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Current approaches to cyberresiliency rely on patching 


systems after a vulnerability is discovered. What is needed 


is a clean-slate, mathematically based approach for 


building secure software. We developed new tools based 


on formal methods for building software for unmanned 


air vehicles that is provably secure against cyberattacks.


Researchers (and hackers) have shown that all 
kinds of networked, embedded systems are 
vulnerable to remote cyberattack. Researchers 
at the University of Washington and University 


of California San Diego demonstrated the ability to com-
pletely control an unmodified automobile from a remote 
location.1 Security researchers Charlie Miller and 
Chris Valasek have recently extended this work. Other 
researchers2–4 have been probing for vulnerabilities in 


the communication and avionics systems of commercial 
aircraft, although with questionable success. Above and 
beyond the compromise of classified information, the 
consequences of a successful cyberattack against an air-
craft include loss of life or denial of military capabilities.


As part of the High-Assurance Cyber Military Sys-
tems (HACMS) research program, our team conducted 
actual cyberattacks on a military aircraft during flight.5 
Our “before” and “after” attacks demonstrated the effec-
tiveness of technologies developed during the HACMS 
program to construct air vehicles that are resilient 
against cyberattacks. Cyberresiliency means that the 
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system is tolerant to cyberattacks in 
the same way that safety-critical sys-
tems are tolerant to random faults—
they recover and continue to execute 
their mission without interruption.


The traditional approach to cyber-
security is reactive, responding to 
cyberattacks after they occur by iden-
tifying a vulnerability and developing 
a software patch to eliminate that spe-
cific vulnerability. This is a cycle that 
repeats itself with each newfound vul-
nerability. Even virus-scanning soft-
ware cannot keep up with the pace of 
newly created malware and, in fact, 
often introduces new vulnerabilities 
that can be exploited. The situation 
is even worse for embedded software 
because it is often difficult to patch 
due to logica l issues or cer t i f ica-
t ion constraints.


The HACMS program focused on 
vehicle control systems because of 
their complexity, criticality, and sig-
nificance for the military and civilian 
worlds. The goal of our research was 
to break the cycle of “patch and pray” 
by preventing security vulnerabili-
ties from being introduced during the 
development process. Achieving this 
goal requires a fundamentally differ-
ent approach from what has been pur-
sued by the software community to 
date. We have adopted a clean-slate, 
formal-methods-based approach to 
enable semiautomated code synthesis 
from executable, composable formal 
specifications that are subject to ana-
lytic verification.


To assess the security of the soft-
ware produced, we worked with a Red 
Team of professional penetration tes-
ters who evaluated our software and 
attempted to identif y vulnerabili-
ties. The Red Team had access to all 
design documentation, models, analy-
sis results, source codes, and binaries. 


Throughout the project, we engaged 
the Red Team as “friendly adversar-
ies” who would assess systems and 
identify any issues discovered so that 
our systems could be improved in the 
next development iteration. However, 
the cyberresiliency of our software fol-
lows primarily from the formal verifi-
cation effort, not from the subsequent 
testing and evaluation.


Our project in the HACMS program, 
Secure Mathematically Assured Com-
position of Control Models (SMACCM), 
brings together four main concepts 
based on formal methods: 


1) modeling the system architec-
ture and formal verification 
of its key security and safety 
properties, 


2) synthesis of software compo-
nents using languages that 
guarantee important security 
properties, 


3) use of a formally verified micro-
kernel to guarantee enforce-
ment of communication and 
separation constraints speci-
fied in the architecture, and 


4) automatically building the final 
system from the verified archi-
tecture model and component 
specifications.


To show that this approach is both 
practical and effective, we applied it 
to two unmanned air vehicles (UAVs). 
We first developed the technologies 
on a modified commercial quadcopter, 
which we have called the SMACCM-
copter. We then applied the same tech-
nologies to Boeing’s Unmanned Lit-
tle Bird (ULB), a full-sized, optionally 
piloted helicopter capable of autono-
mous flight. Successful flight demon-
strations and security evaluations by 
the Red Team show that our approach 


can be used to build real systems that 
are resilient against cyberattacks.


