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Abstract In object-oriented languages, a notion of behavioural sub-
typing is needed to enable modular reasoning. This is no longer suf-
ficient when such languages are extended with aspects. In general, all
aspects need to be inspected in order to understand the behaviour of a
single method or proceed call, which complicates reasoning about aspect-
oriented programs. In this paper, we present an approach to modular
reasoning that consists of two parts. First, the advice substitution prin-
ciple, based on behavioural subtyping, identifies when it is possible to
remain unaware of an advice while preserving modular reasoning. Second,
in cases where it is undesired or impossible to be unaware of an advice, a
simple specification clause can be used to restore modular reasoning and
to become aware of this advice. We show that our approach effectively
enables modular reasoning about pre- and postconditions in a minimal
aspect-oriented language called ContractAJ. To ensure the approach is
used correctly, we also provide a runtime contract enforcement algorithm
that is specified in ContractAJ, and implemented in AspectJ.

Keywords: aspect-oriented programming languages, modular reason-
ing, behavioural subtyping, contract enforcement, design by contract

1 Introduction

Aspect-oriented programming (AOP) languages have introduced powerful mech-
anisms to modularize crosscutting concerns, as aspects allow for the modification
of a program’s behaviour in a quantifiable manner. However, aspects represent
a double-edged sword: while powerful, the presence of aspects also complicates
modular reasoning. Modular reasoning is mainly concerned with the ability to
reason about a method call, based on the specifications of the receiver’s static
type. In an AOP language like AspectJ, modular reasoning is obstructed by the
fact that aspects can implicitly alter the behaviour of method calls. In general,
all aspects need to be inspected to determine whether or not a method call is
affected by an aspect, which goes against modular reasoning.

In this paper, we present an approach to modular reasoning for aspect-
oriented languages, without modifying the programming language itself. There
? Funded by a doctoral scholarship of the Research Foundation - Flanders (FWO)
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are several languages that restrict AOP [2,33,39] in the sense that advice can
only apply to join points that have been explicitly exposed by the developer,
making it easy to distinguish which method calls may or may not be affected by
advice. While this greatly helps in restoring modular reasoning, the advantages
of the widely debated quantification and obliviousness [17] properties of AOP
are lost to a certain extent.

If all usable join points need to be mentioned explicitly, it becomes less
appealing to use aspects for crosscutting concerns where being unaware/oblivi-
ous of such concerns is unlikely to cause harm. This includes examples such as
logging/tracing, caching, profiling, contract enforcement and various other con-
cerns that provide additional functionality without interfering with the rest of
the system. The extra effort needed to make join points explicit only grows as the
aspects that implement such concerns rely more extensively on quantification,
i.e. as they need to affect more and more locations in the source code. Given this
observation, our goal is to enable modular reasoning in a manner that preserves
obliviousness for those aspects where it is an advantage, and to become aware
of those aspects where obliviousness is a disadvantage.

We will do this from a design by contract [30] perspective, based on a no-
tion of substitution for advice. In object-oriented programming, the developer
may not know the receiver’s dynamic type when making method calls, so he/she
can only take into account the specifications of the static type. Such specifica-
tions are defined in terms of preconditions, postconditions and invariants, also
commonly referred to as contracts. To prevent any surprising behaviour when
making method calls, subtypes should respect the contracts of their ancestors. In
other words, they should adhere to a notion of behavioural subtyping [3,16,27].
This allows an instance of a subtype to substitute for any instance of an ancestor
type. This paper uses a similar notion of substitution for advice: the advice sub-
stitution principle (ASP). This principle essentially states that an advice should
comply with the contracts of the join points it advises. The ASP was first intro-
duced informally by Wampler [41, Sec. 3.1.3] as one of several aspect-oriented
design principles. We will present the ASP on a more formal level, as one of the
two parts that form our approach to modular reasoning in AOP languages.

The second part of our approach focuses on advice that cannot satisfy the
ASP. Unlike behavioural subtyping in OOP, we do not use the ASP as a strict
rule that should hold for all advice. Instead, the ASP is used to distinguish
between the advice that already preserve modular reasoning (e.g. logging, cach-
ing, profiling, ...), and the advice where extra effort is needed to restore modular
reasoning (e.g. authentication, authorization, transaction management, ...). This
extra effort comes in the form of a specification clause called @advisedBy. This
clause explicitly indicates that a method may be advised by a given sequence of
advice, such that this method and its clients become aware of these advice. This
approach of using both the ASP and the @advisedBy clause forms the paper’s
main contribution. The approach is presented in the context of a representative,
minimal aspect-oriented language called ContractAJ, which is based on Con-
tractJava [18], AspectJ and Eos-U [34]. Within this language, we will show that
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our approach is sound. That is, the approach effectively preserves modular reas-
oning of method and proceed calls in ContractAJ, even in the presence of shared
join points, overriding advice, higher-order advice (advice that advises advice)
and pointcuts depending on runtime information. In addition, we specify an al-
gorithm that performs runtime contract enforcement in ContractAJ. It is able
to assign the blame when a contract is broken, taking into account behavioural
subtyping, the ASP and the @advisedBy clause. To demonstrate an instantiation
of this algorithm in a full programming language, it is also implemented as a
small design-by-contract library for AspectJ.

In summary, this paper makes the following contributions:
– We first present the syntax and operational semantics of the ContractAJ

language. (Sec. 2 and 3)
– We define and discuss the ASP. (Sec. 4)
– For those advice where it is undesired or impossible to preserve obliviousness,

we present the @advisedBy clause to restore modular reasoning. (Sec. 5)
– We show that the approach preserves modular reasoning about pre- and

postconditions in method and proceed calls in ContractAJ. (Sec. 6)
– Finally, we specify a runtime contract enforcement algorithm in ContractAJ.

We also discuss its implementation in AspectJ. (Sec. 7)

2 ContractAJ

Before delving into the specifics surrounding the ASP and @advisedBy clause, we
first introduce the ContractAJ language, which is used throughout the paper to
study modular reasoning in the context of aspects. This section presents the mo-
tivation behind ContractAJ, its syntax and its informal operational semantics.

2.1 Motivation
There are two main reasons for introducing the ContractAJ language. First, it
is a minimal language, which makes it better suited to study modular reasoning
at a more formal level. The ContractAJ language is based on the minimal Con-
tractJava language introduced in Findler et al. [18], where it was used to specify
a contract enforcement algorithm in an object-oriented setting. In its turn, Con-
tractJava is an extension that adds contracts to the ClassicJava calculus [19].

The second reason to introduce ContractAJ is that we wish to explore AOP
in a more flexible and unified form than is present in AspectJ. While AspectJ
currently is the most established AOP language, some design decisions were
made to achieve better performance or faster language adoption, resulting in
a number of more specialised, less flexible language constructs. This includes
the distinction between aspects and classes, limited control over instantiating
aspects, anonymous advice and the restriction that an aspect cannot extend from
a concrete (non-abstract) aspect. We prefer to keep ContractAJ a small and
flexible language. Additionally, unifying aspect-oriented concepts with object-
oriented ones also helps us to relate modular reasoning in AOP to modular
reasoning in OOP. This type of unification is visible in several design choices:
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– Like Eos-U [34] and CaesarJ [5], ContractAJ unifies aspects and classes. This
means aspects are first-class, and aspects can freely extend other aspects.
Pointcut-advice pairs are also named, such that they can be overridden.

– Before and after advice are treated as special cases of around advice, rather
than viewing around advice as a combination of before and after advice.
Around advice have the closest relation to overriding methods, in the sense
that around advice also override the behaviour of methods, and that proceed
calls behave in a similar fashion to super calls.

– The execution of advice is specified as an extension of the method lookup
mechanism.

– When an advice is about to be executed, the same lookup mechanism is
reused to allow for higher-order advice (advice that advises other advice).

2.2 Syntax

The syntax of ContractAJ is shown in Fig. 1. To illustrate most of the syntax’s
constructs, an example of a simple ContractAJ program is given in Fig. 2. It
describes an aspect called Security with an around advice named authenticate,
which is executed at each method call to Account.withdraw. What is immediately
noticeable is the lack of an aspect keyword, indicating the unification of aspects
and classes. Like the classpects in Eos-U or Caesar classes in CaesarJ, there is
no separate module type dedicated to aspects. Instead, definitions of pointcuts
and advice are allowed in regular classes, such that they can effectively serve as
aspects. This allows for more flexibility, as the developer regains precise control
over the instantiation of aspects by reusing the class instantiation mechanism.
Once an aspect is instantiated with the new keyword, its pointcuts are active.

As pointcuts and advice are now regular class members, aspects can extend
other aspects as well. Note that, for reasons of simplicity, pointcuts and advice
are paired. Because these pointcut-advice pairs are named, this enables overrid-
ing. That is, if an aspect with an overriding pointcut-advice pair is instantiated,
the overriding pointcut-advice pair is active, but the overridden one is not.

The pointcut language, shown in the pcut rule, provides most of the ba-
sic pointcut constructs: method and advice executions can be captured with
execution. Method calls are captured with call. Like AspectJ, the receiver of
method calls / advice executions can be bound to a variable using this or target.
While there is no args construct to bind parameters as in AspectJ, method/ad-
vice arguments are bound directly in the execution/call pointcut. Note that
our pointcut language also includes an if construct. Just like AspectJ, when an
if construct is used, the pointcut can only match when the given if-condition
is true at the current join point. We intentionally included this if construct to
demonstrate that our approach to modular reasoning also takes into account
pointcuts that can only be determined at runtime.

The prec rule contains the syntax of the advice precedence/composition
mechanism; it determines in which order advice should be executed when mul-
tiple advice share the same join point. In the example of Fig. 2, the declare

precedence statement specifies that the advice Security.authenticate has a
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program ::= prec def ∗ main{e}
prec ::= declare precedence (c.a)∗;

def ::= class c extends c {(field |method | adv)∗}
field ::= t f

method ::= contract [@advisedBy (c.a)∗] t m (arg∗){e}
adv ::= contract (before | after | around) a: pcut{e}

contract ::= @requires e @ensures e
arg ::= t var

e ::= new c | var | bool | null
| e.f | e.f =e
| e.m(e∗) | super.m(e∗) | proceed(e∗)
| (t) e | e instanceof t
| let{binding∗} in {e}
| if(e){e}else{e}
| error(e)
| {e ; e}
| proc

bool ::= true | false
binding ::= var=e

pcut ::= execution(t c.x(arg∗)) && this (var)[&& if (e)]
| call(t c.m(arg∗)) && target(var)[&& if (e)]

var ::= a variable name or this

c ::= a class name (or Object)
f ::= a field name

m ::= a method name
a ::= an advice name
x ::= m | a
t ::= c | boolean

Figure 1. ContractAJ syntax

declare precedence Security.authenticate, Logger.write;

class Account extends Object {
@requires this.getAmount() >= m && m>0
@ensures this.getAmount() == old(this.getAmount()) - m
@advisedBy Security.authenticate
int withdraw(int m) {...} ... }

class Security extends Object {
@requires proc
@ensures if(isLoggedIn(acc.getOwner)){proc}else{true}
around authenticate: call(int Account.withdraw(int m)) && target(acc) {

if (isLoggedIn(acc.getOwner())) {
proceed(acc,m);

}
} ... }

...
main {

Security sec = new Security; Account acc = new Account;
acc.withdraw(10); // advised by sec.authenticate

}

Figure 2. An example ContractAJ program
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higher precedence than Logger.write (not shown). ContractAJ’s precedence
mechanism is similar to that of AspectJ, apart from two small differences:
ContractAJ’s precedence statement is slightly more fine-grained, as it lists advice
rather than aspects. ContractAJ programs also contain only one global declare
precedence statement. While AspectJ does allow for multiple precedence declara-
tions, note that they can always combined into one global statement. (Otherwise
there would be a precedence conflict.)

The constructs needed to specify contracts are provided in the contract rule.
Methods and advice can specify their preconditions and postconditions using
the @requires and @ensures constructs. Note that our main focus is on pre- and
postconditions, which is why there is no syntax for invariants, history constraints
or frame properties. Additionally, the optional @advisedBy clause can be used by
a method if it should become aware of one or more advice. We should also
mention the proc keyword in the e rule, which serves as a placeholder for the
contracts of any proceed calls. This keyword can only be used in the contracts
of advice, to refer to the pre- or postcondition of the next advice we are aware
of. The semantics of both @advisedBy and proc are detailed in Sec. 5.

Finally, note that we will use the symbols for a class (c), field (f), method (m),
advice (a), method-or-advice (x) and type (t) as naming conventions throughout
the entire paper.

2.3 Informal ContractAJ semantics
The semantics of ContractAJ is an extension of the object-oriented Contract-
Java [18] language. It is not a pure extension, in the sense that support for
interfaces was removed in order to keep the language minimal. What is added
semantics-wise can be found mainly in the language’s join point model, pointcut
language and the lookup procedure. This section describes ContractAJ’s join
point model, as well as informally explains ContractAJ’s lookup procedure.

Join point model The call and execution pointcuts of ContractAJ closely
correspond to those of AspectJ: a call pointcut matches on method calls where
the receiver’s static type is, or is a subtype of, whichever type is specified in
the pointcut. Similarly, an execution pointcut matches if the receiver’s dynamic
type is (a subtype of) the type specified in the pointcut.

However, what is different in ContractAJ is the join point model. In AspectJ,
call pointcuts describe a set of call join points, where a call join point refers to
the moment before method lookup. Likewise, execution pointcuts describe a set
of execution join points, which refer to the moment after lookup.

