ct
io

na
l d

ec
om

po
si

ti
on

?
W

ha
t

ab
ou

t
ob

je
ct

-o
ri
en

te
d

de
co

m
po

si
ti
on

?
+

H
ow

 c
an

 y
ou

 r
ec

og
ni

ze
 “

go
d

cl
as

se
s”

?
+

W
ha

t
is

 a
 r

es
po

ns
ib

ili
ty

?
W

ha
t

is
 a

 c
ol

la
bo

ra
ti
on

?
+

N
am

e
3

te
ch

ni
qu

es
 t

o
id

en
ti
fy

 r
es

po
ns

ib
ili

ti
es

.

+
W

ha
t

do
 f
ea

tu
re

 m
od

el
s

de
fin

e?

+
G

iv
e

tw
o

ad
va

nt
ag

es
 a

nd
 d

is
ad

va
nt

ag
es

 o
f
a

“c
lo

ne
 a

nd
 o

w
n”

 a
pp

ro
ac

h
+

Ex
pl

ai
n

th
e

m
ai

n
di

ff
er

en
ce

 b
et

w
ee

n
a

so
ci

al
 f
or

k
an

d
a

va
ri
an

t
fo

rk

+
H

ow
 d

oe
s

do
m

ai
n

m
od

el
in

g
he

lp
 t

o
ac

hi
ev

e
co

rr
ec

tn
es

s?
 T

ra
ce

ab
ili

ty
?

•
Yo

u
sh

ou
ld

 b
e

ab
le

 t
o

co
m

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
+

A
pp

ly
 n

ou
n

id
en

ti
fic

at
io

n
&

 v
er

b
id

en
ti
fic

at
io

n
to

 (
a

pa
rt

 o
f)

 a
 r

eq
ui

re
m

en
ts

sp

ec
ifi

ca
ti
on

.
+

C
re

at
e

a
fe

at
ur

e
m

od
el

 f
or

 a
 s

er
ie

s
of

 m
ob

ile
 p

ho
ne

s.

8.
 D

om
ai

n
M

od
el

lin
g

D
o

m
a
in

 M
o

d
e
ll
in

g
 (

2
/

2
)

18

•
C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
H

ow
 d

oe
s

do
m

ai
n

m
od

el
in

g
he

lp
 t

o
va

lid
at

e
an

d
an

al
yz

e
th

e
re

qu
ir
em

en
ts

?
+

W
ha

t’s
 t

he
 p

ro
bl

em
 w

it
h

“g
od

 c
la

ss
es

”?

+
W

hy
 a

re
 m

an
y

re
sp

on
si

bi
lit

ie
s,

 m
an

y
co

lla
bo

ra
to

rs
 a

nd
 d

ee
p

in
he

ri
ta

nc
e

hi
er

ar
ch

ie
s

su
sp

ic
io

us
?

+
C
an

 y
ou

 e
xp

la
in

 h
ow

 r
ol

e-
pl

ay
in

g
w

or
ks

?
D

o
yo

u
th

in
k

it
 h

el
ps

 in
 c

re
at

iv
e

th
in

ki
ng

?
+

C
an

 y
ou

 c
om

pa
re

 U
se

 C
as

es
 a

nd
 C

R
C
 C

ar
ds

 in
 t

er
m

s
of

 t
he

 r
eq

ui
re

m
en

ts

sp
ec

ifi
ca

ti
on

 p
ro

ce
ss

?
+

D
o

C
R
C
 c

ar
ds

 y
ie

ld
 t

he
 b

es
t

po
ss

ib
le

 c
la

ss
 d

es
ig

n?
 W

hy
 n

ot
?

+
W

hy
 a

re
 C

R
C
 c

ar
ds

 m
ai

nt
ai

ne
d

w
it
h

pa
pe

r
an

d
pe

nc
il

in
st

ea
d

of
 e

le
ct

ro
ni

ca
lly

?
+

W
ha

t
w

ou
ld

 b
e

th
e

m
ai

n
be

ne
fit

s
fo

r
th

in
ki

ng
 in

 t
er

m
s

of
 “

sy
st

em
 f
am

ili
es

”
in

st
ea

d
of

“o

ne
-o

f-
a-

ki
nd

 d
ev

el
op

m
en

t?
 W

ha
t

w
ou

ld
 b

e
th

e
m

ai
n

di
sa

dv
an

ta
ge

s?