REQUIREMENTS
To  d e f i n e  m e a n i n g f u l  s e c u r i t y 
requirements, we started from two 
assumptions about the system and 
potential attackers. First, we assume 
t h at a n aut hor i z e d u s e r h a s t he 
authority to issue any command to the 
UAV, including commands that would 
crash or otherwise destroy it. It would 
be a mistake to a priori limit what a 
legitimate user may choose to do with 
a military UAV, so we must assume 
that all commands sent by an autho-
rized user are legitimate. Thus, the 
primary focus of our attention is on 
whether messages (and their associ-
ated commands) are well formed and 
whether the encryption that we are 
using is sufficient to distinguish well-
formed from malformed messages. If 
an attacker can coopt an authorized 
user’s identity, no straightforward 
mitigation is possible.


The second assumption relates to 
the wireless communication. Because 
we cannot limit access to the radio 
spectrum, attackers will always be 
able to launch a denial-of-ser vice 
(DoS) attack, by either jamming the 
physical link or overwhelming the 
UAV receiver with well-formed mes-
sages (even if they fail authoriza-
tion). This means it is not possible to 
provide absolute guarantees about 
the reception and execution of com-
mands from authorized users. How-
ever, we can require the UAV to reject 
any commands lacking authoriza-
tion. We can also require the UAV to 
execute commands from authorized 
users in a timely fashion, assuming no 
DoS attack on the radio link. In addi-
tion, when a DoS attack is detected, 
our requirements can specify what 
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actions the UAV should take to keep 
itself safe or avoid compromising its 
mission (if possible).


To const r uct requi rements, we 
focused on a variety of known con-
crete attacks drawn from the Common 
Attack Pattern Enumeration and Clas-
sification list (capec.mitre.org). First, 
we ensured generic security princi-
ples such as user identification and 
authorization, secure network access 
and communication, secure storage, 
content security, and availability. 
From those principles, we created sys-
tem-level security requirements for 
our UAVs. For example,


 › the UAV executes only well-
formed commands from the 
ground station, and


 › if an air–ground communication 
link fails, the UAV will execute 
its no-communication behavior.


We also approached the problem 
from the bottom up, eliminating com-
mon weaknesses known to be import-
ant to many attacks, such as those 
related to authentication and authori-
zation, system partitioning, mainte-
nance, boot and configuration, overflow 
or underflow, encryption, and memory 
safety. The Common Weakness Enu-
meration website (cwe.mitre.org) main-
tains a large list of such weaknesses.


APPROACH
In this section, we present an over-
view of the four main technologies 
developed in the project and how they 
have been integrated into a devel-
opment process to produce systems 
that are functionally correct and free 
from security vulnerabilities. Each 
technology provides the basis for 
one of four key elements of architec-
ture-driven assurance.


The architecture model is correct
The architecture model specifies the 
overall organization of the system 
and defines the interfaces for each 
subsystem and component, how they 
interact, and what data they share. We 
verify both structural and behavioral 
properties of the model to demon-
strate security. Behavioral properties 
are specified as formal assume–guar-
antee contracts.


The components are correct
We must also establish that the com-
ponents specified in the architecture 
have been implemented correctly. This 
means that they must satisfy their 
requirements as specified in behav-
ioral contracts and that they must be 
free from vulnerabilities that could be 
exploited by cyberattackers.


The system execution 
semantics matches the model
The architecture model makes both 
explicit and implicit statements about 
how the system should execute: execu-
tion times and periods for tasks, bind-
ings for threads and processes to CPUs, 
and connections between components 
and their routing on communication 
buses. In addition, if no connections 
are defined between components, then 
no data should f low between these 
components.


The system implementation 
corresponds to the model
We must also have confidence that the 
system implementation preserves the 
properties that have been established 
for the architecture model and com-
ponents. We automatically generate 
all of the code and configuration data 
needed to build the system directly 
from the architecture and compo-
nent models.


Analyzable architecture
Developers must have high confidence 
that the system they eventually build 
accurately ref lects the characteris-
tics of the system design they reason 
about. Our tools accomplish this by


 › allowing developers to model 
the system they intend to build 
in a language with clear syntax 
and semantics,


 › analyzing this model to verify 
that it meets user-defined speci-
fications, and


 › generating the software that 
runs on the target platform 
directly from this model.


