
p07_4_FormalUnmannedFlights.pdf

14 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 © 2 0 1 8 I E E E

COVER FEATURE RESILIENCY IN CYBER-PHYSICAL SYSTEMS

Darren Cofer, Andrew Gacek, and John Backes, Rockwell Collins Advanced Technology Center

Michael W. Whalen, University of Minnesota

Lee Pike, Adam Foltzer, and Michal Podhradsky, Galois Inc.

Gerwin Klein, Ihor Kuz, June Andronick, and Gernot Heiser, Data61, CSIRO, and University of New South Wales

Douglas Stuart, Boeing Research and Technology

Current approaches to cyberresiliency rely on patching

systems after a vulnerability is discovered. What is needed

is a clean-slate, mathematically based approach for

building secure software. We developed new tools based

on formal methods for building software for unmanned

air vehicles that is provably secure against cyberattacks.

Researchers (and hackers) have shown that all
kinds of networked, embedded systems are
vulnerable to remote cyberattack. Researchers
at the University of Washington and University

of California San Diego demonstrated the ability to com-
pletely control an unmodified automobile from a remote
location.1 Security researchers Charlie Miller and
Chris Valasek have recently extended this work. Other
researchers2–4 have been probing for vulnerabilities in

the communication and avionics systems of commercial
aircraft, although with questionable success. Above and
beyond the compromise of classified information, the
consequences of a successful cyberattack against an air-
craft include loss of life or denial of military capabilities.

As part of the High-Assurance Cyber Military Sys-
tems (HACMS) research program, our team conducted
actual cyberattacks on a military aircraft during flight.5
Our “before” and “after” attacks demonstrated the effec-
tiveness of technologies developed during the HACMS
program to construct air vehicles that are resilient
against cyberattacks. Cyberresiliency means that the

A Formal Approach
to Constructing Secure
Air Vehicle Software

Digital Object Identifier 10.1109/MC.2018.2876051
Date of publication: 15 January 2019

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

 N O V E M B E R 2 0 1 8 15

system is tolerant to cyberattacks in
the same way that safety-critical sys-
tems are tolerant to random faults—
they recover and continue to execute
their mission without interruption.

The traditional approach to cyber-
security is reactive, responding to
cyberattacks after they occur by iden-
tifying a vulnerability and developing
a software patch to eliminate that spe-
cific vulnerability. This is a cycle that
repeats itself with each newfound vul-
nerability. Even virus-scanning soft-
ware cannot keep up with the pace of
newly created malware and, in fact,
often introduces new vulnerabilities
that can be exploited. The situation
is even worse for embedded software
because it is often difficult to patch
due to logica l issues or cer t i f ica-
t ion constraints.

The HACMS program focused on
vehicle control systems because of
their complexity, criticality, and sig-
nificance for the military and civilian
worlds. The goal of our research was
to break the cycle of “patch and pray”
by preventing security vulnerabili-
ties from being introduced during the
development process. Achieving this
goal requires a fundamentally differ-
ent approach from what has been pur-
sued by the software community to
date. We have adopted a clean-slate,
formal-methods-based approach to
enable semiautomated code synthesis
from executable, composable formal
specifications that are subject to ana-
lytic verification.

To assess the security of the soft-
ware produced, we worked with a Red
Team of professional penetration tes-
ters who evaluated our software and
attempted to identif y vulnerabili-
ties. The Red Team had access to all
design documentation, models, analy-
sis results, source codes, and binaries.

Throughout the project, we engaged
the Red Team as “friendly adversar-
ies” who would assess systems and
identify any issues discovered so that
our systems could be improved in the
next development iteration. However,
the cyberresiliency of our software fol-
lows primarily from the formal verifi-
cation effort, not from the subsequent
testing and evaluation.

Our project in the HACMS program,
Secure Mathematically Assured Com-
position of Control Models (SMACCM),
brings together four main concepts
based on formal methods:

1) modeling the system architec-
ture and formal verification
of its key security and safety
properties,

2) synthesis of software compo-
nents using languages that
guarantee important security
properties,

3) use of a formally verified micro-
kernel to guarantee enforce-
ment of communication and
separation constraints speci-
fied in the architecture, and

4) automatically building the final
system from the verified archi-
tecture model and component
specifications.

To show that this approach is both
practical and effective, we applied it
to two unmanned air vehicles (UAVs).
We first developed the technologies
on a modified commercial quadcopter,
which we have called the SMACCM-
copter. We then applied the same tech-
nologies to Boeing’s Unmanned Lit-
tle Bird (ULB), a full-sized, optionally
piloted helicopter capable of autono-
mous flight. Successful flight demon-
strations and security evaluations by
the Red Team show that our approach

can be used to build real systems that
are resilient against cyberattacks.