+
C
an

 y
ou

 a
pp

ly
 s

cr
um

 t
o

de
ve

lo
p

a
pr

od
uc

t
lin

e?
 A

rg
ue

 y
ou

r
ca

se
.

9.
 S

of
tw

ar
e

Q
ua

lit
y

9
.

S
o

ft
w

a
re

 Q
u

a
li
ty

 (
1

/
2

)
Yo

u
sh

ou
ld

 k
no

w
 t

he
 a

ns
w

er
s

to
 t

he
se

 q
ue

st
io

ns

•
W

hy
 is

 s
of

tw
ar

e
qu

al
it
y

m
or

e
im

po
rt

an
t

th
an

 it
 w

as
 a

 d
ec

ad
e

ag
o?

•

C
an

 a
 c

or
re

ct
ly

 f
un

ct
io

ni
ng

 p
ie

ce
 o

f
so

ft
w

ar
e

st
ill

 h
av

e
po

or
 q

ua
lit

y?
 W

hy
?

•
If

 q
ua

lit
y

co
nt

ro
l c

an
’t
 g

ua
ra

nt
ee

 r
es

ul
ts

,
w

hy
 d

o
w

e
bo

th
er

?
•

W
ha

t’s
 t

he
 d

iff
er

en
ce

 b
et

w
ee

n
an

 e
xt

er
na

l a
nd

 a
n

in
te

rn
al

 q
ua

lit
y

at
tr

ib
ut

e?
 A

nd

be
tw

ee
n

a
pr

od
uc

t
an

d
a

pr
oc

es
s

at
tr

ib
ut

e?

•
W

ha
t’s

 t
he

 d
is

ti
nc

ti
on

 b
et

w
ee

n
co

rr
ec

tn
es

s,
 r

el
ia

bi
lit

y
an

d
ro

bu
st

ne
ss

?
•

H
ow

 c
an

 y
ou

 e
xp

re
ss

 t
he

 “
us

er
 f
ri
en

dl
in

es
s”

 o
f
a

sy
st

em
?

•
C
an

 y
ou

 n
am

e
th

re
e

di
st

in
ct

 r
ef

in
em

en
ts

 o
f
“m

ai
nt

ai
na

bi
lit

y”
?

W
ha

t
do

 e
ac

h
of

 t
he

se

na
m

es
 m

ea
n?

•

W
ha

t
is

 m
ea

nt
 w

it
h

“s
ho

rt
 t

im
e

to
 m

ar
ke

t”
?

C
an

 y
ou

 n
am

e
3

re
la

te
d

qu
al

it
y

at
tr

ib
ut

es

an
d

pr
ov

id
e

de
fin

it
io

ns
 f
or

 e
ac

h
of

 t
he

m
?

•
N

am
e

fo
ur

 t
hi

ng
s

w
hi

ch
 s

ho
ul

d
be

 r
ec

or
de

d
in

 t
he

 r
ev

ie
w

 m
in

ut
es

.
•

Ex
pl

ai
n

br
ie

fly
 t

he
 t

hr
ee

 it
em

s
th

at
 s

ho
ul

d
be

 in
cl

ud
ed

 in
 a

 q
ua

lit
y

pl
an

.
•

W
ha

t’s
 t

he
 r

el
at

io
ns

hi
p

be
tw

ee
n

IS
O

90
01

,
C
M

M
I

st
an

da
rd

s
an

d
an

 o
rg

an
iz

at
io

n’
s

qu
al

it
y

sy
st

em
?

H
ow

 d
o

yo
u

ge
t

ce
rt

ifi
ed

?
•

C
an

 y
ou

 n
am

e
an

d
de

fin
e

th
e

5
le

ve
ls

 o
f
C
M

M
I?

•

W
he

re
 w

ou
ld

 “
us

e-
ca

se
s”

 a
s

de
fin

ed
 in

 c
ha

pt
er

 3
 f
it
 in

 t
he

 t
ab

le
 o

f
co

re
 p

ro
ce

ss
 a

re
as

(p

.
32

)?
 M

ot
iv

at
e

yo
ur

 a
ns

w
er

 s
ho

rt
ly

.