In ContractAJ, there only are call join points. Both ContractAJ’s call and
execution pointcuts make use of this one kind of join point. This is possible as
both the receiver’s static and dynamic type are available at the moment before
method lookup. We made this choice to simplify ContractAJ’s semantics, while
it still is representative for what is possible when using AspectJ’s pointcuts.

Another difference between call and execution join points in AspectJ is that
they are associated with different locations in the source code (i.e. join point
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shadows). However, this difference is only relevant when combining call/execu-
tion pointcuts with other pointcut constructs that match on join point shadows
(e.g. AspectJ’s within and withincode), which are not present in ContractAJ.
Because of this, we argue that it is sufficient to support call join points only.

Lookup semantics The execution of advice in ContractAJ is expressed as an
extension of the method lookup mechanism, which implies that advice execution
is late-bound. Executing a method call c.m in ContractAJ is done as follows:

1. For all instances of classes with pointcuts, try to match these pointcuts on
the c.m call join point. (If there are multiple instances of the same class, the
pointcut is checked for each instance.) Note that, when looking for matching
pointcuts, we do not yet consider any if pointcut constructs.

2. Given all matching pointcuts, the precedence mechanism will produce a com-
position/sequence 〈c1.a1, c2.a2, . . . , cn.an, c.m〉, where each ci.ai represents
the advice body associated with a matching pointcut. This composition
determines the precedence order of the advice that advise c.m. Push this
composition on a global stack.

3. Find the first advice in the composition where its corresponding pointcut
either does not contain an if construct, or the if construct’s condition eval-
uates to true.

(a) If no such advice is found, pop the entire composition from the stack,
perform method lookup on c.m and execute the body that is found.

(b) If an advice was found, remove this advice and all preceding advice from
the composition, then call the advice that was found (as if it were a
method call).

Note the emphasis on “call” in step 3.(b). This enables the use of higher-order
advice, which are advice that match on other advice executions. A call to an
advice is handled just like a method call, meaning that it reuses the same lookup
mechanism.

Finally, the semantics of a proceed call is a simpler version of the above
steps: As the desired composition already is on the stack whenever a proceed
call is made, it only performs step 3. As this step includes testing if pointcut
constructs, this implies that these tests are delayed until an advice body is about
to be executed, which corresponds to AspectJ’s semantics.

3 Formal ContractAJ semantics

This section presents the operational semantics of the ContractAJ language in its
entirety. The semantics follows a similar style as the ContractJava [18] language
it is based on, making use of a contextual rewriting system [42].
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P, c ` a: call(t c′.m(t1 x1 . . . tm xm)) && target(var) . . . {e}
⇀sep a: call(t c′.m(t1 x1 . . . tm xm)) && target(var) . . .

t a(c′ var , t1 x1 . . . tm xm){e}

Figure 3. Moving advice bodies to method bodies

m ∈ c′′ and c′ ≤ c′′

@c′′′ : m ∈ c′′′ and c′′ < c′′′

P, c ` a: execution(t c′.x(t1 x1 . . . tm xm)) && this(var)
⇀exec a: call(t c′′.x(t1 x1 . . . tm xm)) && target(var) && if(var instanceof c′)

Figure 4. Converting execution into call pointcuts

3.1 Source modifications

Before describing the semantics of ContractAJ, we will first perform three small,
harmless transformations at the source code level, which make it easier to de-
scribe the operational semantics.

The first transformation, defined by the ⇀sep judgement1 in Fig. 3, consists of
removing the advice body from each pointcut-advice pair, and moving this body
into a separate method declaration. This method declaration gets the same name
and the same parameters as the corresponding pointcut-advice pair. If a pointcut
now matches during program execution, ContractAJ’s semantics can simply call
the method that corresponds to the advice. After applying this transformation,
ContractAJ essentially is a minimal version of the Eos-U [34] language, which
unifies classes and aspects, and uses regular method bodies as advice bodies.

class Logger {
before log: execution(void Duck.fly(int dist)) && this(duck) {...}}

After applying the ⇀sep and ⇀exec judgements:
class Logger {

before log: call(void Bird.fly(int dist)) && target(duck)
&& if(duck instanceof Duck)

void log(Duck duck, int dist) {...}}

Figure 5. Example application of the first two transformations

In the second transformation, we convert every2 execution pointcut into an
equivalent call pointcut. This transformation is defined by the ⇀exec judgement3

1 An analogous definition of ⇀sep can be given for advice with an execution pointcut.
2 Note that execution pointcuts matching on advice executions are also converted into
call pointcuts, which is accepted by ContractAJ’s operational semantics as it reuses
the dynamic type as static type in advice executions.

3 An analogous definition of ⇀exec can be given in case an if construct is already
present in the execution pointcut.
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in Fig. 4. (< is the strict subtyping relation, such that c < c′ relates c to an
ancestor class c′. ∈ relates a method to its class.) As discussed in Sec. 2.3,
the only difference between ContractAJ’s call and execution pointcuts is that
the first matches on the receiver’s static type whereas the latter matches on
the dynamic type. When converting an execution pointcut into a call pointcut,
⇀exec ensures that the dynamic type still is taken into account by adding an if
pointcut construct with a simple instanceof test. Note that, even though the
call pointcut construct also tests the receiver’s static type, we made sure that
this test has no effect: The call construct tests that the receiver is an instance
of the class where the desired method is first declared, which always is the case
when the dynamic type test passes. An example application of both ⇀exec and
⇀sep can be found in Fig. 5 (where Bird declares method fly, and Duck is a
subtype of Bird).

e ::= . . . | e:c.f | e:c.f =e
| e:c.m(e∗)
| super ≡ this:c.m(e∗) | . . .

.

Figure 6. Syntax modifications

In the third and final transformation, we will modify the syntax of method
calls, super calls, field accesses and field assignments in such a way that the
static type is always included explicitly, so we can easily refer to it when needed.
For example, a method call e.m(e ∗ ) now becomes e:c.m(e ∗ ), where c is the
static type of the receiver. We assume a type checker can be easily implemented
which infers the static type for each of these statements. The altered syntax for
these statements is shown in the e rule of Fig. 6.

3.2 Operational semantics

The operational semantics of ContractAJ, like the ContractJava language, is
expressed as a contextual rewriting system [42]. Our rewriting system operates
on triples consisting of an expression, a store and a stack. That is, each evaluation
rule has the following shape:

P ` 〈e, S, J 〉 ↪→ 〈e, S, J 〉

Such a rule can be read as: within program P , the left-hand-side (a triple
with expression e, store S and join point stack J ) evaluates to the right-hand-
side if the rule is applied. Each of the different data structures used in these
triples is defined as follows:
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P A program, as defined by the ContractAJ syntax.

e Each e is an expression, as defined by the syntax.

S S ::= obj 7→ 〈c,F〉
F ::= f 7→ v

The store S allows us to find the field values of each object: it is a mapping from
objects to 〈c,F〉 pairs, where each pair consists of a class c and a field record F .
A field record F contains the values for all fields in a particular object: it is a
mapping from field names to field values.

J
J ::= A;J | •
A ::= E +A | •
E ::= 〈c, x, obj, bool〉

Figure 7. Join point stack

The join point stack J keeps track of the se-
quence of advice/methods that should be executed
at each join point that is encountered. The join point
stack is a stack of A records. In turn, each A record
is a stack4 of E tuples 〈c, x, obj, bool〉. Such a tuple
respectively describes a method/advice body c.x, the
this object to be used and a boolean value that in-
dicates whether c.x is ready to be executed (true),
or further lookup is needed (false). The ordering of
E tuples within an A record will be determined by
ContractAJ’s precedence mechanism.

The example in Fig. 7 gives a more visual idea of the join point stack’s
structure, in the context of a banking application: In this example, the stack
contains threeA records. The method Account.transfer was called at some point
and Security.auth, TransMgr.commit and Logging.log respectively matched on
this method call. The Security.auth advice was already moved into topmost A
record to look for higher-order advice. One higher-order advice Profiler.measure
was found. The boolean in its E tuple still is false, indicating that we are about
to check whether any higher-order advice match on Profiler.measure.

In addition to the store and the join point stack, we also provide a number
of predicates and functions in Fig. 8 that help define the operational semantics.
Most of these are self-explanatory, but we will highlight the precedence and
lookup mechanisms in more detail:

The <prec predicate defines ContractAJ’s precedence mechanism, which makes
use of the global declare precedence statement to determine the ordering of ad-
vice when multiple pointcuts match at the same join point. The <prec predicate is
defined in terms of precLook(c, a), which determines the element in the declare

precedence statement that corresponds to a particular advice c.a, either directly

4 Note that we use two different concatenation symbols to avoid ambiguity. “;” con-
catenates records in J and “+” concatenates tuples in an A record.
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Subtyping relations
≺ c ≺ c′ ⇔ class c extends c′{ . . . } is in P
≤ ≤≡ transitive, reflexive closure of ≺
< <≡ transitive, irreflexive closure of ≺

Field f is a member of c
∈ 〈c, f, t〉 ∈ c⇔ class c{ . . . t f . . . } is in P

Method/advice xis declared in class c

∈ 〈x, (t1, . . . , tn → t), (var1, . . . , varn), e〉 ∈ c
⇔ class c{ . . . t x(t1 var1 . . . tn varn){e} . . . } is in P

Advice c.a is listed in the precedence statement as c′.a

precLook(c, a)

declare precedence . . . c′.a . . . is in P
c ≤ c′ and 〈a,_,_,_〉 ∈ c′

@c” : (c ≤ c” < c′ and declare precedence . . . c′′.a . . . is in P )
preclook(c, a) = c′

Advice precedence relation

<prec

〈ca, aa,_,_〉 <prec 〈cb, ab,_,_〉
⇔ either (precLook(ca, aa) = c′a and precLook(cb, ab) = c′b
and declare precedence . . . c′b.ab . . . c′a.aa . . . is in P )
or (@c′a : precLook(ca, aa) = c′a and precLook(cb, ab) = c′b)

Test advice kind
isBefore(c, a) class c . . . { . . . before a: . . . } is in P
isAfter(c, a) class c . . . { . . . after a: . . . } is in P
isAround(c, a) class c . . . { . . . around a: . . . } is in P
isMethod(c, m) !isBefore(c, m) and !isAfter(c, m) and !isAround(c, m)

Retrieve name of target binding

target(c, a) class c . . . { . . . a:call( . . . ) && target(var)} is in P

target(c, a) = var

Retrieve the condition of an if pointcut construct

ifPcut(c, a) class c . . . { . . . a: . . . && if(e) . . . } is in P

ifPcut(c, a) = e

ifPcut(c, a) class c . . . { . . . a: . . . && if(e) . . . } is not in P

ifPcut(c, a) = true

Method lookup of m in the dynamic type c

mlook(c, m)
c ≤ c′ and 〈m,_,_,_〉 ∈ c′

@c′′ : 〈m,_,_,_〉 ∈ c′′ and c ≤ c′′ < c′

mlook(c, m) = c′

Body c.x matches with call pointcut of advice c′.a

call(c, x, c′, a) class c′ . . . { . . . a:call(t cpcut.x( . . . )) . . . }is in P
where c ≤ cpcut and ∃c′pcut : c′pcut = mlook(cpcut, x)

Find the sequence of advice matching on c.x

alook(c, x,S)

A is a sequence of distinct E-tuples such that:
∀Ei ∈ A : (Ei = 〈ci, ai, oi, false〉 and call(c, x, ci , ai))

and S(oi) = 〈c′i,_〉 and ci = mlook(c′i, a)
∀Ei, Ei+1 ∈ A : Ei <prec Ei+1

alook(c, x,S) = A

Figure 8. Helper predicates and functions
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or as a subtype. (The well-formedness rules in Sec. 3.4 ensures this element can
always be uniquely determined.) Note that <prec is undefined when neither of the
two advice being compared are mentioned in the declare precedence statement.
In case only one advice is mentioned, it gets the higher precedence.

The core of ContractAJ’s lookup mechanism is defined by mlook, call and
alook. The mlook(c, m) function performs regular method lookup. Predicate
call(c, x, c, a′) tests whether a particular method/advice c.x matches with the
call pointcut construct in advice c′.a, either directly or as a subtype. Finally, the
alook function determines the sequence of advice whose call pointcut construct
matched on c.x. More specifically, the alook function produces a list of E tuples,
ordered by the precedence mechanism, where each tuple describes which advice
body matched, the corresponding aspect instance oi and a false value to indicate
that we have not checked for higher-order advice yet. Regarding the aspect
instance oi, we also specify that the matching advice ci.ai does not always have
to be part of the type of oi directly, but may also be inherited.

After discussing the helper predicates and functions, we can now present the
rules that compose ContractAJ’s operational semantics, shown in Fig. 9. First,
note that the syntax of expressions (e) is extended with two new statements:
return and jpop. These two statements are not available to the developer writing
ContractAJ programs, but are only used internally by the semantics. The jpop

statement is used whenever an A record needs to be popped from the join point
stack. The only purpose of the return statement is to serve as a marker in the
theorems of Sec. 6, such that we can easily refer to any configuration where
the execution of a method/advice body is about to finish. Next, the definition
of evaluation context E specifies the order in which subexpressions should be
evaluated for each type of compound expression, which ensures there can only
be one possible sequence of rule applications to evaluate a ContractAJ program.
Finally, we can discuss the evaluation rules themselves in Fig. 9. The more
interesting rules are those that specify the behaviour of method and proceed
calls: [call], [before], [after], [around], [callaround], [exec] and [jpop]:

[call] - This rule matches on method calls obj:c.x. This method call is re-
placed with a proceed call (wrapped in a jpop expression). While it may seem
peculiar to replace every method call with a proceed call, they both share the
same intuition: Try to execute the next matching advice; otherwise do regular
method lookup. The only difference is that a method call has the additional task
of looking for the matching advice, which is exactly what this [call] rule does
with the help of the alook function. This function produces a list of E tuples
that each represent an advice whose call pointcut construct matched on c.x.
The 〈c, x, obj, true〉 tuple, representing the method call, is appended to the res-
ult of alook to complete the A record that is then pushed onto the join point
stack. After an application of the [call] rule, the proceed call it produced must
be evaluated next. The semantics of proceed calls is defined by the [before],
[after], [around] and [exec] rules.