REQUIREMENTS
To d e f i n e m e a n i n g f u l s e c u r i t y
requirements, we started from two
assumptions about the system and
potential attackers. First, we assume
t h at a n aut hor i z e d u s e r h a s t he
authority to issue any command to the
UAV, including commands that would
crash or otherwise destroy it. It would
be a mistake to a priori limit what a
legitimate user may choose to do with
a military UAV, so we must assume
that all commands sent by an autho-
rized user are legitimate. Thus, the
primary focus of our attention is on
whether messages (and their associ-
ated commands) are well formed and
whether the encryption that we are
using is sufficient to distinguish well-
formed from malformed messages. If
an attacker can coopt an authorized
user’s identity, no straightforward
mitigation is possible.

The second assumption relates to
the wireless communication. Because
we cannot limit access to the radio
spectrum, attackers will always be
able to launch a denial-of-ser vice
(DoS) attack, by either jamming the
physical link or overwhelming the
UAV receiver with well-formed mes-
sages (even if they fail authoriza-
tion). This means it is not possible to
provide absolute guarantees about
the reception and execution of com-
mands from authorized users. How-
ever, we can require the UAV to reject
any commands lacking authoriza-
tion. We can also require the UAV to
execute commands from authorized
users in a timely fashion, assuming no
DoS attack on the radio link. In addi-
tion, when a DoS attack is detected,
our requirements can specify what

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

16 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESILIENCY IN CYBER-PHYSICAL SYSTEMS

actions the UAV should take to keep
itself safe or avoid compromising its
mission (if possible).

To const r uct requi rements, we
focused on a variety of known con-
crete attacks drawn from the Common
Attack Pattern Enumeration and Clas-
sification list (capec.mitre.org). First,
we ensured generic security princi-
ples such as user identification and
authorization, secure network access
and communication, secure storage,
content security, and availability.
From those principles, we created sys-
tem-level security requirements for
our UAVs. For example,

 › the UAV executes only well-
formed commands from the
ground station, and

 › if an air–ground communication
link fails, the UAV will execute
its no-communication behavior.

We also approached the problem
from the bottom up, eliminating com-
mon weaknesses known to be import-
ant to many attacks, such as those
related to authentication and authori-
zation, system partitioning, mainte-
nance, boot and configuration, overflow
or underflow, encryption, and memory
safety. The Common Weakness Enu-
meration website (cwe.mitre.org) main-
tains a large list of such weaknesses.

APPROACH
In this section, we present an over-
view of the four main technologies
developed in the project and how they
have been integrated into a devel-
opment process to produce systems
that are functionally correct and free
from security vulnerabilities. Each
technology provides the basis for
one of four key elements of architec-
ture-driven assurance.

The architecture model is correct
The architecture model specifies the
overall organization of the system
and defines the interfaces for each
subsystem and component, how they
interact, and what data they share. We
verify both structural and behavioral
properties of the model to demon-
strate security. Behavioral properties
are specified as formal assume–guar-
antee contracts.

The components are correct
We must also establish that the com-
ponents specified in the architecture
have been implemented correctly. This
means that they must satisfy their
requirements as specified in behav-
ioral contracts and that they must be
free from vulnerabilities that could be
exploited by cyberattackers.

The system execution
semantics matches the model
The architecture model makes both
explicit and implicit statements about
how the system should execute: execu-
tion times and periods for tasks, bind-
ings for threads and processes to CPUs,
and connections between components
and their routing on communication
buses. In addition, if no connections
are defined between components, then
no data should f low between these
components.

The system implementation
corresponds to the model
We must also have confidence that the
system implementation preserves the
properties that have been established
for the architecture model and com-
ponents. We automatically generate
all of the code and configuration data
needed to build the system directly
from the architecture and compo-
nent models.

Analyzable architecture
Developers must have high confidence
that the system they eventually build
accurately ref lects the characteris-
tics of the system design they reason
about. Our tools accomplish this by

 › allowing developers to model
the system they intend to build
in a language with clear syntax
and semantics,

 › analyzing this model to verify
that it meets user-defined speci-
fications, and

 › generating the software that
runs on the target platform
directly from this model.

The Architecture Analysis and
Design Language (AADL) has been
developed to capture the important
design concepts in real-time distrib-
uted, embedded systems.6 The AADL
can capture both the hardware and soft-
ware architecture in a hierarchical for-
mat. It provides hardware component
models, including processors, buses,
memories, and I/O devices as well as
software component models, including
threads, processes, and subprograms.
Interfaces for these components and
data flows between components can
also be defined. The language offers a
high degree of flexibility in terms of
architecture and component detail.