19

9.
 S

of
tw

ar
e

Q
ua

lit
y

S
o

ft
w

a
re

 Q
u

a
li
ty

 (
2

/
2

)
Yo

u
sh

ou
ld

 b
e

ab
le

 t
o

co
m

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
•

G
iv

en
 a

 p
ie

ce
 o

f
co

de
 a

nd
 a

 c
od

in
g

st
an

da
rd

,
re

vi
ew

 t
he

 c
od

e
to

 v
er

ify
 w

he
th

er
 t

he

st
an

da
rd

 h
as

 b
ee

n
ad

he
re

d
to

.

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
G

iv
en

 t
he

 Q
ua

lit
y

A
tt

ri
bu

te
s

O
ve

rv
ie

w
 t

ab
le

,
ar

gu
e

w
hy

 t
he

 c
ro

ss
es

 a
nd

 b
la

nk
s

oc
cu

r
at

th

e
gi

ve
n

po
si

ti
on

s.

•
W

hy
 d

o
qu

al
it
y

st
an

da
rd

s
fo

cu
s

on
 p

ro
ce

ss
 a

nd
 in

te
rn

al
 a

tt
ri
bu

te
s

in
st

ea
d

of
 t

he
 d

es
ir
ed

ex

te
rn

al
 p

ro
du

ct
 a

tt
ri
bu

te
s?

•

W
hy

 d
o

yo
u

ne
ed

 a
 q

ua
lit

y
pl

an
?

W
hi

ch
 t

op
ic

s
sh

ou
ld

 b
e

co
ve

re
d

in
 s

uc
h

a
pl

an
?

•
H

ow
 s

ho
ul

d
yo

u
or

ga
ni

ze
 a

nd
 r

un
 a

 r
ev

ie
w

 m
ee

ti
ng

?
•

W
hy

 a
re

 c
od

in
g

st
an

da
rd

s
im

po
rt

an
t?

•

W
ha

t
w

ou
ld

 y
ou

 in
cl

ud
e

in
 a

 d
oc

um
en

ta
ti
on

 r
ev

ie
w

 c
he

ck
lis

t?

•
H

ow
 o

ft
en

 s
ho

ul
d

re
vi

ew
s

by
 s

ch
ed

ul
ed

?
•

C
ou

ld
 y

ou
 c

re
at

e
a

re
vi

ew
 c

he
ck

-l
is

t
fo

r
AT

A
M

?
•

W
ou

ld
 y

ou
 t

ru
st

 s
of

tw
ar

e
fr

om
 a

n
IS

O
 9

00
0

ce
rt

ifi
ed

 c
om

pa
ny

?
A
nd

 if
 it

 w
er

e
C
M

M
I?

•

Yo
u

ar
e

su
pp

os
ed

 t
o

de
ve

lo
p

a
qu

al
it
y

sy
st

em
 f
or

 y
ou

r
or

ga
ni

za
ti
on

.
W

ha
t

w
ou

ld
 y

ou

in
cl

ud
e?

•

W
he

re
 w

ou
ld

 “
te

st
in

g”
 f
it
 in

 t
he

 t
ab

le
 o

f
co

re
 p

ro
ce

ss
 a

re
as

 (
p.

 3
2)

.
D

oe
s

it
 c

ov
er

 a

si
ng

le
 r

ow
 o

r
no

t?
 A

rg
ue

 w
hy

 (
no

t)
?

20

10
.S

of
tw

ar
e

M
et

ri
cs

1
0

.S
o

ft
w

a
re

 M
e
tr

ic
s

(1
/

2
)

Yo
u

sh
ou

ld
 k

no
w

 t
he

 a
ns

w
er

s
to

 t
he

se
 q

ue
st

io
ns

•

C
an

 y
ou

 g
iv

e
th

re
e

po
ss

ib
le

 p
ro

bl
em

s
of

 m
et

ri
cs

 u
sa

ge
 in

 s
of

tw
ar

e
en

gi
ne

er
in

g?
 H

ow

do
es

 t
he

 m
ea

su
re

m
en

t
th

eo
ry

 a
dd

re
ss

 t
he

m
?

•
W

ha
t’s

 t
he

 d
is

ti
nc

ti
on

 b
et

w
ee

n
a

m
ea

su
re

 a
nd

 a
 m

et
ri
c?