[before] - This rule matches if there is a before advice c.a in the tuple at the
top of the join point stack. This tuple is popped and the proceed expression is
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e =
. . . | obj
| jpop{e}
| return:c{e}

v = obj | null
| true | false

E = [ ] | E : c.f | E : c.f =e | v:c.f = E
| E.m(e . . . ) | v.m(v . . . E e . . . )
| super ≡ v:c.m(v . . . E e . . . )
| (t) E | E instanceof t | if(E){e}else{e}
| {E;e} | let{var=v . . . var=E . . . var=e . . . }in{e}
| return:c{E} | jpop{E}

[call] P ` 〈E[obj:c.x(v1 . . . vn)],S,J 〉
↪→ 〈E[jpop{proceed(obj v1 . . . vn)}],S,A;J 〉
where A = alook(c, x,S) + 〈c, x, obj, true〉 and !isAround(c, x)

[before] P ` 〈E[proceed(obj v1 . . . vn)],S,A;J 〉
↪→ 〈E[if(e′){objasp:c.a(obj v1 . . . vn)};proceed(obj v1 . . . vn)],S,A′;J 〉
whereA = 〈c, a, objasp, false〉+A′ and 〈a, (t1, . . . , tn → t), (var1, . . . , varn , e)〉 ∈ c
and isBefore(c, a) and vartgt = target(c, a) and e = ifPcut(c, a)
and e′ = e[objasp/this, obj/vartgt , v1/var1, . . . , vn/varn]

[after] P ` 〈E[proceed(obj v1 . . . vn)],S,A;J 〉
↪→ 〈E[proceed(obj v1 . . . vn);if(e′){objasp:c.a(obj v1 . . . vn)}],S,A′;J 〉
(same constraints as [before], except that isBefore(c, a) becomes isAfter(c, a))

[around] P ` 〈E[proceed(obj v1 . . . vn)],S,A;J 〉
↪→ 〈E[if(e′){objasp:c.a(obj v1 . . . vn)}else{proceed(obj v1 . . . vn)}],S,A′;J 〉
(same constraints as [before], except that isBefore(c, a) becomes isAround(c, a))

[callaround] P ` 〈E[objasp:c.a(v1 . . . vn)],S,A;J 〉
↪→ 〈E[proceed(objasp v1 . . . vn)],S,A′ +A;J 〉
where A′ = alook(c, a,S) + 〈c, a, objasp, true〉 and isAround(c, a)

[exec] P ` 〈E[proceed(obj v1 . . . vn)],S,A;J 〉
↪→ 〈E[return:c{e[objthis/this, v1/var1, . . . , vn/varn]},S,A′;J 〉
where A = 〈c, x, obj ′, true〉+A′
and if isMethod(c, x) then (objthis = obj) else (objthis = obj ′)
and S(objthis) = 〈c′, . . .〉 and c′′ = mlook(c′, x)
and 〈x, (t1, . . . , tn → t), (var1, . . . , varn , e)〉 ∈ c′′

[jpop] P ` 〈E[jpop{v}],S,A;J 〉 ↪→ 〈E[v],S,J 〉
[super] P ` 〈E[super ≡ obj:c.m(v1 . . . vn)],S,J 〉

↪→ 〈E[e[obj/this, v1/var1, . . . , vn/varn],S,J 〉
where 〈m, (t1, . . . , tn → t), (var1, . . . , varn , e)〉 ∈ c

[return] P ` 〈E[return:c{e}], S, J 〉 ↪→ 〈E[e],S,J 〉

[new] P ` 〈E[new c],S,J 〉 ↪→ 〈E[obj],S[obj 7→ 〈c,F〉],J 〉
where obj /∈ dom(S) and F = {c′.f 7→ null | c ≤ c′ and ∃t : 〈c′, f , t〉 ∈ c′}

[get] P ` 〈E[obj:c′.f ],S,J 〉 ↪→ 〈E[v],S,J 〉
where S(obj) =

〈
c,F
〉
and F(c′.f ) = v

[set] P ` 〈E[obj:c′.f =v],S,J 〉 ↪→ 〈E[v],S[obj 7→ 〈c,F [c′.f 7→ v]〉],J 〉
where S(obj) =

〈
c,F
〉

[cast] P ` 〈E[(t) obj],S,J 〉 ↪→ 〈E[obj],S,J 〉
where S(obj) =

〈
c,F
〉
and c ≤ t

[insttrue] P ` 〈E[obj instanceof t],S,J 〉 ↪→ 〈E[true],S,J 〉
where S(obj) =

〈
c,F
〉
and c ≤ t

[instfalse] P ` 〈E[obj instanceof t],S,J 〉 ↪→ 〈E[false],S,J 〉
where S(obj) =

〈
c,F
〉
and c � t

[let] P ` 〈E[let {var1=v1 . . . varn=vn} in {e}],S,J 〉 ↪→ 〈E[e[v1/var1 , . . . , vn/varn ]],S,J 〉
[iftrue] P ` 〈E[if(true){e1}else{e2}],S,J 〉 ↪→ 〈E[e1],S,J 〉
[iffalse] P ` 〈E[if(false){e1}else{e2}],S,J 〉 ↪→ 〈E[e2],S,J 〉
[seq] P ` 〈E[{v;e}],S,J 〉 ↪→ 〈E[e],S,J 〉
[error] P ` 〈E[error(msg)],S,J 〉 ↪→ 〈error: msg,S,J 〉

Figure 9. Operational semantics of ContractAJ
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replaced with an explicit method call to the advice body, followed by the implicit
proceed call. Note that this explicit call to the advice body will only be executed
if the advice’s if pointcut construct succeeds. Because we are using an explicit
method call, this will cause the [call] rule to match, which will then look for any
higher-order advice that match on c.a. An infinite regression cannot occur when
this before advice reappears at a later point in the evaluation; this is due to the
boolean value in each E tuple. It indicates whether we have already processed
this advice or not. More specifically, the [before] rule will only match if the
boolean in the join point stack’s top entry is false. Once the [call] rule has
processed the explicit call to the before advice, that boolean will be set to true.

[after] - This rule is analogous to [before], except that the implicit proceed
call comes before explicitly calling the advice.

[around] - This rule is analogous to [before] as well. If the if pointcut con-
struct evaluates to true, an explicit call is made to the around advice. Otherwise,
the advice is skipped by only making a proceed call to the next advice.

[callaround] - This rule is a variant of the [call] rule; it only handles explicit
calls to around advice. Whereas [call] will push a new record onto the join point
stack, [callaround] will extend the existing record that is currently at the top of
the stack. The reason for this difference is to support higher-order around advice
that do not make a proceed call. If an around advice c.a does not proceed, this
means that any remaining advice in the current advice composition, and the
method/advice body being advised will no longer be executed. Additionally, it
is possible that the body being advised is another around advice: in this case
all remaining advice in the composition of that around advice and the body
it advises will not be executed either, and so on. To achieve this behaviour,
[callaround] extends the record at the top of the stack: all of the bodies that
should no longer be executed are now grouped into one record, such that they
will be removed from the stack once the execution of c.a is finished.

[exec] - This rule matches once we are ready to execute the E tuple at the top
of the join point stack, as indicated by the true value in this tuple. The mlook
function is first used to perform regular method lookup using dynamic type c
and method/advice x, resulting in lookup result c′. The receiver object objthis
is determined in one of two ways: If x represents an advice, it is retrieved from
the top tuple in the stack. Otherwise, we use the first argument of the proceed
call (obj), which represents the binding of the target pointcut construct. This
adds support for receiver substitution, as the value of obj can be chosen by the
developer (if the proceed call is part of an around advice).

We can then replace the proceed expression with e, the body of c′.x. Formal
parameters and the this object are also bound to their values. A return wrapper
is also added to the e expression, which ensures the [return] rule will match
once the evaluation of e is finished. Finally, the E tuple at the top of the stack
is removed, as it is no longer needed5.

5 The tuple might still be needed in case an around advice makes multiple proceed
calls. This is however not supported, as it is an uncommon scenario and would
unnecessarily complicate the semantics.
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[jpop] - This rule pops the top A record from the join point stack. This top
record typically already is empty at this point, unless there were around advice
that did not make a proceed call. Note that jpop expressions are only created by
the [call] rule, not by [callaround]. This is because there should only be one jpop
expression per record, and [callaround] only extends an existing record instead
of adding a new one.

[super] - This rule handles super calls. In order to keep the semantics simple,
we chose not to support advice on super calls. As such, the rule can immediately
replace the call with the corresponding method body.

[return] - As mentioned earlier, return expressions only serve as markers
that indicate the end of a body’s execution. These expressions are created by
the [exec] rule at the start of a body’s execution.

3.3 Lookup sequences

To provide a more high-level view on ContractAJ’s lookup mechanism, Fig. 10
represents all possible sequences of rule applications that can be taken starting
from a configuration with a method/proceed call, and ending with the config-
uration where we have determined which body will be executed. A few example
sequences are also given in Fig. 11.

mcall ::= [call] lookup∗|skip∗ [exec]
pcall ::= lookup∗ | skip∗ [exec]

lookup ::= skip∗match
match ::= ([before] . . . [iftrue] [call]) | ([around] . . . [iftrue] [callaround])

skip ::= ([after] . . . [iffalse] | [iftrue]) | ([before] | [around] . . . [iffalse])

Figure 10. All possible lookup sequences

mcall/pcall - mcall represents all possible sequences of rule applications for
method calls, whereas pcall represents proceed calls. Note that the only difference
between the two is that mcall initially applies the [call] rule. A method call
starts in a configuration 〈e,S,J 〉, where e decomposes into the method call to
be executed. The [call] rule then replaces this method call in e with a proceed
call, such that the lookup mechanism for proceed calls can be reused.

lookup - The lookup sequence may be applied multiple times in mcall and
pcall. It searches for the first before/around advice that must be executed. (After
advice will be discussed later as a separate case, due to the preceding implicit
proceed call.) If lookup does not match in mcall/pcall, the subsequent applic-
ation of [exec] must initiate the execution of a method body, as there is a
method body at the top of J . If lookup matches exactly once, [exec] will initi-
ate a non-higher-order before/around advice. If lookup matches more than once,
a higher-order before/around advice will be initiated.

skip - The skip sequence represents an advice that initially matches, but will
not be executed. This can happen for one of two reasons: The call pointcut
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Method call leading to the execution of a method body (no matching advice):
[call] [exec]

Method call where the first advice to be executed is an around advice:
(The call pointcut of an after advice did match first, but its if construct failed.)

[call] [after] . . . [iffalse] [around] . . . [iftrue] [callaround] [exec]

Method call advised by a before advice, which is advised by an around advice:
[call] [before] . . . [iftrue] [call] [around] . . . [iftrue] [callaround] [exec]

Figure 11. A few example lookup sequences

construct of an advice matches, but its if construct does not. In this case, either
[before],[after] or [around] is applied first, which will insert a runtime test for
the if pointcut construct. The subsequent rule applications (indicated with an
ellipsis) represent the evaluation of this if condition. If it fails, [iffalse] matches
and this advice will not be executed. The second reason for not (immediately)
executing an advice is because it is an after advice. Because there is an preceding
implicit proceed call which must be evaluated first, a method/proceed call cannot
directly result in the execution of an after advice body.

match - The match sequence represents a matching before/around advice.
In this case, the advice’s if pointcut construct does succeed, as indicated by the
application of [iftrue]. We will now explicitly call the matching advice (to look for
any higher-order advice), as indicated by the application of [call]/[callaround].

Finally, we should still discuss the execution of after advice bodies: Due to the
presence of the implicit proceed call, an after advice body can only be initiated
once this implicit proceed call finishes, resulting in the “[return] mcall” rule
sequence. The application of [return] represents the end of the after advice’s
implicit proceed call, which is then followed by an explicit call to the after advice
body.

3.4 Well-formedness rules

To wrap up the definition of ContractAJ’s semantics, Fig. 12 presents the con-
straints that must be satisfied by every ContractAJ program in order to be
well-formed. Most constraints were carried over from the object-oriented Clas-
sicJava [19] language. The constraints specific to ContractAJ are mostly self-
explanatory. Only the AdvByOK constraint should be discussed in some more
detail: This constraint is defined in terms of the advBy(c, m) helper function,
which retrieves the complete @advisedBy clause of c.m, including the part inher-
ited from its super class. An @advisedBy clause specifies a list of advice that a
method is expecting to be advised by, in the given order. At runtime, this ex-
pectation may also be fulfilled by an overriding advice. To prevent ambiguities
when determining which element in an @advisedBy clause corresponds to a par-
ticular advice, the AdvByOK constraint requires that these elements may not
override each other. Additionally, the constraint requires that the elements of the
@advisedBy clause are ordered such that they respect the precedence declaration.
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Each class is defined only once.
UniqClasses ∀ c, c′ class c . . . class c′ . . . is in P =⇒ c 6= c′

Each member is defined only once per class.
UniqF ields ∀ f, f ′ class . . . { . . . f . . . f ′ . . . } is in P =⇒ f 6= f ′

UniqMethods ∀m, m′ class . . . { . . . m(. . .){ . . . } . . . m′(. . .){ . . . } . . . } is in P =⇒ m 6= m′

UniqAdvice ∀ a, a′ class . . . { . . . a : . . . { . . . } . . . a′ : . . . { . . . } . . . } is in P =⇒ a 6= a′

The superclass of each class is defined.
CompleteClasses rng(≺) ⊆ dom(≺) ∪ {Object}

Class hierarchy is an order.
W ellF oundedClasses ≤ is antisymmetric

Method overriding preserves the type.