The Architecture Analysis and 
Design Language (AADL) has been 
developed to capture the important 
design concepts in real-time distrib-
uted, embedded systems.6 The AADL 
can capture both the hardware and soft-
ware architecture in a hierarchical for-
mat. It provides hardware component 
models, including processors, buses, 
memories, and I/O devices as well as 
software component models, including 
threads, processes, and subprograms. 
Interfaces for these components and 
data flows between components can 
also be defined. The language offers a 
high degree of flexibility in terms of 
architecture and component detail.


This supports incremental develop-
ment, where the architecture is refined 
to increasing levels of detail and com-
ponents can be refined with additional 
details over time. In AADL, the archi-
tectural model includes component 
interfaces, interconnections, and exe-
cution characteristics but not their 
implementations. Component imple-
mentations are described separately 
using model-based specification lan-
guages or traditional programming 
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languages that are included by refer-
ence in the architecture model. This 
separation of implementation and 
architecture is an important factor in 
achieving scalability for the analytic 
tools we have developed.


These include two different ana-
ly t ic tools to rea son about A A DL 
models. The Assume–Guarantee Rea-
soning Environment (AGREE)7 is a 
compositional verification tool that 
proves behavioral properties about 
AADL models using modern Satis-
fiability Modulo Theories-based model 
checkers. The second tool, Resolute,8 
generates assurance cases from infor-
mation embedded in the AADL mod-
els. Resolute allows us to construct 
arguments about properties that are 
more difficult to formalize and to inte-
grate heterogeneous sources of evi-
dence about the system.


Assume–guarantee reasoning envi-
ronment. AGREE is used to reason 
about past-time temporal logic behav-
ioral contracts in AADL architectural 
components. These contracts consist 
of assumptions about the component 
environment and guarantees about 
how the component state evolves over 
time. A contract specifies precisely 
the information that is needed to rea-
son about the component’s interac-
tion with other parts of the system. 
Furthermore, the contract mechanism 
supports a hierarchical decomposi-
tion of the verification process that 
follows the natural hierarchy in the 
system model. Unlike other composi-
tional reasoning tools (such as OCRA9), 
AGREE is fully integrated with AADL 
so that the embedded implementation 
can be automatically generated from 
the verified system model.


Given a top-level component com-
posed of se vera l s ubcomponent s, 


AGREE attempts to prove that the top-
level component contract holds, given 
the top-level contract assumptions 
and assuming that the contracts of its 
subcomponents are true. The reason-
ing is performed using a state-of-the-
art inductive model checker called 
JKind.10 This decomposition can be 
performed for any number of architec-
tural layers, allowing compositional 
reasoning across a large-scale system 
architecture. The proof rests on “leaf-
level” contracts over individual threads 
or processes, which must be discharged 
by other means (such as model check-
i ng or coverage-based tes t i ng).  I f 
AGREE is unable to produce a proof, 
then it produces a counterexample that 
illustrates a scenario in which the sys-
tem-level contract guarantee does not 
hold, given the system-level assump-
tions and subcomponent contracts.


As an example, we used AGREE 
to verify the correct implementation 
in the ULB of a distributed protocol 
(STANAG 4586) for controlling inter-
actions among multiple ground sta-
tions and UAVs. STANAG 4586 defines 
messages that request various levels 
of control over the UAV, such as set-
ting new waypoints or controlling 
an onboard camera. These messages 
require different authority, called lev-
els of interoperability (LOI), to interact 
with the vehicle. It is crucial that the 
vehicle not act upon messages sent by 
a ground station with an inadequate 
LOI. Likewise, it is important that a 
UAV grant an LOI only to a ground sta-
tion that is appropriate based on the 
current state of the vehicle and the per-
missions decided upon at the begin-
ning of the mission. We used AGREE to 
model and verify these properties.


Resolute. Trad it ion a l a ss u ra nce 
cases are informal arguments for the 


correctness of a system, such as the 
goa l-str uct uring notation.11 Each 
claim in the argument is supported 
by other subarguments or evidence, 
resulting in a tree structure. Res-
olute formalizes and extends this 
notion, allowing assurance cases to 
be attached to AADL models. First, 
the dependency of each argument on 
its subarguments and evidence is for-
malized into rules. Second, these rules 
can be parameterized by the system 
architecture (for example, iterating 
over all components). Finally, Resolute 
instantiates these rules for a particu-
lar AADL architecture using a Data-
log-style proof search algorithm. Reso-
lute assurance cases are automatically 
updated as the architecture model 
evolves, and they never fall out of sync 
with the model. An approach to apply 
and evolve assurance cases as part of 
system design12 is similar to the pro-
cess we have used with Resolute.