•

C
an

 y
ou

 g
iv

e
an

 e
xa

m
pl

e
of

 a
 d

ir
ec

t
an

d
an

 in
di

re
ct

 m
ea

su
re

?
•

W
ha

t
ki

nd
 o

f
m

ea
su

re
m

en
t

sc
al

e
w

ou
ld

 y
ou

 n
ee

d
to

 s
ay

 “
A
 s

pe
ci

fic
at

io
n

er
ro

r
is

 w
or

se

th
an

 a
 d

es
ig

n
er

ro
r”

?
A
nd

 w
ha

t
if

w
e

w
an

t
to

 s
ay

 “
A
 s

pe
ci

fic
at

io
n

er
ro

r
is

 t
w

ic
e

as
 b

ad
 a

s
a

de
si

gn
 e

rr
or

?”

•
Ex

pl
ai

n
th

e
ne

ed
 f
or

 a
 c

al
ib

ra
ti
on

 f
ac

to
r

in
 P

ut
na

m
’s

 m
od

el
.

•
Fi

ll
in

 t
he

 b
la

nk
s

in
 t

he
 f
ol

lo
w

in
g

se
nt

en
ce

.
Ex

pl
ai

n
br

ie
fly

,
ba

se
d

on
 t

he
 P

ut
na

m
’s

m

od
el

.
+

If
 y

ou
 w

an
t

to
 f
in

is
h

ea
rl
ie

r
(=

 d
ec

re
as

e
sc

he
du

le
d

ti
m

e)
,

yo
u

sh
ou

ld
 .

..
 t

he
 e

ff
or

t
..

.
.

•
G

iv
e

th
re

e
m

et
ri
cs

 f
or

 m
ea

su
ri
ng

 s
iz

e
of

 a
 s

of
tw

ar
e

pr
od

uc
t.

•

D
is

cu
ss

 t
he

 m
ai

n
ad

va
nt

ag
es

 a
nd

 d
is

ad
va

nt
ag

es
 o

f
Fu

nc
ti
on

 P
oi

nt
s.

•

W
ha

t
do

es
 it

 m
ea

n
fo

r
a

co
up

lin
g

m
et

ri
c

no
t

to
 s

at
is

fy
 t

he
 r

ep
re

se
nt

at
io

n
co

nd
it
io

n?

•
C
an

 y
ou

 g
iv

e
3

ex
am

pl
es

 o
f
im

pr
ec

is
en

es
s

in
 L

in
es

 o
f
C
od

e
m

ea
su

re
m

en
ts

?

Yo
u

sh
ou

ld
 b

e
ab

le
 t

o
co

m
pl

et
e

th
e

fo
llo

w
in

g
ta

sk
s

•
G

iv
en

 a
 s

et
 o

f
us

e
ca

se
s

(i
.e

.
yo

ur
 p

ro
je

ct
)

ca
lc

ul
at

e
th

e
us

e
ca

se
 p

oi
nt

s.

•
G

iv
en

 a
 s

et
 o

f
us

er
 s

to
ri
es

,
pe

rf
or

m
 a

 p
ok

er
 p

la
nn

in
g

se
ss

io
n.

21

C
A

P
S

T
O

N
E
 P

R
O

JE
C

T

10
.S

of
tw

ar
e

M
et

ri
cs

S
o

ft
w

a
re

 M
e
tr

ic
s

(2
/

2
)

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
D

ur
in

g
w

hi
ch

 p
ha

se
s

in
 a

 s
of

tw
ar

e
pr

oj
ec

t
w

ou
ld

 y
ou

 u
se

 m
et

ri
cs

?
•

W
hy

 is
 it

 s
o

im
po

rt
an

t
to

 h
av

e
“g

oo
d”

 p
ro

du
ct

 s
iz

e
m

et
ri
cs

?
•

C
an

 y
ou

 e
xp

la
in

 t
he

 t
w

o
le

ve
ls

 o
f
ca

lib
ra

ti
on

 in
 C

O
C
O

M
O

 (
i.e

.
C
 &

 S
 v

s.
 M

)?
 H

ow
 c

an

yo
u

de
ri
ve

 a
ct

ua
l v

al
ue

s
fo

r
th

es
e

pa
ra

m
et

er
s?

•

C
an

 y
ou

 m
ot

iv
at

e
w

hy
 in

 s
of

tw
ar

e
en

gi
ne

er
in

g,
 p

ro
du

ct
iv

it
y

de
pe

nd
s

on
 t

he
 s

ch
ed

ul
ed

ti
m

e?
 D

o
yo

u
ha

ve
 a

n
ex

pl
an

at
io

n
fo

r
it
?