ClassMethodsOK
∀c, c′, e, e′, m, T, T ′, V, V ′ (〈m, T, V, e〉 ∈ c and 〈m, T ′, V ′, e′〉 ∈ c′)
=⇒ (T = T ′ or c ≤ c′)

No duplicate entries in the precedence declaration.
P recedenceOK ∀ c, a, c′, a′ declare precedence . . . c.a . . . c′.a′ . . . is in P =⇒ 〈c, a〉 6= 〈c′, a′〉

Proceed calls may not be used in methods.
P roceedInAdvice @m : class . . . { . . . m(. . .){ . . . proceed . . .} . . . } is in P

The proc keyword may only be used in specifications.
P rocInSpecs @x : class . . . { . . . x(. . .){ . . . proc . . .} . . . } is in P

Retrieve the complete @advisedBy clause of a method

advBy(c, m)

class c . . . { . . . @advisedBy c1.a1, . . . ,cn.an; . . . m . . . } is in P
A = advBy(c′, m) if (∃c′ : c′ = mlook(c, m) and c 6= c′)

A = ∅ otherwise
advBy(c, m) = (c1, a1, . . . , cn, an) ◦A

Advice in an @advisedBy clause may not override each other
and should respect the precedence order.

AdvByOK
∀c, m, A 〈m,_,_,_〉 ∈ c and A = advBy(c, m) = (c1, a1, . . . , cn, an)
=⇒ ((ci ≤ cj =⇒ ai 6= aj) where i 6= j) and (ci <prec cj where i < j)

Figure 12. Static constraints on ContractAJ programs

4 The advice substitution principle

After defining the ContractAJ language, we can use it to present our approach
to modular reasoning in AOP languages. This approach can be divided into two
parts: the advice substitution principle (ASP) and the @advisedBy clause. This
section will focus on the first part, the ASP. If an advice complies with this prin-
ciple, modular reasoning is possible even while remaining oblivious of this advice.
That is, the advice will not cause any surprising behaviour whenever a method
call (or proceed call) is made. The purpose of the ASP is similar to the notion of
observers, spectators, spectative and harmless advice [11,15,21,37]. However, the
key difference between these notions and the ASP is that the ASP is a property
of an advice’s specification rather than its implementation. This allows for two
advantages: First, our approach to modular reasoning should be familiar to OOP
developers, as it is a natural extension of modular reasoning in OOP, which is
typically also defined in terms of a program’s specifications. Second, because a
program’s specifications describe the expected behaviour of each module, it also
is clear what constitutes unexpected/surprising behaviour. This is what allows
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the ASP to be weaker/less conservative than observers, spectators, spectative
and harmless advice. These notions only rely on the program implementation,
where it is far from trivial to deduce what constitutes unexpected behaviour.

The ASP is based on the notion of behavioural subtyping in object-oriented
languages [3,16,24,27]. The ASP presented in this paper is however slightly dif-
ferent than the ASP first introduced by Wampler [41], which is an adaptation
of Liskov and Wing’s constraint-based behavioural subtyping [27, Fig. 4]. Our
version of the ASP is based on Dhara and Leavens’ strong behavioural subtyping
(SBS) [16, Def. 4.1 and 4.2], as it has a postcondition rule that is more flexible
than Liskov and Wing’s. We paraphrase the rules on preconditions, postcondi-
tions and invariants of the SBS definition as follows:

Strong behavioural subtyping (SBS). Type t is a strong behavioural subtype
of type u, if and only if t < u and:

– For all objects of type t, and for all common methods m in t and u:
• The precondition of t.m must be equal to or weaker than the precondition
of u.m.

• The postcondition of t.m must be equal to or stronger than the postcon-
dition of u.m, if the precondition of u.m held in the pre-state.

– For all objects of type t:
• The invariant of u should be preserved in t.

To adapt the SBS rules to an aspect-oriented setting, the basic idea is to view the
execution of an advice as a form of substitution. This is quite easy to understand
when all advice are viewed as around advice. This is not a simplification, as a
before advice can be seen as an around advice where the proceed call at the
end is implicit. Likewise, an after advice corresponds to an around advice where
the implicit proceed call is at the beginning. If the pointcut associated with an
around advice matches on a certain join point, then that join point essentially
is replaced with the execution of that advice. In other words, the join point
representing a method call is substituted with the execution of an advice. In
order to perform a method call, while remaining unaware of the advice that
substitutes for it, an advice’s contracts should comply with the contracts of
those join points it advises.

4.1 Around advice

From the point of view that executing advice can be seen as a form of substitu-
tion, the SBS rules can be adapted as follows to an advice substitution principle
for around advice:

ASP for around advice. Consider an around advice a in type t that is applied
to join point u.x, representing a method call or an advice execution. If x is
a method, u is the static type of the receiver. If x is an advice, u is the
class containing x. The around advice satisfies the ASP if and only if, for
all objects of type t:
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– The precondition of t.a must be equal to or weaker than the precondition of
u.x.

– The postcondition of t.a must be equal to or stronger than the postcondition
of u.x, if the precondition of u.x held in the pre-state.

– The invariant of u should be preserved in t.

What is important to note is that we defined the ASP in terms of a single advice
applying at a particular join point. Stating that “aspect t complies with the
ASP” means that each advice in t must take into account the contracts of all
the join points it advises. Each of these join points can have its own contracts,
which means that an advice may need to take into account several different
contracts, depending on the advice’s pointcut. While the exact set of join points
in a pointcut can only be determined at runtime, the developer only needs to
take into account all join point shadows, i.e. the mapping of each join point
to its location in the source code. These join point shadows can be determined
statically by examining the advice’s pointcut.

4.2 Before and after advice

As mentioned earlier, before/after advice can be interpreted as special cases of
around advice. It is important to note however that it would be unintuitive to
include the effects of the implicit proceed call in the contracts of a before/after
advice, such that these contracts would effectively be the same as an equivalent
around advice. It is unintuitive for the simple reason that the developer does not
need to be aware of any implicit proceed calls. Moreover, even if the developer
knows there is an implicit proceed call, he/she may not consider it to be part of
the advice body. Consequently, the ASP needs to be adjusted for before/advice
to take this into account.

In a before advice, its postcondition refers to the moment before executing the
implicit proceed call at the end of the advice body. In order for the composition
of the before advice body (t.a) and the implicit proceed call to be substitutable
for the advised join point (u.x), the ASP for before advice becomes:

– The precondition of t.a must be equal to or weaker than the precondition of
u.x.

– If the precondition of u.x held before executing the advice, it should still hold
after the advice (at the implicit proceed call). This implies the postcondition
of t.a may not invalidate u.x’s precondition.

– The invariant of u should be preserved in t.

Similarly, an after advice’s precondition refers to the moment after executing the
implicit proceed call in the beginning of the advice body. The ASP for after
advice is as follows, for an after advice body t.a advising join point u.x:

– The precondition of t.a must be equal to or weaker than the postcondition
of u.x.
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– If the postcondition of u.x held before executing the advice, it should still
hold after the advice. This implies the postcondition of t.a may not invalidate
u.x’s postcondition.

– The invariant of u should be preserved in t.

4.3 Relating the principle to quantification

As pointcuts are a quantification mechanism, a pointcut may potentially describe
a large set of join point shadows. For example, a call/execution pointcut not
only matches with the given type, but also its subtypes. Likewise, a pointcut (in
AspectJ) could make use of wildcards to match with a large amount of shadows.
If an advice now wants to comply with the ASP, it is important to consider
that the number of reasoning tasks grows with the number of join point shadows
it advises. While this paper does not aim to tackle this scaling problem, as it
is separate from modular reasoning about method calls, the problem can be
mitigated in a number of ways. First, examining only the advice body itself can
sometimes already reveal whether it is ASP-compliant or not. For example, an
advice that only modifies its own state, often classified as observer, spectator or
spectative advice [11,21,37], most likely is ASP-compliant. Second, the developer
can rely on tool support like the runtime contract enforcement algorithm of Sec. 7
to test whether an advice complies with the ASP. Finally, this scaling problem is
also closely related to the fragile pointcut problem [22], which is about pointcuts
(typically in AspectJ) relying on the names of types and methods to determine
the set of matching join points, which is quite sensitive to changes. The various
methods to tackle this fragility problem may also mitigate the scaling problem,
as pointcuts can only get more fragile when they intend to match with a larger
set of join point shadows.

4.4 Call and execution pointcuts

The ASP essentially states that advice should take into account the contracts
of the join points they advise. There are however two subtleties to call and
execution pointcuts when trying to determine this set of join points.

First, there is the fact that the specified type in execution pointcuts refers
to the dynamic type of method calls, whereas the ASP is defined in terms of
the contracts in the static type. It would be much easier if developers who write
advice with an execution pointcut could ensure the ASP by only looking at
the type specified directly in the pointcut. Fortunately, this is possible, as long
as those specified types satisfy the SBS rules. For example, consider a method
User.toString(). If User is a strong behavioural subtype, it may substitute for
any of its ancestor classes. By extension, if an advice with pointcut execution(*
User.toString()) only takes into account the contracts of User.toString, the
advice may substitute for any call to toString where the static type is User,
or an ancestor. In other words, the ASP also is satisfied if an advice takes into
account the dynamic type of its join points, assuming those types are behavioural
subtypes.
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The second subtlety involving call and execution pointcuts is that these
pointcuts not only match if the static/dynamic type equals the pointcut’s spe-
cified type, but they also match on subtypes. Complying with the ASP then
means that the developer should be aware of all subtypes of the pointcut’s spe-
cified type, which goes against the grain of modular reasoning. Unfortunately, in
this case the ASP is not automatically guaranteed if we only take into account
the specified types, even if all of their subtypes comply with the SBS rules. This
can be demonstrated with the counterexample shown in Fig. 13.

class A {
@requires x > 0
void foo(int x) {...}}

class B extends A {
@requires x > -10 // Weaker than A’s precondition
void foo(int x) {...}}

class C {
@requires x > -5 // Weaker than A’s precondition
around anAdvice: execution(void A.foo(int x)) {...}}

main {
A inst = new B;
inst.foo(5); // No contract violations
B inst2 = new B;
inst2.foo(-8);} // Contract violation in C

Figure 13. Contract violation caused by C only taking into account A

The advice in C is written such that it takes the contracts of A.foo into
account. However, the developer of C may not take into account subclass B,
which overrides A.foo. Note that B.foo complies with the SBS rules, but its
preconditions happen to be stronger than the advice in C. The advice could now
inadvertently cause a contract violation whenever B is the static type in a method
call. It is possible that the problem illustrated in Fig. 13 hardly ever occurs in
practice, as it seems quite unlikely to accidentally create a situation where an
advice does not comply with a subtype, but does comply with the specified type.
Nonetheless, a practical approach to solve the problem is that the developers of
aspects initially only take into account the types specified directly in a pointcut,
but then also use tool support (like the contract enforcement algorithm of Sec. 7)
to monitor whether any subtypes are causing ASP violations.

4.5 The proc keyword

Because an advice may need to comply with the contracts of several different
join points, a mechanism is needed to keep advice contracts reasonably compact,
and to prevent any unnecessary coupling with the contracts of each join point.
After all, aspects are meant to implement crosscutting concerns, which indicates
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that they are typically loosely coupled to the functionality implemented by the
advised join point.

ContractAJ provides a “specification inheritance” mechanism in the form of
the proc keyword. When proc is used in the pre/postcondition of an advice that
complies with the ASP, it refers to the pre/postcondition of the join point being
advised. For example, consider the caching aspect in Fig. 14. If Cache.store is
advising a call to List.set, its precondition is i>=0 && i<this1.getLength().
The postcondition is this1.get(i)==val && this2.isCached(i,val). Note that
we numbered each this keyword to avoid naming conflicts, as one refers to the
instance of List and the other to the Cache instance.

class List{
@requires i>=0 && i<this.getLength()
@ensures this.get(i)==val
void set(int i, Object val) {...} ...}

class Cache {
@requires proc
@ensures proc && this.isCached(i,val)
around store: call(void List.set(int i, Object val)) {...} ...}

Figure 14. Example of using the proc keyword

The proc keyword is somewhat similar to e.g. the also keyword used in
JML [23, Sec. 2.3] to inherit the specifications of an overridden method. The
main difference is that the proc keyword can be used anywhere in the pre-
or postcondition, whereas the use of also is constrained such that behavioural
subtyping is always enforced by construction. We do not impose such constraints
on proc, and hence make it possible for preconditions to be too strong, and
postconditions too weak. This is needed to allow for aspects that cannot comply
with the ASP, which is explained in Sec. 5.

4.6 Effective specifications

To make our notion of modular reasoning precise, we need to define which pre-
and postconditions need to be ensured whenever a method or proceed call is
made. We refer to these specifications as the “effective pre/postcondition” of a
particular method call or proceed call. These effective pre/postconditions should
allow for modular reasoning, in the sense that a developer who wants to make a
call within a certain class, only needs to consider the specifications of that class
itself, or anything explicitly referenced by that class.