Consider an assurance case for 
the claim “The UAV executes only 
u n mod i f ied com m a nd s f rom t he 
ground station.” We can decompose 
this claim into two arguments: one 
about the correctness of our encryp-
tion algorithm and one about the 
dataflows between the Decrypt com-
ponent and the eventual execution 
of commands. The latter property 
is particularly interesting for Reso-
lute because it relies on the architec-
ture of the system. We formalize it 
with a recursive rule that describes 
when a component receives properly 
decrypted messages. Resolute tra-
verses the architecture to track how 
messages move through the system 
and compute the validity of the claim.


Correct components
T he next aspect of our approach 
requires that the software components 
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specified in the architecture model, 
such as threads or functions, be cor-
rectly implemented. C and C++ are 
still the most common languages for 
embedded system development given 
the low-level control they provide in 
terms of memory usage and timing 
behavior. Unfortunately, these lan-
guages provide little support for creat-
ing high-assurance software. Used on 
their own, they are not memory safe 
and are difficult to analyze.


To address this problem, our team 
developed an embedded, domain-spe-
cific language (EDSL) called Ivory. This 
language was used to reimplement all 
of the flight-control functions in the 
SMACCMcopter research vehicle and 


critical control and communication 
functions in the ULB.


Ivory13 follows in the footsteps of 
other “safe C” programming languages, 
like Cyclone, BitC, and Rust—languages 
that avoid many of the pitfalls of C, 
particularly related to memory safety 
and undefined behavior, while being 
suitable for writing low-level code (for 
example, device drivers) and having 
minimal run-time systems. Our main 
motivation for not using those lan-
guages is our desire for an EDSL that 
provides a convenient, Turing-com-
plete, type-safe macrolanguage (Has-
kell) to improve productivity.


Ivory is particularly designed for 
safety-critical, embedded program-
ming. Such a language should guar-
antee memory safety, prevent most 
undefined behaviors, and provide inte-
grated testing and verification tools. 
Typical C coding conventions for safe 
embedded systems, such as those in 
use at NASA’s Jet Propulsion Labora-
tory,14 are enforced by Ivory’s type sys-
tem. In line with these conventions, 
Ivory has been built with some limita-
tions to simplify generating safe C pro-
grams. Ivory does not support heap-
based dynamic memory allocation 
(but global variables can be defined). 
Arrays are fixed length. There is no 
pointer arithmetic. Pointers are non-


nullable. Union types are not sup-
ported. Unsafe casts are not sup-
ported: casts must be to a strictly more 
expressive type (for example, from an 
unsigned 8-b integer to an unsigned 
16-b integer), or a default value must be 
provided for instances when the cast 
is not valid. The most common unsafe 
C cast is not possible: no void-pointer 
type exists in Ivory.


In practice, Ivory has proven to 
be a tremendously productive lan-
guage, both in spite of and due to 
these restrictions and limitations. 
Ivory programmers get the full power 
of using Haskell as a macro system, 


while being reassured by the type sys-
tem that their programs are safe. For 
example, the extended Kalman filters 
used for state estimation on the SMACCM-
copter were generated from a high-
level description of the algorithm in 
terms of linear algebra operations but 
produced safe C code nearly identical 
to hand-unrolled loops. Meanwhile, 
the very lowest levels of detail in the 
SMACCMcopter board support pack-
age were developed using distinct 
types for register flags and addresses, 
eliminating the mismatches that are 
common when dealing with bit masks 
and hardware addresses directly.


Execution semantics  
and operating system
Once we are satisfied that the architec-
ture has been correctly specified and 
the software components correctly 
implemented, the correct execution 
of the components, isolation between 
components, and enforced commu-
nication between components must 
be guaranteed. This is ensured by the 
underlying operating system (OS).


