
UNIVERSITY OF ANTWERP

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Software Testing Lab

Assignment 1

Submission Deadline: March 2nd, 23:59

1 INTRODUCTION

1.1 OBJECTIVE

The objective of the lab work of the Software Testing course is to help you learn how you can
apply the various testing techniques and test design patterns as discussed during the lectures
in practice. You will apply these techniques to a simple Pacman system written in Java. The
amount of coding that needs to be done is relatively small: The focus is on testing. For this
assignment, you will learn how to use Maven for automating the build process, Java assert
statements for developing built-in tests and applying design-by-contract, JUnit for running
Java unit tests, and Cobertura and JaCoCo for test coverage.

1.2 APPROACH

The work in the labs is mostly self-study. The handouts contain a chain of tasks, some more
practical, others in the form of more philosophical questions reflecting on previous tasks.
Programming exercises are in Java. For your Java development, you can use your favorite
IDE. All the material needed for the completion of the assignment is available at http://
ansymore.uantwerpen.be/courses/software-testing . The JPacman distribution includes
source files, test files, and documentation (in the doc directory).

1

http://ansymore.uantwerpen.be/courses/software-testing
http://ansymore.uantwerpen.be/courses/software-testing

• pacman-requirements.txt: A text file describing the JPacman use cases

• pacman-design.txt: A text file describing the key JPacman design decisions

1.3 GRADING

Each assignment is graded from 0 to 100. To be eligible for the final exam, you need to get
at least 50/100 from each assignment. The minimum requirements for each exercise is indi-
cated. There are also some optional exercises that are not graded, but helpful. You should
normally submit the assignments on time. If late, you are required to do all the optional
exercises as well. Describe your actions, results, and explanations for each exercise in your
report. Accompany the report with all of the requested material. Please note that the report
is the most important part of your answer, so take some time to write an adequate report.

1.4 QUESTIONS

Send your questions regarding the assignments to ali.parsai@uantwerpen.be.

2 ASSIGNMENT

Important Note: Create an archive from the JPacman system after you perform each exercise
that requires modifications to the files. Name the archive according to the exercise number, and
submit them along with your report.

2.1 MAVEN

Information regarding Maven is available at https://maven.apache.org/. Try multiple
Maven goals and familiarize yourself with how Maven works. Use Maven to generate JavaDoc
information for the project.

• Exercise 1. Describe the activities you performed. (Required, 5 points)

• Exercise 2. What are the information contained in the generated report (in target/site
directory)? How can they be used to gain knowledge about the system? (Required, 5
points)

• Exercise 3. Lookup the warnings in the output after executing mvn clean site and
fix them. Describe your modifications. (Optional)

2.2 JUNIT

To familiarize yourself with the way JUnit is used in JPacman, take a look at the various
available test classes. The Java source code is in the directory src/main, while the test cases
are in the directory src/test, following the directory structure as used by default in Maven
projects. Observe that the package structure of these two directories is exactly the same,

2

ali.parsai@uantwerpen.be
https://maven.apache.org/

allowing test cases to access package visible members. If you are not familiar with JUnit,
carefully study the article “Test Infected, Programmers Love Writing Tests”, by Gamma and
Beck, available at http://members.pingnet.ch/gamma/junit.htm .

Next, add the method adjacent for the class Cell in JPacman with the following respon-
sibility:

/ * *
* Determine i f the other c e l l i s an immediate

* neighbour of the current c e l l .

* @return true i f f the other c e l l i s immediately adjacent .

* /
public boolean adjacent (Cel l otherCell) {

. . .
}

• Exercise 4. Generate as many functional (also called responsibility-driven) test cases
as you think are necessary. Describe each test case. (Required, 8 points)

• Exercise 5. Turn your test cases into JUnit test cases in CellTest, and include an
empty method body in Cell to make sure your code compiles. What happens if you
run these tests? (Required, 7 points)

• Exercise 6. Write a proper implementation of adjacent and rerun your test cases. De-
scribe your development process. (Required, 5 points)

• Exercise 7. In your opinion, what are the benefits and shortcomings of this method of
development? (Optional)

• Exercise 8. Repeat the exercises using TestNG. (Optional)

2.3 ASSERTIONS

To familiarize yourself with programming with assertions carry out the following steps:

• Exercise 9. Analyze the various uses of assertions (also see Binder p818). Search for
assertions that are used as precondition, postcondition, and as class invariant. List one
example for each category. (Required, 5 points)

• Exercise 10. Explain the differences between the JUnit collection of assert methods
and the Java assert statement. (Required, 5 points)

• Exercise 11. To get a feeling of what happens when an assertion fails, include an asser-
tion (with documentation string) that you know will fail on a point that you know will
be executed by one of the tests. Run the tests and explain what happens. (Required, 7
points)

3

http://members.pingnet.ch/gamma/junit.htm

• Exercise 12. Now modify the Maven build file so that the tests are run with asser-
tion checking disabled. Rerun, and see what happens. Describe the modifications you
made, and describe what happens if you run the tests this way. Make your conclusions
about asserts: when do you use the Java assert statement and when a testing frame-
work? Finally, undo your changes to the build file, rerun to check that the assertions
indeed fail, and remove the failing assertions. (Required, 8 points)

2.4 CODE COVERAGE

Information and documentation concerning the open source coverage tool JaCoCo is avail-
able at http://www.eclemma.org/jacoco/. JaCoCo is available as a plugin for Maven, or
Eclipse.

• Exercise 13. Introduce the necessary modifications to pom.xml to run JaCoCo when
executing mvn site. Describe the process. (Required, 10 points)

• Exercise 14. Navigate through the coverage results by clicking on packages or classes.
List the three most interesting percentages you found, and explain them. Were there
parts of the code that were not covered? (Required, 10 points)

• Exercise 15. What color are most of the assert statements? Why? How does this affect
the percentages provided by JaCoCo? (Required, 5 points)

• Exercise 16. Are there differences between Line Coverage and Branch Coverage? Take
an example and explain the reason. (Optional)

• Exercise 17. Repeat the exercises using Cobertura1 (Optional)

.

2.5 MOCKS

Read the article by Martin Fowler2 to understand the concept of mocking. Familiarize your-
self with a mock library for Java such as JMockit, Mockito, JMock, EasyMock, etc.

• Exercise 18. Reconsider some of the functional tests you wrote in Exercise 5. Write
them now using mocks. Use a mock library of your choice. (Required, 10 points)

• Exercise 19. Is the coverage resulting from the mock-based test the same as the origi-
nal? Compare both approaches. When would you prefer mock testing? (Required, 10
points)

• Exercise 20. Repeat the exercises with a different mocking framework. (Optional)

1http://www.mojohaus.org/cobertura-maven-plugin/usage.html
2https://martinfowler.com/articles/mocksArentStubs.html

4

http://www.eclemma.org/jacoco/
http://www.mojohaus.org/cobertura-maven-plugin/usage.html
https://martinfowler.com/articles/mocksArentStubs.html

	Introduction
	Objective
	Approach
	Grading
	Questions

	Assignment
	Maven
	JUnit
	Assertions
	Code Coverage
	Mocks