The definition6 of effective preconditions can be found in Fig. 15. The pre(c, x)
function simply retrieves the precondition of a body c.x from the program’s
6 This definition only applies if all advice are ASP-compliant; it will be extended later
in Sec. 5.5 to take into account non-ASP-compliant advice as well.
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pre(c, x) class c . . . {@requires e . . . t x . . . } is in P

pre(c, x) = e

effpre(c, m) = pre(c, m)

effProcpre(c, m) = pre(c, m)

effProcpre(c, a) = pre(c, a)[proc 7→ effProcpre(c′, x)]
where c.a advises c′.x and !isMethod(c, a)

Figure 15. Defining the effective precondition of method/proceed calls

code. The effpre(c, m) function defines the effective precondition of a method
call obj : c.m. Note that we use the method call notation (defined in Fig. 6 of
Sec. 3.1) of ContractAJ’s semantics to emphasize that c stands for the static
type of the receiver (obj). Because the developer does not need to be aware of
any ASP-compliant advice, the effective precondition simply is pre(c, m), which
is no different from modular reasoning in object-oriented languages.

The effProcpre(c, m) function defines the effective precondition of a proceed
call, where the proceed call is located in an advice that advises a method call obj :
c.m. Because an ASP-compliant advice does not have to be aware of any other
advice, the effective precondition of a proceed call also is pre(c, m). However, keep
in mind that effProcpre is defined in terms of a single method body c.m, and that
an advice can apply to multiple different method bodies. As the ASP requires
that an advice takes into account all of its advised join points, the developer
should also take into account the multiple applicable versions of effProcpre when
making a proceed call.

Finally, effProcpre also is defined for proceed calls that occur in higher-order
advice. That is, effProcpre(c, a) defines the effective precondition of a proceed
call, if this proceed call occurs within an advice that advises c.a. In this case,
the effective precondition is pre(c, a), but because c.a might make use of the proc
keyword, we should also evaluate the keyword to its concrete value. The proc

keyword is replaced with the effective precondition of any proceed calls inside
c.a, which is effProcpre(c′, x), considering that c.a advises c′.x.

Next to the definitions of effective preconditions, one can also give definitions
of effective postconditions in effpost and effProcpost , which are identical to effpre
and effProcpre apart from replacing every occurrence of “pre” with “post”.

4.7 Frame conditions

To allow for formal verification, methods and advice should also have a frame
condition [8], which specifies what does not change after executing a method/ad-
vice. While the paper does not focus in particular on formal verification with
program specifications, we should briefly discuss the relation between the ASP
and frame conditions, as they also play a role in modular reasoning.

In a specification language such as JML, a frame condition is specified by
an @assignable clause, which lists what might change after executing a method.
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This implies that everything that is not listed will not change. Because frame
conditions are considered part of postconditions, this means they may not be
weakened according to the ASP. That is, the frame condition of an advice may
not modify more variables/fields than the frame conditions of the advised join
points. With a strict interpretation of frame conditions, this means an aspect
is not allowed to modify its own fields. This would exclude several aspects that
are otherwise ASP-compliant, such as aspects that implement logging, caching
or contract enforcement. However, the base system can safely remain unaware of
such aspects, despite the fact that they modify their own (private) fields. Given
this observation, it seems reasonable that the frame properties of a method may
ignore any modifications to private fields of aspects, as these modifications are
irrelevant to the behaviour of the base system. This should cause no harm, as
long as the values of these fields cannot be accessed outside the corresponding
aspect’s control flow. Perhaps a more precise idea can be formed of what can
safely be considered irrelevant to the frame condition of a method, in order
to give ASP-compliant advice more freedom to modify locations. However, we
should then consider systems like data groups [25] or ownership types [9,14],
which goes beyond the scope of this paper.

5 The @advisedBy clause

The ASP ensures that, if an advice complies with this principle, that advice can
safely substitute for the join points it advises without causing any surprising
behaviour. While several kinds of crosscutting concerns (e.g. logging, profiling,
caching, monitoring, ...) can be implemented in an ASP-compliant manner, there
also are several others that inherently cannot comply with the ASP. That is,
they must alter the specifications of their advised join points in some way. For
example, consider the Security.authenticate advice in Fig. 16. If the user is cur-
rently logged in, the advice will ensure the same postcondition as its advised join
points, which is okay with the ASP in this instance. However, if the user is not
logged in, the advice will block the execution of the advised method and ensures
nothing at all (i.e. true). In this case, the postcondition clearly is weaker than
the advised join point, which violates the ASP. It is also clear that this advice
cannot be rewritten in an ASP-compliant way, as its very purpose is to ensure
that the requested operation is blocked when the user is not authenticated.

Even if only a single advice in the system would violate the ASP, it seems that
we should revert back to global reasoning, which would defeat the purpose of
the ASP. To deal with such non-ASP-compliant advice (or “non-ASP advice” for
short), one option is to simply avoid non-ASP advice altogether and implement
their functionality using plain method calls instead. While this certainly is a
valid option, it also sacrifices AOP’s benefits. In particular, there no longer is a
notion of quantification: Rather than using one pointcut to indicate all the join
points where a block of code should be executed, several method calls have to be
added instead, possibly including additional residual logic if these calls should
only be executed on certain (run-time) conditions.
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Rather than going back to square one, we propose a simple clause called
“@advisedBy” that preserves modular reasoning, quantification, allows pointcuts
that can only be determined at runtime, and allows ASP-advice to share join
points with non-ASP advice. The starting observation is that, if an advice can-
not comply with the ASP, it must be doing something surprising that was not
expected by the caller of the advised method. To prevent such surprises, the
caller should be made aware of any non-ASP advice that apply to this method,
which is done by adding an @advisedBy clause to the method’s specifications.

An example usage of the @advisedBy clause is shown in Fig. 16. The clause
is used in Account.withdraw, which specifies that this method expects to be
advised by Security.authenticate and Security.authorize, in that order. Note
that the deposit method is also advised by Logger.log, which does not need to
be mentioned in the @advisedBy clause as it is ASP-compliant.

class Account {
@requires this.getAmount() >= m && m>0
@ensures this.getAmount() == old(this.getAmount()) - m
@advisedBy Security.authenticate, Security.authorize
int withdraw(int m) {...} ...}

class Security {
@requires proc
@ensures if(isLoggedIn()){proc}else{true}
around authenticate: call(void Account.withdraw(int m)) {...}

@requires proc
@ensures if(isAuthorised()){proc}else{true}
around authorize: call(void Account.withdraw(int m))

&& if(isEnabled()) {...} ...}

class Logger {
@requires true
@ensures old(getLogEntries())+1==getLogEntries()
before log: execution(void Account.withdraw(int m)) {...} ...}

Figure 16. Using the @advisedBy clause

In general, the @advisedBy clause indicates that a method is expecting to
be advised by the listed advice. Consequently, any client that wants to call this
method will notice its @advisedBy clause and should take into account the listed
advice. From the perspective of an advice, if it is mentioned in an @advisedBy

clause and it makes a proceed call, that advice should now be aware of the next
element executed in the clause. In the example of Fig. 16, when authenticate

makes a proceed call, it should be aware that this will execute the authorize

advice. Likewise, the proc keyword mentioned in authenticate’s specifications
will refer to the pre/postcondition of authorize. Because the log advice is not
mentioned explicitly in the @advisedBy clause, the proc keyword in authorize

refers directly to the specifications in Account.deposit, as discussed in Sec. 4.5.
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Finally, note that the @advisedBy clause can only be added to methods, which
implies that all higher-order advice should be ASP-compliant. Conceptually it
is possible to add an @advisedBy clause to an advice, to indicate that it is aware
of the listed higher-order advice. However, constructing effective pre/postcon-
ditions is complicated by a combination of two factors: First, when advising a
before/after advice, only the advice body is advised, not the implicit proceed
call. Second, all before/after advice should take into account the effects of their
implicit proceed call (even if they are non-ASP-compliant). These two factors
complicate the definition of effective pre/postconditions in method/proceed calls,
which is why we decided to leave support for non-ASP-compliant higher-order
advice as future work.

5.1 Relating the @advisedBy clause to quantification

At this point, the reader may wonder how the @advisedBy clause still preserves
AOP’s notion of quantification. After all, for every method call obj:c.m that
may be advised by a non-ASP advice, there should be an @advisedBy clause in
c.m that mentions this advice. At first glance, all the extra effort required to
add all of these @advisedBy clauses seems to cancel out the benefits of having
pointcuts as a quantification mechanism. However, it is possible to provide tool
support that automatically inserts all @advisedBy clauses in the right places of
the source code, and removes the need to write each clause manually. Given
such tool support, we consider that the @advisedBy clause does not inhibit the
quantification property of AOP.

Generating @advisedBy clauses in AspectJ is quite straightforward, where it
is sufficient to inspect the pointcut of every advice. In a nutshell: If a pointcut
makes use of a call construct, an @advisedBy clause should only be added to
the method bodies specified directly in the call construct. In case a pointcut
makes use of an execution construct, which only matches if the dynamic type is
a certain (sub)type, the @advisedBy clause should be added into the types that
declare the specified method bodies.

To take into account the fact that call/execution constructs also include
subtypes, @advisedBy clauses are implicitly inherited by subtypes. In this man-
ner, an @advisedBy clause will mention the desired advice when examining the
static type of any method call that may be advised by that advice. Tool sup-
port that could generate @advisedBy clauses is actually already largely present
in the AspectJ Development Tools [10], as it is quite similar to the markers that
indicate each join point shadow.

In case of ContractAJ, some additional information is required to generate
@advisedBy clauses in the right places. This is because it is possible to override
advice, and an advice may be mentioned either directly or as a subtype in an
@advisedBy clause, which allows for additional expressivity. Nonetheless, we as-
sume ContractAJ can be easily extended with a simple construct to describe
in which locations an @advisedBy clause should be added. For example, a class
might contain the following “declare @advisedBy” statement:

declare @advisedBy Authentication.authenticate: Bank.set*(*);
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Tool support can then make use of this information to insert @advisedBy

clauses that list Authentication.authenticate in every method body that matches
Bank.set*(*). Finally, if multiple such statements want to add an @advisedBy

clause to the same method, the program’s precedence declaration is used to
ensure that the advice listed in the @advisedBy clause are ordered correctly.

5.2 Interaction with ASP-compliant advice

Using the @advisedBy clause allows advice to alter the contracts of the join
points they advise. However, what does this mean when such advice shares join
points with an ASP-compliant advice (that is not mentioned in the @advisedBy

clause)? An ASP-compliant advice only needs to take into account the advised
join points’ pre- and postconditions, but it can ignore any @advisedBy clauses.
As a consequence, if both an ASP- and a non-ASP advice advise the same join
point, the ASP-advice should get a lower precedence. That is, it should come
after the non-ASP advice in an advice composition. While it is possible that the
ASP-advice may never cause surprising behaviour if it had a higher precedence,
this is not automatically ensured by the ASP. Aside from this constraint, the
benefits of ASP-advice remain: An ASP-advice can be positioned anywhere after
the non-ASP advice in advice compositions, while the remainder of the system
does not have to be aware of this advice. In case it is required for an ASP-advice
to be executed at a higher precedence, it always is possible to explicitly mention
it in @advisedBy clauses.

5.3 Overriding advice

Because each advice in ContractAJ has a name, it becomes possible to override
advice. Analogous to method overriding, when an advice in one aspect has the
same name as an advice in one of its ancestor aspects, that advice is said to
be overriding. However, overriding only has a purpose when the developer is
expecting one advice body to be executed, but at runtime an overridden version
might substitute for it. There are no such expectations if advice execution is
implicit, which is the case for ASP-compliant advice.

The introduction of the @advisedBy clause gives purpose to overriding advice.
When a method uses an @advisedBy clause, it is expecting those listed advice.
These expectations, which can be determined statically, do not have to be ful-
filled per se by exactly those listed advice. They might as well be implemented
by a subaspect with an overriding advice. As can be seen in the example of
Fig. 17, Account.withdraw is expecting to be advised by Security.authenticate.
At runtime, this expectation could be filled in by a subaspect RemoteSecurity,
which overrides the authenticate advice to e.g. implement a different authen-
tication system. A similarly useful scenario could be that Security only is an
abstract aspect, and the overriding advice in RemoteSecurity provides a concrete
implementation. This notion of overriding advice implies that, similar to over-
riding methods in classes, overriding advice leave aspects “open for extension,
but closed for modification” (the open/closed principle [29]). That is, an aspect’s
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class Security {
around authenticate: call(int Account.withdraw(int i)) {...}}

class RemoteSecurity extends Security {
around authenticate: call(int Account.withdraw(int i)) {...}}

class Account {
@advisedBy Security.authenticate
void withdraw(int i) {...}}

main {
Security sec = new RemoteSecurity;
Account acc = new Account(30);
account.withdraw(10);}

// The @advisedBy clause in Account.withdraw lists Security
// , but is actually advised at runtime by RemoteSecurity.

Figure 17. Example of overriding advice

behaviour can be modified by defining a subaspect, without the need to modify
any @advisedBy clauses.

As the use of overriding advice is similar to overriding methods, the SBS
rules can be reused to ensure that aspects with overriding advice can substitute
for any ancestor aspect without causing surprising behaviour. We only need to
make a minor extension to the SBS such that the pre- and postcondition rules
apply to both methods and advice:

Strong behavioural subtyping, extended (SBS’). Type t is a strong beha-
vioural subtype of type u, if and only if t < u and:

– For all objects of type t, and for all common methods and advice x in t
and u:
• The precondition of t.x must be equal to or weaker than the precondition
of u.x.
• The postcondition of t.x must only be equal to or stronger than the post-
condition of u.m, if the precondition of u.m held in the pre-state.

– The invariant of u should be preserved in t.