E ac h of ou r UAVs i nc ludes t wo 
computers: a flight-control computer 
for hard real-time control tasks and 
a mission computer for communi-
cating with the outside world (the 
ground station, in par ticular) and 
hosting onboard payloads such as a 
video camera. These computers have 
very different requirements and run a 
different OS.


The OS used on the mission com-
puters of both of our UAVs is the seL4 
microkernel, which builds on the 
strengths of the L4 microkernel archi-
tecture, such as small size, high per-
formance, and policy freedom, and 
extends it with a built-in capability 
model that provides a mechanism to 
enforce security guarantees at the OS 


THE AADL CAN CAPTURE BOTH 
THE HARDWARE AND SOFTWARE 


ARCHITECTURE IN A HIERARCHICAL 
FORMAT.
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and application levels. The seL4 micro-
kernel has undergone extensive for-
mal verification, from full functional 
correctness down to the binary level 
and then to strong high-level security 
properties including confidentiality 
and integrity.15 This means that seL4’s 
executable implementation is formally 
proved correct relative to its specifica-
tion using mathematical, machine-
checked proofs in the Isabelle/Higher 
Order Logic (HOL) theorem prover.16 
Its security properties, also proved in 
Isabelle/HOL, imply that isolation is 
enforced; that is, the seL4 does enforce 
the controlled communication defined 
in the component configuration of the 
architectural specification. The isola-
tion and controlled communication 
enforcement are the key to showing 
that the AADL architecture model is 
properly implemented.


On the flight-control computers, the 
focus is on ensuring timely execution 
and scheduling of flight tasks, leading 
to use of a real-time OS (RTOS). On the 
SMACCMcopter, we have used eChro-
nos, a formally verified RTOS devel-
oped by Data61 that runs on highly 
resource-constrained hardware.


On the ULB, we have used the 
VxWorks RTOS. Use of this commer-
cial RTOS was necessary because of 
the particular flight computer hard-
ware in the ULB. While not optimal, 
use of an RTOS without the assurance 
provided by formal verification was 
deemed acceptable because the flight 
computer is isolated from contact with 
the outside world by the mission com-
puter running seL4.


Trusted build
Finally, we must ensure that the guar-
antees designed into the architectural 
models, software components, and 
OS are preserved in the actual system 


implementation. To ensure confor-
mance, we built tools to automatically 
generate the system image directly 
from the architectural model, software 
components, and OS code. For both 
vehicles, the AADL architecture model 
was detailed enough to support the 


 generation of “glue code” and all con-
figuration information needed to con-
struct a system image that can be loaded 
directly onto the target platform.


We developed the Trusted Build 
(TB) tool to generate system images 
from AADL models. TB can generate 
the OS configuration information, 
process/thread priorities, and sched-
uling information and all process/
thread communication primitives. 
In fact, it is also possible to auto-
matically generate communication 
primitives between OSs, as happens 
w it h v i r t u a l m ac h i nes (V M s). T B 
allowed single-source models to tar-
get the VxWorks, eChronos, seL4, or 


Linux OSs, depending on the needs 
of the specific platform. The final 
system images generated for both 
vehicles were produced directly from 
the AADL architecture descriptions 
using TB. While the majority of the 
TB tool was not formally verified, the 


communications primitives used for 
interprocess communication in seL4 
were verified using Isabelle/HOL.


APPLICATION AND 
DEMONSTRATION
We demonstrated our approach on 
two different UAVs: the SMACCMcop-
ter quadcopter and the Boeing ULB 
helicopter (see Figure 1). This sec-
tion describes our experiences with 
both platforms.


SMACCMcopter demonstration
The SMACCMcopter was developed 
as an open experimentation plat-
form available for use by researchers 


FIGURE 1. The demonstration aircraft: an SMACCMcopter and the Boeing Unmanned 
Little Bird. 


THE OS USED ON THE MISSION 
COMPUTERS OF BOTH OF OUR UAVs IS 


THE SEL4 MICROKERNEL.
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without restriction. It is based on 
commercially available hardware com-
ponents and open-source software. It 
mimics the architecture and features 
of the ULB in a number of ways and has 
been a practical way to develop, refine, 
and test new technologies.