•
C
an

 y
ou

 e
xp

la
in

 t
he

 c
on

e
of

 u
nc

er
ta

in
ty

?
A
nd

 w
hy

 is
 it

 s
o

re
le

va
nt

 t
o

co
st

 e
st

im
at

io
n

in

so
ft

w
ar

e
pr

oj
ec

ts
?

•
H

ow
 c

an
 y

ou
 d

ec
re

as
e

th
e

un
ce

rt
ai

nt
y

of
 a

 p
ro

je
ct

 b
id

 u
si

ng
 P

ut
na

m
’s

 m
od

el
?

•
W

hy
 d

o
w

e
pr

ef
er

 m
ea

su
ri
ng

 I
nt

er
na

l P
ro

du
ct

 A
tt

ri
bu

te
s

in
st

ea
d

of
 E

xt
er

na
l P

ro
du

ct

A
tt

ri
bu

te
s

du
ri
ng

 Q
ua

lit
y

C
on

tr
ol

?
W

ha
t

is
 t

he
 m

ai
n

di
sa

dv
an

ta
ge

 o
f
do

in
g

th
at

?
•

Yo
u

ar
e

a
pr

oj
ec

t
m

an
ag

er
 a

nd
 y

ou
 w

an
t

to
 c

on
vi

nc
e

yo
ur

 p
ro

je
ct

 t
ea

m
 t

o
ap

pl
y

al
go

ri
th

m
ic

 c
os

t
m

od
el

in
g.

 H
ow

 w
ou

ld
 y

ou
 e

xp
la

in
 t

he
 t

ec
hn

iq
ue

?
•

W
he

re
 w

ou
ld

 y
ou

 f
it
 c

ou
pl

in
g/

co
he

si
on

 m
et

ri
cs

 in
 a

 h
ie

ra
rc

hi
ca

l q
ua

lit
y

m
od

el
 li

ke
 I

S
O

91

26
?

•
W

hy
 a

re
 c

ou
pl

in
g/

co
he

si
on

 m
et

ri
cs

 im
po

rt
an

t?
 W

hy
 t

he
n

ar
e

th
ey

 s
o

ra
re

ly
 u

se
d?

•

D
o

yo
u

be
lie

ve
 t

ha
t

“d
ef

ec
t

de
ns

it
y”

 s
ay

s
so

m
et

hi
ng

 a
bo

ut
 t

he
 c

or
re

ct
ne

ss
 o

f
a

pr
og

ra
m

?
M

ot
iv

at
e

yo
ur

 a
ns

w
er

?

22

11
.R

ef
ac

to
ri
ng

1
1

.R
e
fa

ct
o

ri
n

g
 (

1
/

2
)

Yo
u

sh
ou

ld
 k

no
w

 t
he

 a
ns

w
er

s
to

 t
he

se
 q

ue
st

io
ns

:
•

C
an

 y
ou

 e
xp

la
in

 h
ow

 r
ef

ac
to

ri
ng

 d
iff

er
s

fr
om

 p
la

in
 c

od
in

g?

•
C
an

 y
ou

 t
el

l t
he

 d
iff

er
en

ce
 b

et
w

ee
n

C
or

re
ct

iv
e,

 A
da

pt
iv

e
an

d
Pe

rf
ec

ti
ve

 m
ai

nt
en

an
ce

?
A
nd

 h
ow

 a
bo

ut
 p

re
ve

nt
iv

e
m

ai
nt

en
an

ce
?

•
C
an

 y
ou

 n
am

e
th

e
th

re
e

ph
as

es
 o

f
th

e
it
er

at
iv

e
de

ve
lo

pm
en

t
lif

e-
cy

cl
e?