Note that ensuring the SBS’ rules for an advice is independent from the join
points it advises, even if the proc keyword is used. While the actual value of the
proc keyword does depend on which join point is advised, we know that this value
will be the same for the pre/postcondition of both t.x and u.x. Consequently,
it is not necessary to know proc’s value to determine whether one advice’s pre/-
postcondition is stronger or weaker than another. However, while the SBS’ rules
can be satisfied without considering the value of the proc keyword, an advice’s
implementation should of course correspond to its specifications. By simply us-
ing proc in the precondition of an advice (without knowing which contracts it
refers to), we can ascertain that the right precondition is satisfied to make a
proceed call at the very beginning of the advice body. However, if a proceed call
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is made at a later point in time, we need to make sure that this precondition is
preserved. Because of this, we may still need to determine which contracts proc
refers to. Likewise, we may need these contracts to ensure that the postcondition
of a proceed call is preserved at the end of the advice.

5.4 Constraints on the @advisedBy clause

To avoid ambiguities when executing a call with an @advisedBy clause, there
may not be multiple aspect instances that correspond to the same element in
the @advisedBy clause. Moreover, if an advice is mentioned in the @advisedBy

clause of a method, it is expected that this advice, or an overriding version, will
be executed when that method is called (unless the advice’s if pointcut con-
struct failed). If the developer is free to instantiate aspects at any time, which
is the case in ContractAJ, these two constraints cannot be enforced statically.
The easiest solution would be to throw a runtime exception whenever the con-
straints are broken, which is also done by ContractAJ’s contract enforcement
algorithm in Sec. 7. Another approach would be to use AspectJ’s more con-
strained instantiation mechanism, which ensures by construction there cannot
be more than one instance of the same aspect at a given join point. While this
approach avoids runtime exceptions, we still opted to give the developer full
control over aspect instantiation in ContractAJ, as it would be difficult to com-
bine AspectJ’s instantiation mechanism with the notion of overriding advice in
an intuitive/useful manner. We give preference to supporting overriding advice,
because it leaves aspects open for extension in the presence of non-ASP advice.

5.5 Extending the effective specifications

Due to the introduction of the @advisedBy clause, applications may now contain
both ASP- and non-ASP-compliant advice. However, this also requires some
modifications to our definitions of effective specifications in Sec. 4.6. These new
definitions can be found in Fig. 18. The effpre and effProcpre functions still
have the same intuition behind them: effpre defines the effective precondition of
method calls and effProcpre defines the effective precondition of proceed calls.
However, note that effProcpre(c, m, i) has now gained a third parameter i, which
indicates a certain position within the @advisedBy clause of c.m. More specific-
ally, effProcpre(c, m, i) describes the effective precondition of any proceed calls
within an advice mentioned at position i of c.m’s @advisedBy clause. This effect-
ive precondition essentially states that the advice at position i should become
aware of all subsequent advice in the @advisedBy clause. Let us now take a closer
look at each of the functions in Fig. 18:

[effpre] - The effective precondition of method calls effpre(c, m), corresponds
to effProcpre(c, m, 0). Because the first advice of the @advisedBy clause only has
index 1, setting i to 0 intuitively means that we should become aware of all
advice in the @advisedBy clause when making a method call, which indeed is the
desired definition. An example of the effective precondition of a method call to
Bank.createAccount is also given in Fig. 19.
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effpre(c, m) = effProcpre(c, m, 0)

effProcpre(c, m, i) =


if(ifPcut(ci+1 , ai+1 )){advpre(ci+1, ai+1, c, m, i + 1)}
else if(ifPcut(ci+2 , ai+2 )){advpre(ci+2, ai+2, c, m, i + 2)}
. . .
else if(ifPcut(cn , an)){advpre(cn, an, c, m, n)}
else{pre(c, m)}

where isMethod(c, m) and advBy(c, m) = 〈c1, a1, . . . , cn, an〉 and 0 ≤ i < n

effProcpre(c, m, i) = pre(c, m)
where isMethod(c, m) and |advBy(c, m)| = 0

effProcpre(c, a, i) = pre(c, a)[proc 7→ effProc(c′, x, j)]
where c.a advises c′.x and !isMethod(c, a)
and c.a is mentioned at position j of the @advisedBy clause of c′.x

advpre(c, a, c′, x, i) = iP re(c, a)[proc 7→ effProcpre(c′, x, i + 1)]
where c.a advises c′.x

iPre(c, a) = pre(c, a) if isAround(c, a)
pre(c, a) && proc if isBefore(c, a) or isAfter(c, a)

Figure 18. Definition of a method’s effective preconditions

class Bank {
@requires u.getBank()==this
@ensures result!=null && result.getOwner()==u
@advisedBy Security.authenticate, Security.authorize
Account createAccount(User u) {...}}

class Security {
@requires proc
@ensures if(isLoggedIn(u)){proc}else{true}
around authenticate: call(Account Bank.createAccount(User u))

&& target(b) {...}

@requires isLoggedIn(u) && proc
@ensures if(isAuthorized(u)){proc}else{true}
around authorize: call(Account Bank.createAccount(User u))

&& target(b) && if(isEnabled()) {...}}

main {
Bank b = new Bank;
b.createAccount(new User);}

// Effective precondition of Bank.createAccount:
// if(isEnabled()) {
// isLoggedIn(u) && u.getBank()==this
// } else {
// u.getBank()==this
// }

Figure 19. Example of an effective precondition



31

[effProcpre] - The effective precondition of proceed calls is split up into three
different cases. The second and third case are straightforward, as they correspond
to the old definition of effProcpre in Sec. 4.6. The first case however is new: it
describes the effective precondition of proceed calls where the advised method
has a non-empty @advisedBy clause. Given i, the effective precondition that is
produced consists of an if statement that iterates over all succeeding advice
(from i + 1 to n) in the @advisedBy clause of c.m. What may be surprising
is that we test the if pointcut construct for each of these advice (using the
ifPcut function defined in Fig. 8). This is necessary because, if we allow the
advice mentioned in the @advisedBy clause to modify the expected behaviour
of a method/proceed call, we must know which advice will be executed next.
Because the if constructs are the only7 part of a ContractAJ pointcut that
(in general) cannot be determined statically, they are included in the effective
precondition itself.

[advpre] - Once we have determined which advice will be executed next, the
advpre function is used to retrieve that advice’s precondition. Additionally, advpre
replaces any occurrences of the proc keyword with the effective precondition of
any proceed calls in its advice body using effProcpre, meaning that we recursively
iterate through the remainder of the @advisedBy clause. This continues until we
eventually reach the else branch in effProcpre, which ends with the precondition
of the advised method.

[iPre] - What is important to note about advpre is that we do not directly
retrieve the precondition of an advice with the pre function, but we make use of
iPre(c, a) instead. In case c.a is an around advice body, iPre(c, a) = pre(c, a).
However, if c.a is a before or after advice, the proc keyword will also be con-
joined. This is necessary because otherwise the effects of the implicit proceed
call would not be included into the effective precondition. In other words, iPre
makes the implicit proceed call of a before/after advice explicit, such that we
obtain that advice’s precondition as if it were an around advice. This also holds
for the analogous iPost function, which conjoins proc to a before/after advice’s
postcondition. In general, we are not allowed to simply conjoin the proc keyword,
e.g. because a before advice body might not preserve the precondition of its pro-
ceed call. However, this is remedied by the rules that will be defined in Sec. 5.6
and ensure that all before/after advice take into account their implicit proceed
call.

This covers each function used to define the effective preconditions of method
and proceed calls. The definitions for effective postconditions are analogous, as
each occurrence of “pre” is simply replaced with “post”.

We should note that, in general, the entire effective specification of a meth-
od/proceed call can become quite large and complex. However, the functions
of Fig. 18 do take into account the worst case where every pointcut effectively
makes use of an if construct (that can only be determined at runtime). How-

7 An execution pointcut can only be determined dynamically, but we assume that it
has already been converted into a call pointcut conjoined with an if construct, as
described in Fig. 4 of Sec. 3.1.
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ever, as indicated in Apel et al. [4], typically only a small fraction of aspect
code makes use of such advanced features. In the best (and more common) case,
each pointcut in an @advisedBy clause can be determined statically, drastically
simplifying the entire effective precondition of a method call to the following:

effpre(c, m) =

iPre(c1, a1)[proc 7→
iPre(c2, a2)[proc 7→

. . .
iPre(cn, an)[proc 7→ pre(c, m)] . . .]]

where isMethod(c, m) and advBy(c, m) = 〈c1, a1, . . . , cn, an〉
That is, c.m would use the precondition of the first advice in the @advisedBy

clause, and each advice’s proc keyword would be replaced with the precondition
of the next advice in the clause.

5.6 Before and after advice

The iPre function in Fig. 18 includes the effects of the implicit proceed call in
before/after advice by simply conjoining the proc keyword to its pre- and post-
condition. However, in order for this to be correct, there are some rules that must
be satisfied. These rules, which are a weaker version of the ASP for before/after
advice, are referred to as the “implicit proceed rules” (IPR):

IPR for before advice. Consider a before advice t.a that is applied to join
point u.x. If t.a is mentioned in the @advisedBy clause of u.x, it is mentioned
at position i. If t.a is not mentioned in the @advisedBy clause (or such a clause
is not present) then i = 0. The before advice satisfies the IPR if and only if, for
all objects of type t:

– If effProcpre(u, x, i) held before executing the advice, it should still hold after
the advice.

– If post(t, a) holds after the advice, it should still hold after the implicit proceed
call.

– The invariant of u should be preserved in t.

Likewise, the IPR for after advice are defined as:

– If effProcpost(u, x, i) held before executing the advice, it should still hold after
the advice.

– If pre(t, a) held before the implicit proceed call, it should still hold after the
implicit proceed call.

– The invariant of u should be preserved in t.

Note that the second rule in the IPR of both before- and after advice requires
that the implicit proceed call should preserve a certain condition. As the advice
body has no control over what the proceed call may or may not preserve, we
can only rely on what we can determine to be preserved. If we are conservative,
we can only ascertain that the proceed call will preserve anything that is equal
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to or weaker than its postcondition. However, a weaker notion of preservation
is possible when frame conditions are available: In addition to preserving the
proceed call’s own postcondition, we know that it will preserve conditions that
depend only on variables/fields that are not modified by the proceed call.

5.7 Modular reasoning in ContractAJ

To summarize Sec. 4 and 5, modular reasoning about method/proceed calls in
ContractAJ can be achieved as follows:

– All classes should take into account the SBS’ rules (Sec. 5.3). That is, a
subtype should take into account the contracts of its supertype. This also
holds for overriding advice.

– To remain oblivious of an advice, it should comply with the ASP (Sec. 4.1
and 4.2). That is, the advice should comply with the contracts of all join
points it advises. If an ASP-compliant advice shares join points with advice
mentioned in an @advisedBy clause, the ASP-compliant advice should have
a lower precedence. (Sec. 5.2)

– If it is not possible or undesired to be oblivious of an advice c.a, it should
be mentioned by an @advisedBy clause in all method bodies c′.m, where c′ is
the static type in any method calls to m that are advised by c.a. Advice c.a
may either be mentioned directly in an @advisedBy clause, or indirectly as
an overridden advice. If c.a is a before/after advice, it should comply with
the IPR (Sec. 5.6) in order to take into account the effects of its implicit
proceed call. Finally, the constraints of Sec. 5.4 should be taken into account
as well.

In using this approach, there is little that changes from the perspective of an
OOP developer who writes classes (without advice). This is especially important
when considering that the bulk of a typical aspect-oriented application consists
of regular classes and only a fraction of the code is made up of aspects [4]. When
making a method call that only has ASP-compliant advice applied to it, noth-
ing changes. When calling a method that has an @advisedBy clause, the listed
advice need to be taken into account. This arguably does not add much com-
plexity compared to reasoning about OOP applications: In OOP applications,
the contracts of a method not only reflect the concern that it implements, but
the contracts of any crosscutting concerns would have to be included as well.
In AOP, these two are now separated, though the @advisedBy clause provides
an explicit link needed to construct the effective specification. Moreover, the de-
veloper does not even have to construct this specification by him/herself, as it
should be straightforward to build a tool that statically determines the effective
pre- and postcondition of all method and proceed calls.

As for the developers writing advice, ensuring that the rules for either ASP or
non-ASP advice hold can be done quite easily for advice that advise only a small
number of join point shadows. As discussed in Sec. 4.3, the number of reasoning
tasks grows with the number of advised join point shadows. In this case, the
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contracts of an advice can be written without rigorously inspecting each join
point shadow, but tools like the contract enforcement algorithm of Sec. 7 should
be used to help verify whether the advice satisfies the approach.

Finally, in case an advice is non-ASP-compliant, the right methods should
mention the advice in an @advisedBy clause. As discussed in Sec. 5.1, tool sup-
port can be provided to generate these clauses. Because the use of an @advisedBy

affects the effective specification of method calls, deciding on which @advisedBy

clauses go where should be done as early as possible. Keep in mind that crosscut-
ting concerns also form part of a system’s design and aspects should therefore not
be added as an afterthought. Nonetheless, using @advisedBy clauses still leaves
the system open for extension, as the listed advice may also be implemented by
subaspects.

6 Soundness of the approach

In Sec. 4 and 5 we presented our approach to modular reasoning in aspect-
oriented languages. We now want to show that this approach is sound. That
is, if a ContractAJ program is written such that it takes into account the SBS’
rules, the ASP, IPR and the constraints on @advisedBy clauses, then all pre- and
postconditions encountered in any program execution are satisfied. Note that
we do not consider invariants: In OOP, the precondition and postcondition rules
of SBS are known to be sound, but the invariant rule is not [24]. For example,
because a subclass may strengthen its invariant, and because an invariant can be
considered a part of each method’s pre- and postcondition, it is possible to create
conflicts with the precondition rule. Such problems with the invariant rule are
carried over to the ASP as well. While achieving soundness in invariants could
be done by only allowing an invariant to depend on certain parts of the program
state, or by placing restrictions on ownership [26,31,32], we consider this to go
beyond the paper’s scope.