This supports incremental develop-
ment, where the architecture is refined
to increasing levels of detail and com-
ponents can be refined with additional
details over time. In AADL, the archi-
tectural model includes component
interfaces, interconnections, and exe-
cution characteristics but not their
implementations. Component imple-
mentations are described separately
using model-based specification lan-
guages or traditional programming

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

 N O V E M B E R 2 0 1 8 17

languages that are included by refer-
ence in the architecture model. This
separation of implementation and
architecture is an important factor in
achieving scalability for the analytic
tools we have developed.

These include two different ana-
ly t ic tools to rea son about A A DL
models. The Assume–Guarantee Rea-
soning Environment (AGREE)7 is a
compositional verification tool that
proves behavioral properties about
AADL models using modern Satis-
fiability Modulo Theories-based model
checkers. The second tool, Resolute,8
generates assurance cases from infor-
mation embedded in the AADL mod-
els. Resolute allows us to construct
arguments about properties that are
more difficult to formalize and to inte-
grate heterogeneous sources of evi-
dence about the system.

Assume–guarantee reasoning envi-
ronment. AGREE is used to reason
about past-time temporal logic behav-
ioral contracts in AADL architectural
components. These contracts consist
of assumptions about the component
environment and guarantees about
how the component state evolves over
time. A contract specifies precisely
the information that is needed to rea-
son about the component’s interac-
tion with other parts of the system.
Furthermore, the contract mechanism
supports a hierarchical decomposi-
tion of the verification process that
follows the natural hierarchy in the
system model. Unlike other composi-
tional reasoning tools (such as OCRA9),
AGREE is fully integrated with AADL
so that the embedded implementation
can be automatically generated from
the verified system model.

Given a top-level component com-
posed of se vera l s ubcomponent s,

AGREE attempts to prove that the top-
level component contract holds, given
the top-level contract assumptions
and assuming that the contracts of its
subcomponents are true. The reason-
ing is performed using a state-of-the-
art inductive model checker called
JKind.10 This decomposition can be
performed for any number of architec-
tural layers, allowing compositional
reasoning across a large-scale system
architecture. The proof rests on “leaf-
level” contracts over individual threads
or processes, which must be discharged
by other means (such as model check-
i ng or coverage-based tes t i ng). I f
AGREE is unable to produce a proof,
then it produces a counterexample that
illustrates a scenario in which the sys-
tem-level contract guarantee does not
hold, given the system-level assump-
tions and subcomponent contracts.

As an example, we used AGREE
to verify the correct implementation
in the ULB of a distributed protocol
(STANAG 4586) for controlling inter-
actions among multiple ground sta-
tions and UAVs. STANAG 4586 defines
messages that request various levels
of control over the UAV, such as set-
ting new waypoints or controlling
an onboard camera. These messages
require different authority, called lev-
els of interoperability (LOI), to interact
with the vehicle. It is crucial that the
vehicle not act upon messages sent by
a ground station with an inadequate
LOI. Likewise, it is important that a
UAV grant an LOI only to a ground sta-
tion that is appropriate based on the
current state of the vehicle and the per-
missions decided upon at the begin-
ning of the mission. We used AGREE to
model and verify these properties.

Resolute. Trad it ion a l a ss u ra nce
cases are informal arguments for the

correctness of a system, such as the
goa l-str uct uring notation.11 Each
claim in the argument is supported
by other subarguments or evidence,
resulting in a tree structure. Res-
olute formalizes and extends this
notion, allowing assurance cases to
be attached to AADL models. First,
the dependency of each argument on
its subarguments and evidence is for-
malized into rules. Second, these rules
can be parameterized by the system
architecture (for example, iterating
over all components). Finally, Resolute
instantiates these rules for a particu-
lar AADL architecture using a Data-
log-style proof search algorithm. Reso-
lute assurance cases are automatically
updated as the architecture model
evolves, and they never fall out of sync
with the model. An approach to apply
and evolve assurance cases as part of
system design12 is similar to the pro-
cess we have used with Resolute.

Consider an assurance case for
the claim “The UAV executes only
u n mod i f ied com m a nd s f rom t he
ground station.” We can decompose
this claim into two arguments: one
about the correctness of our encryp-
tion algorithm and one about the
dataflows between the Decrypt com-
ponent and the eventual execution
of commands. The latter property
is particularly interesting for Reso-
lute because it relies on the architec-
ture of the system. We formalize it
with a recursive rule that describes
when a component receives properly
decrypted messages. Resolute tra-
verses the architecture to track how
messages move through the system
and compute the validity of the claim.

Correct components
T he next aspect of our approach
requires that the software components

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

18 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESILIENCY IN CYBER-PHYSICAL SYSTEMS

specified in the architecture model,
such as threads or functions, be cor-
rectly implemented. C and C++ are
still the most common languages for
embedded system development given
the low-level control they provide in
terms of memory usage and timing
behavior. Unfortunately, these lan-
guages provide little support for creat-
ing high-assurance software. Used on
their own, they are not memory safe
and are difficult to analyze.