 W
hi

ch
 o

f
th

e
th

re
e

do
es

 r
ef

ac
to

ri
ng

 s
up

po
rt

 t
he

 b
es

t?
 W

hy
 d

o
yo

u
sa

y
so

?
•

C
an

 y
ou

 g
iv

e
4

sy
m

pt
om

s
fo

r
co

de
 t

ha
t

ca
n

be
 “

cu
re

d”
 v

ia
 r

ef
ac

to
ri
ng

?
•

C
an

 y
ou

 e
xp

la
in

 w
hy

 a
dd

 c
la

ss
/a

dd
 m

et
ho

d/
ad

d
at

tr
ib

ut
e

ar
e

be
ha

vi
ou

r
pr

es
er

vi
ng

?
•

C
an

 y
ou

 g
iv

e
th

e
pr

e-
co

nd
it
io

ns
 f
or

 a
 “

re
na

m
e

m
et

ho
d”

 r
ef

ac
to

ri
ng

?
•

W
hi

ch
 4

 a
ct

iv
it
ie

s
sh

ou
ld

 b
e

su
pp

or
te

d
by

 t
oo

ls
 w

he
n

re
fa

ct
or

in
g?

•

W
hy

 c
an

’t
 w

e
ap

pl
y

a
“p

us
h

up
”

to
 a

 m
et

ho
d

“x
()

”
w

hi
ch

 a
cc

es
se

s
an

 a
tt

ri
bu

te
 in

 t
he

cl

as
s

th
e

m
et

ho
d

is
 d

ef
in

ed
 u

po
n

(s
ee

 R
ef

ac
to

ri
ng

 S
eq

ue
nc

e
on

 p
ag

e
27

–3
1)

?
Yo

u
sh

ou
ld

 b
e

ab
le

 t
o

co
m

pl
et

e
th

e
fo

llo
w

in
g

ta
sk

s
•

Tw
o

cl
as

se
s

A
 &

 B
 h

av
e

a
co

m
m

on
 p

ar
en

t
cl

as
s

X
.

C
la

ss
 A

 d
ef

in
es

 a
 m

et
ho

d
a(

)
an

d
cl

as
s

B
 a

 m
et

ho
d

b(
)

an
d

th
er

e
is

 a
 la

rg
e

po
rt

io
n

of
 d

up
lic

at
ed

 c
od

e
be

tw
ee

n
th

e
tw

o
m

et
ho

ds
.

G
iv

e
a

se
qu

en
ce

 o
f
re

fa
ct

or
in

gs
 t

ha
t

m
ov

es
 t

he
 d

up
lic

at
ed

 c
od

e
in

 a
 s

ep
ar

at
e

m
et

ho
d

x(
)

de
fin

ed
 o

n
th

e
co

m
m

on
 s

up
er

cl
as

s
X
.

•
W

ha
t

w
ou

ld
 y

ou
 d

o
in

 t
he

 a
bo

ve
 s

it
ua

ti
on

 if
 t

he
 d

up
lic

at
ed

 c
od

e
in

 t
he

 m
et

ho
ds

 a
()

 a
nd

b(

)
ar

e
th

e
sa

m
e

ex
ce

pt
 f
or

 t
he

 n
am

e
an

d
ty

pe
 o

f
a

th
ir
d

ob
je

ct
 w

hi
ch

 t
he

y
de

le
ga

te

re
sp

on
si

bi
lit

ie
s

to
o?

•
M

on
it
or

 t
he

 t
ec

hn
ic

al
 d

eb
t

of
 y

ou
 b

ac
he

lo
r

ca
ps

to
ne

 p
ro

je
ct

.

23

C
A

P
S

T
O

N
E
 P

R
O

JE
C

T

11
.R

ef
ac

to
ri
ng

R
e
fa

ct
o

ri
n

g
 (

2
/

2
)

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

•
W

hy
 w

ou
ld

 y
ou

 u
se

 r
ef

ac
to

ri
ng

 in
 c

om
bi

na
ti
on

 w
it
h

D
es

ig
n

by
 C

on
tr

ac
t

an
d

R
eg

re
ss

io
n

Te
st

in
g?

•

C
an

 y
ou

 g
iv

e
an

 e
xa

m
pl

e
of

 a
 s

eq
ue

nc
e

of
 r

ef
ac

to
ri
ng

s
th

at
 w

ou
ld

 im
pr

ov
e

a
pi

ec
e

of

co
de

 w
it
h

de
ep

ly
 n

es
te

d
co

nd
it
io

na
ls

?
•

H
ow

 w
ou

ld
 y

ou
 r

ef
ac

to
r

a
la

rg
e

m
et

ho
d?

 A
nd

 a
 la

rg
e

cl
as

s?