Aside from focusing only on pre- and postconditions, we do consider the
various complex ways in which advice can be composed: Multiple advice can
apply to the same join point; advice can depend on pointcuts that can only
be determined at runtime; advice can be overridden, and higher-order advice
(advice that advise other advice executions) are allowed. We will first define
what constitutes a valid advice composition. Once this is done, we can show
that our approach preserves modular reasoning in a number of theorems: Initially
programs with only ASP-compliant advice are considered. We then add support
for advice mentioned in an @advisedBy clause and finally allow for higher-order
advice.

6.1 Valid advice compositions

In Sec. 5.4 we discussed two dynamic constraints that should hold for each ad-
vice composition, in order to avoid ambiguities in @advisedBy clauses. To show
that our approach to modular reasoning is sound, we should first make these
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constraints precise by defining what constitutes a valid advice composition. An
advice composition is a sequence 〈c1.a1, . . . , cn.an, c.x〉, where each ci.ai rep-
resents an advice body that will be executed, in the given precedence order, and
c.x represents the body advised by each ci.ai. We can now define a valid advice
composition (for method call join points) as follows:

Valid advice composition (for method calls). During the evaluation of pro-
gram P, consider a join point that represents a method call obj:c.m. The
method call corresponds to an advice composition 〈c1.a1, . . . , cn.an, c.m〉.
Method body c.m has the following valid @advisedBy clause: @advisedBy

d1.b1, . . . , dk.bk ,where k ≥ 0. The advice composition is valid if and only if
there exists an index j, 0 ≤ j ≤ k such that:

– There is an order-preserving, injective function f from (c1.a1, . . . , cj.aj)
to (d1.b1, . . . , dk.bk) such that, for each i, either ci.ai = f(ci.ai) or ci.ai

overrides f(ci.ai).
– For each di.bi in (d1.b1, . . . , d1.bk) the pointcut of di.bi matches on obj:c.m

if and only if di.bi ∈ {f(c1.a1), . . . , f(cj.aj)}.

This definition states that a valid advice composition can be divided into two
parts: (c1.a1, . . . , cj.aj) represents the advice mentioned in the @advisedBy clause
and (cj+1.aj+1, . . . , cn.an) represents the ASP-compliant advice, which have a
lower precedence. The function f is order-preserving to ensure that each advice
mentioned in the @advisedBy clause respects the precedence order specified by
the @advisedBy clause. (This is already ensured statically by the constraints in
Sec. 3.4) The function is injective to prevent that two advice in the composition
could be mentioned by the same element in the @advisedBy clause. Finally, we
require that the pointcut of each advice in the @advisedBy clause is respected,
such that it matches the expectations created by the effective pre- and post-
conditions of c.m. This constraint only is needed because an overriding advice
might use a different pointcut than the advice it overrides.

The definition of valid advice compositions for advice execution join points is
trivial: Because advice cannot have an @advisedBy clause, all advice compositions
on advice executions are valid.

6.2 Shared join points

We will now show that our approach is sound when multiple advice can share the
same join points. That is, the developer can assume that all effective pre/post-
conditions of any method/proceed calls and all pre/postconditions of method
and advice bodies during program execution will hold, on the condition that our
approach is taken into account and that he/she ensures that the implementa-
tion of each advice/method body correctly implements its own specifications. In
doing so the developer is allowed to assume modular reasoning at any method
call. To make these conditions more precise, we first define what it means when
“modular reasoning about a method call is possible”:
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Definition 1. Modular reasoning about a method call obj:c.m during an exe-
cution of a program P is possible if the following holds: Let 〈e,S,J 〉 be a con-
figuration in P, where e decomposes to a context with method call obj:c.m. If
eff pre(c, m) is satisfied in this configuration, then eff post(c, m) is satisfied in the
configuration that represents the end of the method call.

An analogous definition can be given for proceed calls. Intuitively, the developer
should ensure the preconditions of the next advice that this proceed call will
execute. However this developer can, and should, only determine which advice
comes next based on the @advisedBy clauses where the current advice is men-
tioned, which can be statically determined using the effProc functions of Sec. 5.5.

Definition 2. Modular reasoning about a proceed call during an execution of a
program P is possible if the following holds: Let 〈e,S,J 〉 be a configuration in P,
where e decomposes to a context with a proceed call. Let this proceed call be part
of the execution of an advice body c′.a that advises method c.m and assume that
either c′.a satisfies the ASP or it is mentioned at position i of c.m’s @advisedBy

clause. If effProcpre(c, m, i) is satisfied in this configuration, effProcpost(c, m, i)
is satisfied in the configuration that represents the end of the proceed call.

Next, we can define what it means for an advice/method body to correctly
implement its own specifications; we refer to this property as “local correctness”:

Definition 3. An advice/method body x in class c is locally correct in a program
P if the following holds:

– If, at a method/proceed call in any execution of body c.x in P: (1) pre(c, x)
was satisfied at the beginning of executing c.x. (2) Modular reasoning is pos-
sible for all prior method/proceed calls in the execution of c.x.
Then: the effective precondition of that method/proceed call is satisfied.

– If, in any execution of body c.x in P: (1) pre(c, x) was satisfied at the begin-
ning of executing c.x. (2) Modular reasoning is possible for all method/pro-
ceed calls in the execution of c.x.
Then: post(c, x) is satisfied when the execution of c.x finishes.

In Theorem 1, we start by considering the execution of ContractAJ programs
that only contain ASP-compliant advice, no @advisedBy clauses and no higher-
order advice. Theorem 2 then extends the first theorem with the use of the
@advisedBy clause. We assume that all pre- and postconditions are free from
side-effects and always terminate. Likewise, we also assume that the conditions
in any if pointcut constructs are free from side-effects and always terminate, as
they should only be used to determine whether an advice matches, rather than
altering the program’s state.

Theorem 1. Let P be a program without any @advisedBy clauses or higher-
order advice. The effective pre/postcondition of each method/proceed call (in-
cluding implicit proceed calls) and the pre/postcondition of each method/advice
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body during the evaluation of P will be satisfied if: (1) All advice in P satisfy
the ASP rules. (2) All classes in P satisfy the SBS’ rules. (3) All method/advice
bodies in P are locally correct. (4) The initial precondition of P is satisfied at
the start of the program.

We only need to focus on those points during the execution where a method/ad-
vice body is about to start or about to end. It is only at those points that we need
to check whether the pre/postcondition of a method/advice body is satisfied, as
well as the effective pre/postcondition of the method/proceed call that initiated
the body’s execution. Any other point in the execution of P is irrelevant, as there
are no method/advice contracts to be considered.

The proof proceeds by induction on the length of the reduction sequence
leading to such relevant points, with a case analysis on the last steps. In the base
case, 0 steps, P’s initial precondition is satisfied by (4). In the inductive step,
consider the start of a method/advice body. The “start of a body” does not refer
to just one particular configuration in the evaluation of a program, but rather
to the entire sequence of configurations that decomposes a method/proceed call
into the body that will be executed. These sequences are precisely described
by Fig. 10 in Sec. 3.3, which specifies all possible sequences of rule applications
during the lookup process. During the entirety of such a sequence, both the
effective precondition of the method/proceed call and the precondition of the
body to be executed must hold. Note that it is sufficient to show this for any one
configuration in this sequence, because none8 of the rules in Fig. 10 can modify
the program’s store.

(A) Body initiated via method call - Consider the case where the execu-
tion of a body is initiated by a method call, as described by the mcall sequence in
Fig. 10. Let 〈e,S,J 〉 be a configuration in P where e decomposes into a method
call obj:c.m. (Keep in mind that c represents the receiver’s static type.)

(A.1) We first show that pre(c, m) is satisfied in this configuration, using (3)
and induction on the length of the execution: Let c′.x be the body that contains
the method call obj:c.m. By (3), we know c′.x is locally correct. By induction,
the pre/postconditions in all configurations prior to 〈e,S,J 〉 were satisfied. This
implies that pre(c′, x) was satisfied at the start of c′.x, and moreover modular
reasoning is possible for all method/proceed calls in the execution of c′.x, prior
to the call obj:c.m. Now local correctness of c′.x indeed ensures that pre(c, m)
holds at 〈e,S,J 〉. (We will reuse this reasoning a few times; we will use “by
(3)+induction” as a shorthand for it.) Because there are no @advisedBy clauses
in P, effpre(c, m) = pre(c, m), and hence the effective precondition of method
call obj:c.m holds.

(A.2) The mcall sequence of Fig. 10 always leads to the execution of either a
method, before advice or around advice body. It remains to be shown that the
precondition of this body holds when its execution starts. Consider configuration
〈e′,S,J ′〉, in which the [exec] rule at the end of mcall is applied:
8 The evaluation of the condition in if pointcut constructs might involve store-altering
rule applications. However, this is harmless as we assume that these conditions are
free from side effects and always terminate.
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– Method body - Let c′′.m be the method body that is executed by our
method call obj:c.m. Because pre(c, m) holds, and because SBS’ ensures
that pre(c′′, m) cannot be stronger than pre(c, m) (2), the precondition of
the method body pre(c′′, m) is satisfied.

– Before/around advice body - Let c′′.a be the before/around advice initi-
ated by obj:c.m. Because pre(c, m) holds, and because the ASP (1) ensures
that pre(c′′, a) cannot be stronger than pre(c, m), the precondition of the
advice body pre(c′′, a) is satisfied.

(B) Body initiated via proceed call - Now consider the case where the exe-
cution of a body is initiated by a proceed call, as described in the pcall sequence
of Fig. 10. Let 〈e,S,J 〉 be a configuration where e decomposes into a proceed call
(i.e. a proceed not produced by the [call] rule, as this corresponds to the mcall
sequence). Let c.m be the method that is being advised by c′.a , the advice that
initiated this proceed call. If c′.a is an around advice or an after advice, the ef-
fective precondition of this proceed call effProcpre(c, m) holds by (3)+induction.
If c′.a is a before advice, we only know by (3)+induction that effProcpre(c, m) is
satisfied when the execution of c′.a starts. However, because the ASP (1) requires
that before advice preserve this effective precondition, effProcpre(c, m) still holds
at 〈e,S,J 〉. We now know effProcpre(c, m) always holds at 〈e,S,J 〉. As there
are no @advisedBy clauses, effProcpre(c, m) = pre(c, m). Because effProcpre(c, m)
holds, and because the pcall expression is identical to mcall (apart from the ini-
tial application of [call]), we can reuse the reasoning of (A.2) to conclude that
the precondition of the body to be executed is satisfied in this case as well.

(C) Initiating after advice bodies - As the execution of an after advice
body cannot be initiated directly by a method/proceed call, it is treated as a
separate case. For the same reason, we only need to show that the after advice
body’s precondition holds; there is no effective precondition that needs to hold.
As discussed in Sec. 3.3, the execution of an after advice body corresponds to
the rule sequence “[return] mcall” where [return] indicates the end of the
implicit proceed call. Let 〈e,S,J 〉 be the configuration where we are about to
apply the [call] rule in mcall. In this configuration, e decomposes to obj:c.a,
representing a “call” to the after advice to be executed. (Keep in mind that the
operational semantics internally uses method calls to execute advice bodies.) Let
c′.m be the method advised by c.a. In case the implicit proceed call preceding
c.a ended with another after advice body, we know effProcpost(c′, m) held at
the beginning of executing this body, by (3)+induction. By the ASP (1), we
know that effProcpost(c′, m) still holds at 〈e,S,J 〉, as after advice are required
to preserve the effective postcondition. In any other case, the preceding implicit
proceed call directly ensures effProcpost(c′, m) at 〈e,S,J 〉 by (3)+induction.
As there are no @advisedBy clauses, effProcpost(c′, m) = post(c′, m). Because
the ASP (1) requires that pre(c.a) may not be stronger than post(c′, m), the
precondition of the after advice body pre(c, a) holds.

(D)Returning from a body - After covering every possible way to initiate
the execution of a body, we still need to do the analogue for the end of executing
a body. In short: We now only need to consider the [return] rule, as it always
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represents the end of a body’s execution. Let 〈e,S,J 〉 be a configuration where
e decomposes into a return expression. By (3)+induction, the body’s postcon-
dition holds. In case of method, after advice and around advice bodies, we still
need to show that the effective postcondition holds of the method/proceed call
that initiated the execution of this body. For method bodies, this is ensured by
SBS’ (2). For around/after advice bodies, this is ensured by the ASP (1). In
case of a before advice body, there is no effective postcondition to be shown at
〈e,S,J 〉, due to the presence of the implicit proceed call that follows.�

Theorem 2. Let P be a program without any higher-order advice. The effective
pre/postcondition of each method/proceed call (including implicit proceed calls)
and the pre/postcondition of each method/advice body during the evaluation of P
will be satisfied if: (1) All advice in P that are not mentioned in any @advisedBy

clauses satisfy the ASP rules. (2) All classes in P satisfy the SBS’ rules. (3) All
method/advice bodies in P are locally correct. (4) The initial precondition of P is
satisfied at the start of the program. (5) Each advice composition is valid. (6) All
before/after advice satisfy the IPR rules. (7) Advice mentioned in an @advisedBy

clause have a higher precedence than advice not mentioned in any @advisedBy

clauses.