To address this problem, our team
developed an embedded, domain-spe-
cific language (EDSL) called Ivory. This
language was used to reimplement all
of the flight-control functions in the
SMACCMcopter research vehicle and

critical control and communication
functions in the ULB.

Ivory13 follows in the footsteps of
other “safe C” programming languages,
like Cyclone, BitC, and Rust—languages
that avoid many of the pitfalls of C,
particularly related to memory safety
and undefined behavior, while being
suitable for writing low-level code (for
example, device drivers) and having
minimal run-time systems. Our main
motivation for not using those lan-
guages is our desire for an EDSL that
provides a convenient, Turing-com-
plete, type-safe macrolanguage (Has-
kell) to improve productivity.

Ivory is particularly designed for
safety-critical, embedded program-
ming. Such a language should guar-
antee memory safety, prevent most
undefined behaviors, and provide inte-
grated testing and verification tools.
Typical C coding conventions for safe
embedded systems, such as those in
use at NASA’s Jet Propulsion Labora-
tory,14 are enforced by Ivory’s type sys-
tem. In line with these conventions,
Ivory has been built with some limita-
tions to simplify generating safe C pro-
grams. Ivory does not support heap-
based dynamic memory allocation
(but global variables can be defined).
Arrays are fixed length. There is no
pointer arithmetic. Pointers are non-

nullable. Union types are not sup-
ported. Unsafe casts are not sup-
ported: casts must be to a strictly more
expressive type (for example, from an
unsigned 8-b integer to an unsigned
16-b integer), or a default value must be
provided for instances when the cast
is not valid. The most common unsafe
C cast is not possible: no void-pointer
type exists in Ivory.

In practice, Ivory has proven to
be a tremendously productive lan-
guage, both in spite of and due to
these restrictions and limitations.
Ivory programmers get the full power
of using Haskell as a macro system,

while being reassured by the type sys-
tem that their programs are safe. For
example, the extended Kalman filters
used for state estimation on the SMACCM-
copter were generated from a high-
level description of the algorithm in
terms of linear algebra operations but
produced safe C code nearly identical
to hand-unrolled loops. Meanwhile,
the very lowest levels of detail in the
SMACCMcopter board support pack-
age were developed using distinct
types for register flags and addresses,
eliminating the mismatches that are
common when dealing with bit masks
and hardware addresses directly.

Execution semantics
and operating system
Once we are satisfied that the architec-
ture has been correctly specified and
the software components correctly
implemented, the correct execution
of the components, isolation between
components, and enforced commu-
nication between components must
be guaranteed. This is ensured by the
underlying operating system (OS).

E ac h of ou r UAVs i nc ludes t wo
computers: a flight-control computer
for hard real-time control tasks and
a mission computer for communi-
cating with the outside world (the
ground station, in par ticular) and
hosting onboard payloads such as a
video camera. These computers have
very different requirements and run a
different OS.

The OS used on the mission com-
puters of both of our UAVs is the seL4
microkernel, which builds on the
strengths of the L4 microkernel archi-
tecture, such as small size, high per-
formance, and policy freedom, and
extends it with a built-in capability
model that provides a mechanism to
enforce security guarantees at the OS

THE AADL CAN CAPTURE BOTH
THE HARDWARE AND SOFTWARE

ARCHITECTURE IN A HIERARCHICAL
FORMAT.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

 N O V E M B E R 2 0 1 8 19

and application levels. The seL4 micro-
kernel has undergone extensive for-
mal verification, from full functional
correctness down to the binary level
and then to strong high-level security
properties including confidentiality
and integrity.15 This means that seL4’s
executable implementation is formally
proved correct relative to its specifica-
tion using mathematical, machine-
checked proofs in the Isabelle/Higher
Order Logic (HOL) theorem prover.16
Its security properties, also proved in
Isabelle/HOL, imply that isolation is
enforced; that is, the seL4 does enforce
the controlled communication defined
in the component configuration of the
architectural specification. The isola-
tion and controlled communication
enforcement are the key to showing
that the AADL architecture model is
properly implemented.

On the flight-control computers, the
focus is on ensuring timely execution
and scheduling of flight tasks, leading
to use of a real-time OS (RTOS). On the
SMACCMcopter, we have used eChro-
nos, a formally verified RTOS devel-
oped by Data61 that runs on highly
resource-constrained hardware.

On the ULB, we have used the
VxWorks RTOS. Use of this commer-
cial RTOS was necessary because of
the particular flight computer hard-
ware in the ULB. While not optimal,
use of an RTOS without the assurance
provided by formal verification was
deemed acceptable because the flight
computer is isolated from contact with
the outside world by the mission com-
puter running seL4.