The airframe for the SMACCMcop-
ter is the IRIS+ quadcopter produced by 
3D Robotics. The IRIS+ uses a Pixhawk 
flight-control computer that runs the 
hard real-time control software and 
includes integrated sensors for vehicle 
acceleration and attitude. A separate 
mission computer has been mounted 
on top of the IRIS+ body. The mission 
computer is based on an ARM Cor-
tex-A15 CPU and communicates with 
the flight-control computer over a Con-
troller Area Network (CAN) bus.


It hosts functions for encryption/
decryption, the CAN interface to the 
f l ight  computer,  and ground sta-
tion communication. To demonstrate 
mixed-security architectures involving 
commercial software, the camera soft-
ware represents an untrusted compo-
nent that runs in a Linux VM hosted 
by seL4. It receives video data from the 
camera, detects and computes bounding 
boxes for objects of a specified color, and 
sends video data to the ground station.


All SMACCMcopter software was 
written using the approach described 
earlier. The secure Ivory software com-
ponents, secure seL4 operating system, 
and verified AADL software architec-
ture result in a quadcopter design in 
which most common security vulner-
abilities have been eliminated. A sim-
plified diagram of the architecture is 
shown in Figure 2.


During the course of the HACMS 
program, we conducted f light tests 
to demonstrate the effectiveness of 
our approach and tools applied to the 
SMACCMcopter. The final demon-
stration consisted of two scenarios 
illustrating the difference between 
an unsecure, unverified version of the 
SMACCMcopter software and the final 
secure, verified version of the soft-
ware. In each scenario, the SMACCM-
copter was commanded by the ground 
control station while a separate team 
of “attackers” launched cyberattacks 
on the vehicle, attempting to take over 
its telemetry and flight control via a 
Wi-Fi connection to the VM hosting the 
unverified camera software. In the first 
scenario, the cyberattack was success-
ful. The attackers were able to remotely 
access memory containing encryption 
keys for the control/telemetry radio 


link and take control of the vehicle. 
In the second scenario, the formally 
verified SMACCMcopter was resilient 
against the same attack and completed 
its mission unhindered. A video of this 
demonstration is available online.17


Unmanned Little Bird 
demonstration
The ULB is an optionally piloted heli-
copter based on the H-6, a 32-ft-long, 
4,700-lb rotorcraft. The ULB adds an 
autonomous capability to the basic 
H-6. Although the ULB is capable of 
fully autonomous f light, for f light 
testing it carries a safety pilot who 
can disable and override the autono-
mous functionality.


Like the SMACCMcopter, the ULB 
avionics includes a flight-control com-
puter (FCC) for real-time tasks and 
a mission computer [called the vehi-
cle-specific module (VSM)] for commu-
nication with the ground station and 
managing a video camera payload. The 
original ULB VSM was implemented 
in 87-K lines of C++ source code, with 
an executable size of approximately 
80 MB, running on Gentoo Linux on 
an x86 processor. The original ULB 
F CC w a s w r it ten i n 20-K l i nes of 
C code, with a 2-MB executable, using a 
monolithic cyclic executive running at 
50 Hz on a PowerPC platform. During 
the HACMS program, the Boeing ULB 
program ported the FCC software to 
VxWorks, which increased the code 
size to approximately 40-K lines. The 
ULB implements the STANAG 4586 
protocol for communication between 
ground stations and UAVs. The proto-
col permits any compliant ground sta-
tion to control any compliant UAV.


Over the course of the three phases 
of the HACMS program, new technol-
ogies were progressively applied to the 
ULB to create a high-assurance cyber 
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FIGURE 2. The simplified software architecture for the SMACCMcopter showing the 
verified operating system (OS) (blue), Ivory-synthesized components (green), untrusted 
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military system. In phase 1, the VSM 
architecture was modeled in AADL, and 
seL4 was added as a hypervisor to host 
the baseline software running on Linux 
as a guest OS. In phase 2, the Ivory lan-
guage was used to reimplement a por-
tion of the VSM software, along with 
new authentication and LOI compo-
nents. A more detailed AADL model 
of the VSM software architecture was 
developed and used with the TB tool to 
generate code for the VSM. In phase 3, 
the FCC software architecture was mod-
eled using AADL, and the outer-loop 
control and input/output components 
of the FCC were implemented in Ivory. 
In this case. the existing VxWorks RTOS 
was retained as the OS. A simplified ver-
sion of the final ULB HACMS architec-
ture is shown in Figure 3.