•
C
on

si
de

r
an

 in
he

ri
ta

nc
e

re
la

ti
on

sh
ip

 b
et

w
ee

n
a

su
pe

rc
la

ss
 “

S
qu

ar
e”

 a
nd

 a
 s

ub
cl

as
s

“R
ec

ta
ng

le
”.

 H
ow

 w
ou

ld
 y

ou
 r

ef
ac

to
r

th
es

e
cl

as
se

s
to

 e
nd

 u
p

w
it
h

a
tr

ue
 “

is
-a

”
re

la
ti
on

sh
ip

?
C
an

 y
ou

 g
en

er
al

is
e

th
is

 p
ro

ce
du

re
 t

o
an

y
ab

us
iv

e
in

he
ri
ta

nc
e

re
la

ti
on

sh
ip

?

24

12
.C

on
cl

us
io

n

1
2

.C
o

n
cl

u
si

o
n

 (
1

/
2

)
•

Yo
u

sh
ou

ld
 k

no
w

 t
he

 a
ns

w
er

s
to

 t
he

se
 q

ue
st

io
ns

+

N
am

e
3

it
em

s
fr

om
 t

he
 c

od
e

of
 e

th
ic

s
an

d
pr

ov
id

e
a

on
e-

lin
e

ex
pl

an
at

io
n.

+

If
 y

ou
 a

re
 a

n
in

de
pe

nd
en

t
co

ns
ul

ta
nt

,
ho

w
 c

an
 y

ou
 e

ns
ur

e
th

at
 y

ou
 w

ill
 n

ot
 h

av
e

to

ac
t

ag
ai

ns
t

th
e

co
de

 o
f
et

hi
cs

?
+

W
ha

t
w

ou
ld

 b
e

a
po

ss
ib

le
 m

et
ri
c

fo
r

m
ea

su
ri
ng

 t
he

 a
m

ou
nt

 o
f
in

no
va

ti
on

 o
f
a

m
an

uf
ac

tu
ri
ng

 c
om

pa
ny

?
+

Ex
pl

ai
n

th
e

2
m

ai
n

st
ep

s
of

 t
es

t
am

pl
ifi

ca
ti
on

:
in

pu
t

am
pl

ifi
ca

ti
on

 a
nd

 a
ss

er
ti
on

am

pl
ifi

ca
ti
on

W
h

e
n

 y
o

u
 c

h
o

se
 t

h
e
 “

N
o

 S
il
ve

r
B

u
ll
e
t”

 p
a
p

e
r

•
W

ha
t’s

 t
he

 d
is

ti
nc

ti
on

 b
et

w
ee

n
es

se
nt

ia
l a

nd
 a

cc
id

en
ta

l c
om

pl
ex

it
y?

•

N
am

e
3

re
as

on
s

w
hy

 t
he

 b
ui

ld
in

g
of

 s
of

tw
ar

e
is

 e
ss

en
ti
al

ly
 a

 h
ar

d
ta

sk
?

Pr
ov

id
e

a
on

e-
lin

e
ex

pl
an

at
io

n.

•
W

hy
 is

 “
ob

je
ct

-o
ri
en

te
d

pr
og

ra
m

m
in

g”
 n

o
si

lv
er

 b
ul

le
t?

•

W
hy

 is
 “

pr
og

ra
m

 v
er

ifi
ca

ti
on

”
no

 s
ilv

er
 b

ul
le

t?

•
W

hy
 a

re
 “

co
m

po
ne

nt
s”

 a
 p

ot
en

ti
al

 s
ilv

er
 b

ul
le

t?

W
h

e
n

 y
o

u
 c

h
o

se
 t

h
e
 “

K
il
le

r
R

o
b

o
t”

 p
a
p

e
r

•
W

hi
ch

 r
eg

re
ss

io
n

te
st

s
w

ou
ld

 y
ou

 h
av

e
w

ri
tt

en
 t

o
pr

ev
en

t
th

e
“k

ill
er

 r
ob

ot
”?

•

W
as

 c
od

e
re

vi
ew

in
g

ap
pl

ie
d

as
 p

ar
t

of
 t

he
 Q

A
 p

ro
ce

ss
?

W
hy

 (
no

t)
?

•
W

hy
 w

as
 t

he
 w

at
er

fa
ll

pr
oc

es
s

di
sa

st
ro

us
 in

 t
hi

s
pa

rt
ic

ul
ar

 c
as

e?