Trusted build
Finally, we must ensure that the guar-
antees designed into the architectural
models, software components, and
OS are preserved in the actual system

implementation. To ensure confor-
mance, we built tools to automatically
generate the system image directly
from the architectural model, software
components, and OS code. For both
vehicles, the AADL architecture model
was detailed enough to support the

 generation of “glue code” and all con-
figuration information needed to con-
struct a system image that can be loaded
directly onto the target platform.

We developed the Trusted Build
(TB) tool to generate system images
from AADL models. TB can generate
the OS configuration information,
process/thread priorities, and sched-
uling information and all process/
thread communication primitives.
In fact, it is also possible to auto-
matically generate communication
primitives between OSs, as happens
w it h v i r t u a l m ac h i nes (V M s). T B
allowed single-source models to tar-
get the VxWorks, eChronos, seL4, or

Linux OSs, depending on the needs
of the specific platform. The final
system images generated for both
vehicles were produced directly from
the AADL architecture descriptions
using TB. While the majority of the
TB tool was not formally verified, the

communications primitives used for
interprocess communication in seL4
were verified using Isabelle/HOL.

APPLICATION AND
DEMONSTRATION
We demonstrated our approach on
two different UAVs: the SMACCMcop-
ter quadcopter and the Boeing ULB
helicopter (see Figure 1). This sec-
tion describes our experiences with
both platforms.

SMACCMcopter demonstration
The SMACCMcopter was developed
as an open experimentation plat-
form available for use by researchers

FIGURE 1. The demonstration aircraft: an SMACCMcopter and the Boeing Unmanned
Little Bird.

THE OS USED ON THE MISSION
COMPUTERS OF BOTH OF OUR UAVs IS

THE SEL4 MICROKERNEL.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

20 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESILIENCY IN CYBER-PHYSICAL SYSTEMS

without restriction. It is based on
commercially available hardware com-
ponents and open-source software. It
mimics the architecture and features
of the ULB in a number of ways and has
been a practical way to develop, refine,
and test new technologies.

The airframe for the SMACCMcop-
ter is the IRIS+ quadcopter produced by
3D Robotics. The IRIS+ uses a Pixhawk
flight-control computer that runs the
hard real-time control software and
includes integrated sensors for vehicle
acceleration and attitude. A separate
mission computer has been mounted
on top of the IRIS+ body. The mission
computer is based on an ARM Cor-
tex-A15 CPU and communicates with
the flight-control computer over a Con-
troller Area Network (CAN) bus.

It hosts functions for encryption/
decryption, the CAN interface to the
f l ight computer, and ground sta-
tion communication. To demonstrate
mixed-security architectures involving
commercial software, the camera soft-
ware represents an untrusted compo-
nent that runs in a Linux VM hosted
by seL4. It receives video data from the
camera, detects and computes bounding
boxes for objects of a specified color, and
sends video data to the ground station.

All SMACCMcopter software was
written using the approach described
earlier. The secure Ivory software com-
ponents, secure seL4 operating system,
and verified AADL software architec-
ture result in a quadcopter design in
which most common security vulner-
abilities have been eliminated. A sim-
plified diagram of the architecture is
shown in Figure 2.

During the course of the HACMS
program, we conducted f light tests
to demonstrate the effectiveness of
our approach and tools applied to the
SMACCMcopter. The final demon-
stration consisted of two scenarios
illustrating the difference between
an unsecure, unverified version of the
SMACCMcopter software and the final
secure, verified version of the soft-
ware. In each scenario, the SMACCM-
copter was commanded by the ground
control station while a separate team
of “attackers” launched cyberattacks
on the vehicle, attempting to take over
its telemetry and flight control via a
Wi-Fi connection to the VM hosting the
unverified camera software. In the first
scenario, the cyberattack was success-
ful. The attackers were able to remotely
access memory containing encryption
keys for the control/telemetry radio

link and take control of the vehicle.
In the second scenario, the formally
verified SMACCMcopter was resilient
against the same attack and completed
its mission unhindered. A video of this
demonstration is available online.17

Unmanned Little Bird
demonstration
The ULB is an optionally piloted heli-
copter based on the H-6, a 32-ft-long,
4,700-lb rotorcraft. The ULB adds an
autonomous capability to the basic
H-6. Although the ULB is capable of
fully autonomous f light, for f light
testing it carries a safety pilot who
can disable and override the autono-
mous functionality.

Like the SMACCMcopter, the ULB
avionics includes a flight-control com-
puter (FCC) for real-time tasks and
a mission computer [called the vehi-
cle-specific module (VSM)] for commu-
nication with the ground station and
managing a video camera payload. The
original ULB VSM was implemented
in 87-K lines of C++ source code, with
an executable size of approximately
80 MB, running on Gentoo Linux on
an x86 processor. The original ULB
F CC w a s w r it ten i n 20-K l i nes of
C code, with a 2-MB executable, using a
monolithic cyclic executive running at
50 Hz on a PowerPC platform. During
the HACMS program, the Boeing ULB
program ported the FCC software to
VxWorks, which increased the code
size to approximately 40-K lines. The
ULB implements the STANAG 4586
protocol for communication between
ground stations and UAVs. The proto-
col permits any compliant ground sta-
tion to control any compliant UAV.