Several ULB flight tests were con-
ducted to demonstrate that the vehi-
cle with updated cybersecure software 
retained all of its original function-
ality. As with the SMACCMcopter, we 
flew several sorties that included tar-
geted cyberattacks. In the first attack, 
a compromised maintenance device 
was connected to the USB socket on the 
ULB, which normally hosts a USB drive 
used for the data logging. This device 
injected a virus that attempted to 
access memory in the other VSM soft-
ware and disable the payload camera. 
In the second attack, a simulated supply 
chain attack originating in the third-
party camera software attempted to 
change the ULB waypoints and cause it 
to violate (simulated) airspace restric-
tions. In the final upgraded version 
of the ULB, both of these attacks were 
contained by the verified software and 
system design, allowing the aircraft to 
continue operation.


The technologies described here 
were applied to the ULB by Boeing 
engineers (with some support from the 


technology researchers). Significantly, 
this included engineers from Boeing 
Defense Systems as well as those from 
Boeing Research and Technology. 
Together, this represents nontrivial 
evidence that these technologies are 
effective in improving system cyberse-
curity, can do so for real aircraft with-
out compromising the required real-
time performance, and are usable by 
the developers of military systems.


Over the course of the HACMS 
program, a number of formal 
methods technologies were 


developed and applied, first to the 
SMACCMcopter research vehicle and 
then to the Boeing ULB helicopter.


At the beginning of the program, 
the Red Team performed baseline 
assessments of both our unmodified 
Pi xhawk-based hobby quadcopter 
and the original ULB sof tware. In 
both baselines, the Red Team had lit-
tle difficulty attacking the vehicles. 
The quadcopter was trivially com-
promised in several ways (for exam-
ple, hijack of unencrypted commu-
n icat ions, message f lood i ng, a nd 
several other issues), and the ULB 
was compromised within an hour 


due to configuration and memory 
issues involving third-party compo-
nents. Over the three phases of the 
project, our new technologies and 
software assumed more and more of 
the of control of the vehicles until, in 
phase 3, they formed the entirety of 
the SMACCMcopter and the majority 
of the ULB.


These technologies were success-
fully demonstrated on both aircraft 
during flight, including the successful 
defeat of attacks based on several of the 
common attack vectors. The SMAC-
CMcopter withstood attacks via a 
remote data link, while the ULB with-
stood attacks via a compromised USB 
device and compromised third-party 
software for an onboard payload.


After each phase, the Red Team per-
formed a security assessment of the 
upgraded portions of the vehicle soft-
ware along with penetration testing. 
After phase 1, their evaluation and pene-
tration testing focused on remote attacks 
on the vehicles. In later phases, this 
expanded to include attacks launched 
from noncritical components onboard 
the vehicles themselves. The Red Team 
assessments did not find any exploitable 
vulnerabilities in the reengineered por-
tions of either aircraft.
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FIGURE 3. Boeing’s ULB final architecture showing the verified OS (blue), Ivory-synthe-
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At the end of the project, the Red 
Team final report concluded,


HACMS technologies have made 
revolutionary advances in the 
resilience available to develop-
ers of autonomous vehicles. The 
final vehicles delivered under 
the HACMS program, even as 
research prototypes, proved to 
be resilient against most forms 
of attack to a degree rarely seen 
even in hardened, fielded sys-
tems. Of all the final, formally 
verified components assessed 
under the final phase of the 
program, no memory corruption 
failures, mathematical opera-
tion faults, or security isolation 
compromises were identified.


In this project, we have demon-
strated the use of formal methods to 
dramatically improve the cybersecu-
rity of the embedded software in two 
aircraft. In addition to security assess-
ments, these aircraft underwent flight 
testing to show that their real-time 
performance had not been impacted. 
Furthermore, all of the modification 
and reengineering of the ULB software 
was conducted by Boeing engineers. 
Thus, the formal methods technolo-
gies presented here are both practical 
and effective in enhancing the cyber-
resiliency of real aircraft.


More information, including the 
final report, models, software, and 
tools developed as part of the proj-
ect, is available at loonwerks.com 
/projects/hacms.html. 
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