•
W

hy
 w

as
 t

he
 u

se
r-

in
te

rf
ac

e
de

si
gn

 f
la

w
ed

?

25

12
.C

on
cl

us
io

n

C
o

n
cl

u
si

o
n

 (
2

/
2

)
•

C
an

 y
ou

 a
ns

w
er

 t
he

 f
ol

lo
w

in
g

qu
es

ti
on

s?

+
Yo

u
ar

e
an

 e
xp

er
ie

nc
ed

 d
es

ig
ne

r
an

d
yo

u
he

ar
d

th
at

 t
he

 s
al

es
 p

eo
pl

e
ea

rn
 m

or
e

m
on

ey
 t

ha
n

yo
u

do
.

Yo
u

w
an

t
to

 a
sk

 y
ou

r
bo

ss
 f
or

 a
 s

al
ar

y-
in

cr
ea

se
;

ho
w

 w
ou

ld
 y

ou

ar
gu

e
yo

ur
 c

as
e?

+

S
of

tw
ar

e
pr

od
uc

ts
 a

re
 u

su
al

ly
 r

el
ea

se
d

w
it
h

a
di

sc
la

im
er

 li
ke

 “
C
om

pa
ny

 X
 is

 n
ot

re

sp
on

si
bl

e
fo

r
er

ro
rs

 r
es

ul
ti
ng

 f
ro

m
 t

he
 u

se
 o

f
th

is
 p

ro
gr

am
”.

 D
oe

s
th

is
 m

ea
n

th
at

yo

u
sh

ou
ld

n’
t

te
st

 y
ou

r
so

ft
w

ar
e?

 M
ot

iv
at

e
yo

ur
 a

ns
w

er
.

+
Yo

ur
 a

re
 a

 Q
A
 m

an
ag

er
 a

nd
 a

re
 r

eq
ue

st
ed

 t
o

pr
od

uc
e

a
m

on
th

ly
 r

ep
or

t
ab

ou
t

th
e

qu
al

it
y

of
 t

he
 t

es
t

pr
oc

es
s.

 H
ow

 w
ou

ld
 y

ou
 d

o
th

at
?

+
W

hy
 is

 “
ex

pl
ai

na
bl

e
A
rt

ifi
ci

al
 I

nt
el

lig
en

ce
”

so
 im

po
rt

an
t

w
he

n
cr

ea
ti
ng

 b
ot

s
fo

r
so

ft
w

ar
e

en
gi

ne
er

in
g

ta
sk

s?

W
h

e
n

 y
o

u
 c

h
o

se
 t

h
e
 “

N
o

 S
il
ve

r
B

u
ll
e
t”

 p
a
p

e
r

+
Ex

pl
ai

n
w

hy
 in

cr
em

en
ta

l d
ev

el
op

m
en

t
is

 a
 p

ro
m

is
in

g
at

ta
ck

 o
n

co
nc

ep
tu

al
 e

ss
en

ce
.

G
iv

e
ex

am
pl

es
 f
ro

m
 t

he
 d

iff
er

en
t

to
pi

cs
 a

dd
re

ss
ed

 in
 t

he
 c

ou
rs

e.

+
“S

of
tw

ar
e

co
m

po
ne

nt
s”

 a
re

 s
ai

d
to

 b
e

a
pr

om
is

in
g

at
ta

ck
 o

n
co

nc
ep

tu
al

 e
ss

en
ce

.
W

hi
ch

 t
ec

hn
iq

ue
s

in
 t

he
 c

ou
rs

e
ar

e
ap

pl
ic

ab
le

?
W

hi
ch

 t
ec

hn
iq

ue
s

ar
en

’t
?

W
h

e
n

 y
o

u
 c

h
o

se
 t

h
e
 “

K
il
le

r
R

o
b

o
t”

 p
a
p

e
r

+
R
ec

ou
nt

 t
he

 s
to

ry
 o

f
th

e
K
ill

er
 R

ob
ot

 c
as

e.
 L

is
t

th
e

th
re

e
m

os
t

im
po

rt
an

t
ca

us
es

 f
or

th

e
fa

ilu
re

 a
nd

 a
rg

ue
 w

hy
 y

ou
 t

hi
nk

 t
he

se
 a

re
 t

he
 m

os
t

im
po

rt
an

t.

26