Over the course of the three phases
of the HACMS program, new technol-
ogies were progressively applied to the
ULB to create a high-assurance cyber

A
A

D
L

M
od

el

A
A

D
L

M
od

el

eChronos RTOS seL4 Kernel

Flight Control
Flight

Interface
Encrypt/
Decrypt

Camera

Linux VM

CAN Bus
Control/Telemetry Radio

Flight Computer Mission Computer

Wi-Fi Attack

FIGURE 2. The simplified software architecture for the SMACCMcopter showing the
verified operating system (OS) (blue), Ivory-synthesized components (green), untrusted
components (orange), and Wi-Fi cyberattack (red). AADL: Architecture Analysis and
Design Language; VM: virtual machine; RTOS: real-time operating system.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

 N O V E M B E R 2 0 1 8 21

military system. In phase 1, the VSM
architecture was modeled in AADL, and
seL4 was added as a hypervisor to host
the baseline software running on Linux
as a guest OS. In phase 2, the Ivory lan-
guage was used to reimplement a por-
tion of the VSM software, along with
new authentication and LOI compo-
nents. A more detailed AADL model
of the VSM software architecture was
developed and used with the TB tool to
generate code for the VSM. In phase 3,
the FCC software architecture was mod-
eled using AADL, and the outer-loop
control and input/output components
of the FCC were implemented in Ivory.
In this case. the existing VxWorks RTOS
was retained as the OS. A simplified ver-
sion of the final ULB HACMS architec-
ture is shown in Figure 3.

Several ULB flight tests were con-
ducted to demonstrate that the vehi-
cle with updated cybersecure software
retained all of its original function-
ality. As with the SMACCMcopter, we
flew several sorties that included tar-
geted cyberattacks. In the first attack,
a compromised maintenance device
was connected to the USB socket on the
ULB, which normally hosts a USB drive
used for the data logging. This device
injected a virus that attempted to
access memory in the other VSM soft-
ware and disable the payload camera.
In the second attack, a simulated supply
chain attack originating in the third-
party camera software attempted to
change the ULB waypoints and cause it
to violate (simulated) airspace restric-
tions. In the final upgraded version
of the ULB, both of these attacks were
contained by the verified software and
system design, allowing the aircraft to
continue operation.

The technologies described here
were applied to the ULB by Boeing
engineers (with some support from the

technology researchers). Significantly,
this included engineers from Boeing
Defense Systems as well as those from
Boeing Research and Technology.
Together, this represents nontrivial
evidence that these technologies are
effective in improving system cyberse-
curity, can do so for real aircraft with-
out compromising the required real-
time performance, and are usable by
the developers of military systems.

Over the course of the HACMS
program, a number of formal
methods technologies were

developed and applied, first to the
SMACCMcopter research vehicle and
then to the Boeing ULB helicopter.

At the beginning of the program,
the Red Team performed baseline
assessments of both our unmodified
Pi xhawk-based hobby quadcopter
and the original ULB sof tware. In
both baselines, the Red Team had lit-
tle difficulty attacking the vehicles.
The quadcopter was trivially com-
promised in several ways (for exam-
ple, hijack of unencrypted commu-
n icat ions, message f lood i ng, a nd
several other issues), and the ULB
was compromised within an hour

due to configuration and memory
issues involving third-party compo-
nents. Over the three phases of the
project, our new technologies and
software assumed more and more of
the of control of the vehicles until, in
phase 3, they formed the entirety of
the SMACCMcopter and the majority
of the ULB.

These technologies were success-
fully demonstrated on both aircraft
during flight, including the successful
defeat of attacks based on several of the
common attack vectors. The SMAC-
CMcopter withstood attacks via a
remote data link, while the ULB with-
stood attacks via a compromised USB
device and compromised third-party
software for an onboard payload.

After each phase, the Red Team per-
formed a security assessment of the
upgraded portions of the vehicle soft-
ware along with penetration testing.
After phase 1, their evaluation and pene-
tration testing focused on remote attacks
on the vehicles. In later phases, this
expanded to include attacks launched
from noncritical components onboard
the vehicles themselves. The Red Team
assessments did not find any exploitable
vulnerabilities in the reengineered por-
tions of either aircraft.

