
104 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

BY THE TIME this article appears, I will
have started my 50th year working in infor-
mation technology. At the beginning of my
career, we all thought that the key advances
of the next 50 years would be in rocketry.
But now we know otherwise: it is computers
and software that have changed the world in
ways that none of us ever considered.

What’s the Matter with
You Software People?
I began my career as a circuit designer at
Bell Laboratories. Early in the 1960s, I was
switched, along with many of my peers, from
hardware to software simply because the hard-
ware on our project was � nished long be-
fore the software. This seemed surprising at
the time: How could it be that software was
harder than hardware? It took me a while to
� gure it out, but everything we were doing had
as its unstated goal to move the hard stuff out
of the hardware and into the software. Before
too long, all the complexity was in the soft-
ware. I tried in vain to explain this to vari-
ous project managers, who complained, “The
hardware guys never give me any trouble—
what’s the matter with you software people?”

“What’s the matter with you software peo-
ple?” was a major theme of most of the rest
of the 20th century. In spite of our astonishing
and transformational successes, we obsessed
over our failures—in fact, the literature of
the period is full of failure stories. You never
would have guessed from all the glum retro-
spectives that the very software people who
were being treated as village idiots were in
the process of enabling the global economy,
connecting people and companies across the

world and far above it, and remaking the na-
ture of virtually every business on Earth.

By the 1990s, a signi� cant part of my
practice was litigation support, which was
a natural consequence of raising my rates to
the level that only legal departments could af-
ford. Of course, litigation is all about failure,
so perhaps I was seeing more than my share
of it. Surprisingly, the failures began to look
pretty much alike. Company A contracts to
build a software system for Company B and
is late to � nish, or it goes on beyond its con-
tracted delivery date and the work is can-
celled. B sues A or vice versa, one of them
hires me, and we all obsess over failure for a
while and then settle. In the end, A and B are
poorer, the lawyers and I are slightly richer,
and nothing has changed.

In poring over nearly a billion dollars
worth of software litigation, I came across
no failures due to poor quality, slow re-
sponse time, or unworkable human interface;
all the failures were about lateness. Although
the question “What’s the matter with you
software people?” sounds complicated, the
answer was surprisingly simple: we’re occa-
sionally late.

Get Ready for
Astounding Insight
About this time, I began telling anyone who
would listen that all late projects are the
same. I think I was right about this, although
my explanation at the time was � awed.
I thought all late projects were the same in

All Late Projects
Are the Same
Tom DeMarco

SOUNDING BOARD

continued on p. 103

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 103

SOUNDING BOARD

that they were really estimation fail-
ures, not performance failures. This
was cute but not very accurate at a deep
level because so many projects don’t
really do any estimating at all. Rather,
they propose a goal and then get some-
one to espouse it as an estimate. Deliv-
ery by January of next year? Sure, why
not? This sounds dumb, but so many
� ne software products have been built
after such a start that I’m tired of rail-
ing about the necessity of early accurate
estimation.

I still believe that all late projects
are the same, but for an entirely differ-
ent reason. When I tell you the reason,
you’ll think I’m stating such an obvious
idea that it barely quali� es as an idea at
all. But bear with me…

All projects that � nish late have this
one thing in common: they started
late.

Is that deep or what? A project that
took two years to � nish and needed to
be done by 31 December 2010 should
have been started on 1 January 2009.
It wasn’t—it started in early 2010, so
it � nished late and might have been
judged a failure. If it seems pointless of
me to suggest that the project should
have started earlier, consider the rea-
sons why it didn’t. I can think of three:

 1. Nobody had the guts to kick off the
project until the competition proved
it doable and desirable; by then, the
project was in catch-up mode and
had to be � nished lickety-split.

 2. If the project were started long
enough before its due date to � nish
on time, all involved would have had
to face up to the fact from the begin-
ning that it was going to cost a lot
more than anyone was willing to pay.

 3. No one knew that the project
needed to be done until the window
of opportunity was already closing.

The “window of opportunity” con-
cept explains why Google had to be
the very � rst to build a search engine,
otherwise its competitors would have
gobbled up all the business. Wait a
minute—Google didn’t build the � rst
search engine, you say? It was 15 years
late coming to the party? I suspect the
window of opportunity argument is
nearly always a sham, and reason three
on my list is really a disguised instance
of reason one or two.

Reason one—blindsided by the com-
petition—is a legitimate business fail-
ure. Interestingly, it’s not software de-
veloper failure that’s in question here,
but that of some marketing arm that
got one-upped by superior marketers
in another company. Making a lot of
noise about those software folks who
failed to build the catch-up product fast
enough is just a way to de� ect attention
from what really happened and who is
responsible.

This leaves us with projects that
started late because they didn’t offer
enough value to justify their true cost.
This is garden variety failure, in my
opinion: it happens all the time. If a
project offered a value of 10 times its
estimated cost, no one would care if
the actual cost to get it done were dou-
ble the estimate. On the other hand, if
expected value were only 10 percent
greater than expected cost, lateness
would be a disaster. Yes it would be a
disaster, but instead of obsessing over

“What’s the matter with those software
folks who didn’t deliver on the schedule
we gave them?” we need to ask instead,
“Why did we ever kick off a project
with such marginal expected value?”

T he louder the complaints about
project lateness, the more likely
it is that the project set out to

deliver marginal value and was there-
fore kicked off under the false premise
that it could be completed on the cheap.
What’s really wrong with us software
folks is that we’re continually beating
ourselves up for something that’s some-
body else’s fault.

TOM DEMARCO is a principal of The Atlantic Sys-
tems Guild and the author of numerous books about
system building and the people who do it. Contact
him at tdemarco@systemsguild.com.

NEW DEPARTMENT
Sounding Board is a new feature in IEEE Software that will highlight short opinion
pieces from valuable members of our community: new ideas, interesting challenges,
controversial views, different viewpoints. If you’ve heard of something or someone
that we should invite to be featured here, contact me at kruchten@ieee.org. These
pieces will also be available on the magazine’s website (www.computer.org/
software) for your comments, rebuttals, or disagreements.
 —Philippe Kruchton, Sounding Board editor

NEXT ISSUE:

Algorithms
and Today’s
Practitioner

continued from p. 104