A
A

D
L

M
od

el

VxWorks RTOS seL4 Kernel

Nav and I/O
Flight
VSM

Encrypt/
Decrypt Camera

Linux VM

A
A

D
L

M
od

el

Ethernet
STANAG 4586 Radio

Flight Computer Mission Computer

Inner Loop
LOI Data Log

Linux VM

USB Attack

Supply Chain
Attack

FIGURE 3. Boeing’s ULB final architecture showing the verified OS (blue), Ivory-synthe-
sized components (green), unmodified/untrusted components (orange), and two cyberat-
tacks demonstrated (red). VSM: vehi cle-specific module.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

22 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESILIENCY IN CYBER-PHYSICAL SYSTEMS

ABOUT THE AUTHORS
DARREN COFER is a fel low in the Rockwell Coll ins
Advanced Technology Center. His research interests include
formal methods and tools for verification and certification of
high-integrity systems. Cofer received a PhD in electrical
and computer engineering from the University of Texas at
Austin and is a Senior Member of the IEEE. Contact him at
cofer@ieee.org.

ANDREW GACEK is a researcher in the Rockwell Collins
Advanced Technology Center. His research interests include
connecting users with formal verification through tool devel-
opment and research. Gacek received a PhD in computer
science from the University of Minnesota. Contact him at
andrew.gacek@gmail.com.

JOHN BACKES is a researcher at the Rockwell Collins
Advanced Technology Center. His research interests include
surface-mount technology solvers, model checking, and ver-
ification of software for embedded systems. Backes received
a PhD from the Department of Electrical and Computer Engi-
neering at the University of Minnesota. Contact him at john.
backes@gmail.com.

MICHAEL W. WHALEN is the director of the University of
Minnesota Software Engineering Center. His research inter-
ests involve improving the scalability and usability of model
checking and automated test generation. Whalen received a
PhD from the University of Minnesota and is a Senior Member
of the IEEE. Contact him at mwwhalen@umn.edu.

LEE PIKE is a member of the technical staff at Groq, Inc. Previ-
ously, he directed the Cyber-Physical Systems group at Galois
Inc., where the research reported herein was completed. His
research interests include formal methods, functional pro-
gramming, and high-assurance systems. Pike received a PhD
from Indiana University. Contact him at leepike@gmail.com.

ADAM FOLTZER, previously at Galois Inc., is now a senior
software engineer at Fastly, working at the intersection of
compilers, performance, and security. Foltzer received an MS
in computer science from Indiana University specializing in
programming language theory and implementation. Contact
him at acfoltzer@acfoltzer.net.

MICHAL PODHRADSKY is a sof tware engineer at
Galois Inc. His research is focused on high-assurance

cyber-physical systems and, in particular, unmanned aerial
vehicles. Podhradsky received a PhD in electrical and com-
puter engineering from Portland State University. Contact
him at mpodhradsky@galois.com.

GERWIN KLEIN is a chief research scientist at Data61, CSIRO,
and a conjoint professor at the University of New South Wales,
Sydney, Australia. His research is on formal software verifica-
tion (particularly in operating systems), on interactive theo-
rem proving, and in programming languages. Klein received
a PhD in computer science from the Technische Universität
München. Contact him at gerwin.klein@data61.csiro.au.

IHOR KUZ is a principal research engineer in the Trustworthy
Systems group at Data61, CSIRO, and a conjoint associate
professor at the University of New South Wales, Sydney, Aus-
tralia. His research interests are in secure systems, particu-
larly secure operating systems and componentized systems.
Kuz received a PhD from Technische Universität Delft and is
a Member of the IEEE and ACM. Contact him at ihor.kuz@
data61.csiro.au.

JUNE ANDRONICK is a principal research scientist at Data61,
CSIRO, and a conjoint associate professor at the University
of New South Wales, Sydney, Australia. She is leader of the
Trustworthy Systems group, known for formal verification of
the seL4 operating system microkernel. Her research inter-
ests are in formal verification of concurrent operating system
code. Contact her at june.andronick@data61.csiro.au.

GERNOT HEISER is Scientia Professor and John Lions Chair
of computer science at the University of New South Wales,
Sydney, Australia, as well as a chief research scientist at
Data61, CSIRO. His research is on operating systems, espe-
cially microkernel-based systems for safety- and security-crit-
ical uses, cybersecurity, real-time systems, and architectural
support for operating systems. Heiser received a PhD from
ETH Zurich and is a Fellow of the IEEE, ACM, and the Austra-
lian Academy of Technology and Engineering. Contact him at
gernot@unsw.edu.au.

DOUGLAS STUART is a researcher with Boeing Research
and Technology. His research interests include cyber-phys-
ical systems development, verification, and cybersecurity.
Stuart received a PhD from the University of Texas at Austin.
Contact him at douglas.a.stuart@boeing.com.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

 N O V E M B E R 2 0 1 8 23

At the end of the project, the Red
Team final report concluded,

HACMS technologies have made
revolutionary advances in the
resilience available to develop-
ers of autonomous vehicles. The
final vehicles delivered under
the HACMS program, even as
research prototypes, proved to
be resilient against most forms
of attack to a degree rarely seen
even in hardened, fielded sys-
tems. Of all the final, formally
verified components assessed
under the final phase of the
program, no memory corruption
failures, mathematical opera-
tion faults, or security isolation
compromises were identified.

In this project, we have demon-
strated the use of formal methods to
dramatically improve the cybersecu-
rity of the embedded software in two
aircraft. In addition to security assess-
ments, these aircraft underwent flight
testing to show that their real-time
performance had not been impacted.
Furthermore, all of the modification
and reengineering of the ULB software
was conducted by Boeing engineers.
Thus, the formal methods technolo-
gies presented here are both practical
and effective in enhancing the cyber-
resiliency of real aircraft.

More information, including the
final report, models, software, and
tools developed as part of the proj-
ect, is available at loonwerks.com
/projects/hacms.html.

ACKNOWLEDGMENTS
This work was funded by DARPA contract
FA8750-12-9-0179. The views, opinions,
and/or findings expressed are those of the

authors and should not be interpreted as
representing the official views or policies
of the Department of Defense or the
US government.

REFERENCES
1. C. Stephen, D. MCoy, K. Brian, A.

Danny, S. Hovav, S. Stefan, K. Karl, C.
Alexei, R. Franziska, and K. Taday-
oshi, “Comprehensive experimental
analyses of automotive attack sur-
faces,” in Proc. 20th USENIX Security
Symp., San Francisco, CA, 2011.

2. H. Teso, “Aircraft hacking: Practical
aero series 2013,” HITB. Accessed on:
Aug., 15, 2018. [Online]. Available:
https://conference.hitb.org
/hitbsecconf2013ams/hugo-teso/

3. K. Zetter. (2015). Feds say that
banned researcher commandeered
a plane. Wired. [Online]. Available:
https://www.wired.com/2015/05
/feds-say-banned-researcher-
commandeered-plane/

4. R. Santamarta, Last Call for SATCOM
Security. Las Vegas, NV: Black Hat, 2018.

5. G. Warwick (2017). DARPA blocks
cyberattacks on Unmanned Little
Bird in flight. Aerospace Daily &
Defense Report.

6. P. Feiler and D. Gluch, Model-Based
Engineering with AADL: An Introduc-
tion to the SAE Architecture Analysis
& Design Language, 1st ed. Reading,
MA: Addison-Wesley, 2012.

7. M. W. Whalen, A. Gacek, D. D. Cofer,
A. Murugesan, M. Per Erik Heim-
dahl, and S. Rayadurgam, “Your
“what” is my “how”: Iteration and
hierarchy in system design,” IEEE
Softw., vol. 30, no. 2, pp. 54–60, Mar.-
Apr. 2013.

8. A. Gacek, et al., “Resolute: An assur-
ance case language for architecture
models,” in Proc. HILT 2014, ACM,
New York, pages 19–28.

9. A Cimatti, M Dorigatti, S Tonetta,
“OCRA: A tool for checking the
refinement of temporal con-
tracts,” in Proc. ASE, 2013, pp.
702–705.

10. A. Gacek, J. Backes, M. Whalen, L.
G. Wagner, and E. Ghassabani, “The
JKind Model Checker,” CAV, no. 2, pp.
20–27, 2018.

11. GSN Working Group, GSN community
standard version 1, 2011.

12. P. Graydon, J. Knight, and E. Strunk.
“Assurance based development of
critical systems,” in Proc. 2007 Int.
Symp. Dependable Systems and Net-
works (DSN).

13. P. Hickey, et al. “Building embed-
ded systems with embedded DSLs
(experience report),” in Proc. Int.
Conf. Functional Programming (ICFP),
ACM, 2014.

14. NASA Jet Propulsion Laboratory,
“JPL institutional coding standard
for the C programming language”
Jet Propulsion Lab., Rep. JPL DOCID
D-60411, 2009.

15. G. Klein, J. Andronick, K. Elphin-
stone, T. Murray, T. Sewell, R.
Kolanski, and G. Heiser, “Compre-
hensive formal verification of an OS
microkernel,” ACM Trans. Comput.
Syst., vol. 32, no. 1, pp. 2:1–2:70, Feb.
2014.

16. T. Nipkow, et al. Isabelle/HOL – A
Proof Assistant for Higher-Order
Logic, vol. 2283 of LNCS. Heidelberg:
Springer, 2002.

17. D. Cofer, A. Gacek, J. Backes, and K.
Slind. “High-assurance cyber mili-
tary systems (HACMS), 2017.”
Rockwell Collins. Accessed on:
Aug., 15, 2018. [Online].
Available: https://insights
.rockwellcollins.com/2017/07/06
/video-high-assurance-
cyber-military-systems-hacms/

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 30,2020 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.

__MACOSX/._p07_4_FormalUnmannedFlights.pdf