This proof is an extension of Theorem 1’s proof; the main difference is that we
now have a distinction between those advice that are mentioned in an @advisedBy

clause, and those that are not.
Body initiated via method call - Let 〈e,S,J 〉 be a configuration where e

decomposes to a method call obj : c.m. By (3)+induction, the effective precondi-
tion of the method call, eff pre(c, m) = effProcpre(c, m, 0), is ensured at 〈e,S,J 〉.
Let c′.a be the body to be executed.

– In case c′.a is an ASP-compliant around/before advice or a method body,
then either c.m does not have an @advisedBy clause, or the if pointcut con-
structs of each advice in the @advisedBy clause must have evaluated to false

(because each advice composition must be valid (5)). In both cases, we know
that effProcpre(c, m, 0) = pre(c, m), which corresponds to the situation after
(A.1) in the proof of Theorem 1. Consequently, we may conclude that the
precondition of the method/ASP-compliant body to be executed is satisfied.

– If c′.a is an around/before advice mentioned at position i of the @advisedBy

clause of c.m, then it follows from (5) that all preceding if pointcut con-
structs have evaluated to false. We now know that effProcpre(c, m, 0) =
advpre(ci .ai , c, m, i), where ci.ai is the ith advice in the @advisedBy clause
of c.m and c′.a ≤ ci.ai. Because c′.a satisfies SBS’ (2) and its precondi-
tion may not be stronger than advpre(ci.ai , c, m, i), advpre(c′.a, c, m, i) is
satisfied as well, which is the precondition of c′.a (with the proc keyword
adjusted to the current join point).

Body initiated via proceed call - Let 〈e,S,J 〉 be a configuration where e de-
composes to a proceed call which executes body c.a. Consider that this proceed
call is located in c′.a′, which advises c′′.m. Method c′′.m has an @advisedBy

clause with n elements, where n > 0.
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– If c′.a′ is an ASP-compliant advice, pre(c′′, m) is satisfied. If it is mentioned
as the last advice in the @advisedBy clause of c′′.m, effProcpre(c′′, m, n) =
pre(c′′, m) is satisfied. Both cases correspond to the situation after (A.1) in
the proof of Theorem 1, and we know the body to be executed must be either
ASP-compliant or a method body, due to (7). We conclude that the body’s
precondition holds as well.

– If c′.a′ is mentioned at position i of the @advisedBy clause, where i 6= n, then
by (3)+induction (and the IPR if c′.a′ is a before advice), effProcpre(c′′, m, i)
is satisfied. Let the body to be executed at 〈e,S,J 〉 be located at position
j, where i < j ≤ n. Due to (5), all if constructs between i and j must have
evaluated to false, so effProcpre(c′′, m, i) = advpre(cj , aj , c′′, m, j). Because
c.a ≤ cj .aj and due to SBS’, advpre(c, a, c′′, m, j) is satisfied as well.

Initiating after advice bodies - Let 〈e,S,J 〉 be a configuration where e de-
composes to obj:c.a, representing the “call” to an after advice body. By (3)+in-
duction (and the IPR if the preceding proceed call ended with another after
advice), effProcpost(c′, m, i) is ensured by the preceding proceed call. Due to the
IPR rules, pre(c, a) holds.

Returning from a body - Let 〈e,S,J 〉 be a configuration where e de-
composes to a return expression, where the execution of a body c.x is about
to finish. By (3)+induction, its postcondition holds. If c.x is a method body,
the SBS’ ensures the effective postcondition of the method/proceed call that
initiated c.x. If c.x is an after/around advice not mentioned in the @advisedBy

clause, this is ensured by the ASP. Finally, if c.x is an after/around advice men-
tioned at position i of the @advisedBy clause of c′.m, then SBS’ implies that
advpost(ci, ai, c′, m, i) holds. Due to (5), the if condition of c.a must have been
the first to evaluate to true at the method/proceed call initiating the execu-
tion of c.a. In case of a method call, we know that advpost(ci, ai, c′, m, i) =
effProcpost(c′, m, 0 ) = effpost(c′, m). In case of a proceed call, advpost(ci, ai, c′,
m, i) = effProcpost(c′, m, j), where 0 < j < i.�

6.3 Higher-order advice

As ContractAJ’s pointcuts can also match on the execution of advice, it is pos-
sible to create higher-order advice: advice with pointcuts that match on other
advice executions. For example, it is possible that an advice myAdvice intercepts
executions of myMethod, and there is another advice myMetaAdvice which inter-
cepts executions of myAdvice. We will refer to myAdvice as a first-order advice
and myMetaAdvice as a second-order advice. There also is no restriction on the
number of orders, so there may be a third-order myMetaMetaAdvice which ad-
vises myMetaAdvice, and so on. Note that “the order of an advice” is not a fixed
number; it can change per join point, as the same pointcut can match on advice
executions of different orders.

Note that all higher-order advice must be ASP-compliant, which is a con-
sequence of the fact that we only allow @advisedBy clauses to be specified for
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method bodies, not for advice bodies. This implies that a higher-order advice
cannot be mentioned in an @advisedBy clause.

We can now show once more that, if our approach to modular reasoning
is used, the effective pre/postconditions of each method/proceed call and the
pre/postconditions of each method/advice body will be satisfied. While we allow
the use of higher-order advice, we do make the assumption that the order of an
advice must be a finite number. This is necessary to avoid situations where an
advice (directly or indirectly) advises itself and creates an infinite recursion. In
this case, we of course cannot show that the advice’s postcondition would ever
hold, as the program no longer terminates.

Theorem 3. Let P be program where higher-order advice (of finite order) are
allowed. The effective pre/postcondition of each method/proceed call (including
implicit proceed calls) and the pre/postcondition of each method/advice body dur-
ing the evaluation of P will be satisfied if: (1) All advice in P that are not men-
tioned in any @advisedBy clauses satisfy the ASP rules. (2) All classes in P
satisfy the SBS’ rules. (3) All method/advice bodies in P are locally correct. (4)
The initial precondition of P is satisfied at the start of the program. (5) Each
advice composition is valid. (6) All before/after advice satisfy the IPR rules. (7)
Advice mentioned in an @advisedBy clause have a higher precedence than advice
not mentioned in any @advisedBy clauses.

The proof extends that of Theorem 2. In this previous theorem, lookup could
only match at most once within the mcall and pcall rules of Fig. 10. Because
higher-order advice are now allowed, lookup may now match multiple times.

Body initiated via method call - Consider a configuration 〈e,S,J 〉 in the
evaluation of P. Let e decompose into a context where we are about to execute
a method call obj:c.m. By (3)+induction, eff pre(c, m) is satisfied. In case the
body to be executed is either a method body or a first-order before/around
advice body, this corresponds to cases covered by Theorem 2. If the body to
be executed is an nth-order before/around advice cn.an, it can be shown that
its precondition will be satisfied by transitively applying the ASP: In order for
the lookup procedure to reach this nth-order advice body, there must have been
n − 1 lower-order advice (c1.a1, . . . , cn−1.an−1) that matched first. That is,
cn.an advises cn−1.an−1, which in turn advises cn−2.an−2, and so on, until we
end up at c1.a1 which advises the obj:c.m call. Due to the ASP (1), pre(c1, a1)
may not be stronger than pre(c, m). In turn, pre(c2, a2) may not be stronger
than pre(c1, a1), and so on. Because of this, we can conclude that pre(cn, an) is
satisfied, as it cannot be stronger than pre(c, m).

Body initiated via proceed call - Let 〈e,S,J 〉 be a configuration, where e
decomposes into a context with a proceed call. Let this proceed call be located in
an nth-order advice body cn.an, n ≥ 1. The effective precondition of this proceed
call is ensured by (3)+induction (and the ASP if cn.an is a before advice). The
execution of the proceed call at 〈e,S,J 〉 can lead to either another nth-order
advice body (the next advice in the composition), an advice with an order greater
than n (if the next nth-order advice that would otherwise be executed is being
advised) or an n − 1th-order body (if we are executing the last element of the
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composition). Knowing that the order of the body to be executed is at least
n− 1, showing that its precondition holds can be divided into three cases:

– If cn.an is a first-order advice and its proceed call leads to a method body
or a first-order advice body, this situation corresponds to Theorem 2.

– If cn.an is a first-order advice and its proceed call leads to a higher-order
advice body, we can apply the reasoning of Theorem 2 and conclude that
the precondition holds of the first-order advice that would normally be ex-
ecuted, in the absence of any matching higher-order advice. Knowing that
this precondition holds, the ASP can be applied transitively to conclude that
the precondition holds of the higher-order advice that is actually executed.

– Finally, if cn.an is a higher-order advice, the effective precondition of its pro-
ceed call takes into account the precondition of cn−1.an−1. By transitively
applying the ASP, we know the precondition of the body to be executed
holds, as its order must be n− 1 or greater.

Initiating after advice bodies - Let 〈e,S,J 〉 be a configuration, where e de-
composes into a context where an nth-order after advice is about to be executed.
If it is a first-order advice, this corresponds to Theorem 2. By (3)+induction (and
the ASP if the preceding proceed call ended with another after advice), the ef-
fective postcondition of the preceding implicit proceed call holds. Consequently,
pre(cn.mn) holds by the ASP.

Returning from a body - Let 〈e,S,J 〉 be a configuration where e de-
composes to a return expression, where the execution of a body c.x is about
to finish. By (3)+induction, post(c, x) holds. In case c.x is a method body or a
first-order advice body, which is initiated by a method call, or a proceed call in
a first-order advice, these cases correspond to Theorem 2. In any other case, the
ASP can be applied transitively to show that the effective postcondition holds
of the call that initiated c.x.�

7 Runtime contract enforcement

To enforce correct usage of our approach to modular reasoning, this section
presents a runtime contract enforcement algorithm for the ContractAJ language.
This algorithm produces an error whenever a contract is broken, and determines
which type is to blame. Because the contract enforcement algorithm needs access
to some additional join point information, we will first define a few extensions
to expose this information. The contract enforcement algorithm is then specified
by means of a transformation that adds contract enforcement aspects to a given
ContractAJ program. Finally, we also discuss the algorithm’s implementation
in AspectJ, to demonstrate that it can also be applied to a full-fledged aspect-
oriented programming language.

7.1 ContractAJ extensions

In this section, a few extensions are made the ContractAJ language so that we
can retrieve additional information about each advised join point, similar to the
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notion of the thisJoinPoint variable in AspectJ. This runtime information is
needed to be able determine which contracts need to be checked.

Additional run-time information is also needed in case a higher-order around
advice makes use of the proc keyword. To evaluate the proc keyword within an
nth-order around advice, we should be able to determine which n-1th-order advice
it advises. In turn, if this n-1th-order advice uses proc, we need to determine the
n-2th-order it advises, and so on.

To make this information available, we will first extend the E tuples used in
the join point stack with a fifth element:

E ::= 〈c, x, obj, bool, E|•〉

When considering an E tuple that represents a particular advice execution,
this fifth element is used as a pointer to the E tuple of its advised join point. We
will refer to this pointer as the AP (advised join point pointer). For example,
consider the execution of an advice c.a that advises method c′.m. This results
in the following tuple for c.a:

〈c, a,_,_, EAP〉 where EAP = 〈c′, m,_,_, •〉

The AP in the tuple of c.a refers to the tuple of c′.m. In turn, the AP in
the tuple of c′.m is empty, as it represents a method. We can now use this AP
to navigate from an nth-order advice to all lower-order advice it advises (i.e.
with an order smaller than n). To ensure that the AP is filled in correctly, the
[call], [around] and [callaround] rules of the operational semantics are modified
accordingly in Fig. 20. The [epop] rule is added as well, and ContractAJ’s syntax
is extended with the epop expression:

[call] P ` 〈E[obj:c.x(v1 . . . vn)],S,J 〉
↪→ 〈E[jpop{proceed(obj v1 . . . vn)}],S,A;J 〉
where A = alook(c, x,S, E) + E and E = 〈c, x, obj, true, •〉 and !isAround(c, x)

[around] P ` 〈E[proceed(obj v1 . . . vn)],S,A;J 〉
↪→ 〈E[if(e′){objasp:c.a(obj v1 . . . vn)}else{epop();proceed(obj v1 . . . vn)}],S,A;J 〉
whereA = 〈c, a, objasp, false, E〉+ . . .
and isAround(c, a) and vartgt = target(c, a) and e = ifPcut(c, a)
and e′ = e[objasp/this, obj/vartgt , v1/var1, . . . , vn/varn]

[callaround] P ` 〈E[objasp:c.a(v1 . . . vn)],S, E +A;J 〉
↪→ 〈E[proceed(objasp v1 . . . vn)],S,A′ +A;J 〉
where A′ = alook(c, a,S, E ′′) + E ′′ and isAround(c, a)
and E = 〈c, a, objasp, false, E ′〉 and E ′′ = 〈c, a, objasp, true, E ′〉

[epop] P ` 〈E[epop()],S, E +A;J 〉 ↪→ 〈E[true],S,A;J 〉

Figure 20. Adding support for the AP
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[call] - In case of the [call] rule, which handles method calls, the AP of the
tuple that represents the method (E) is empty. The alook function (not shown
here) can be easily extended such that the AP of the tuples for all matching
advice is set to E . Note that the execution of a before/after advice body is also
handled via the [call] rule, meaning that their AP is also set to •. This is not a
problem, as we only use the AP to resolve the value of the proc keyword, which
can only be used in the pre/postcondition of around advice.

[around] - The main modification made to this rule, which processes around
advice, is that it no longer pops the around advice’s tuple from the stack. This
is done because we still need its AP if e′ evaluates to true and the objasp:c.a
call is processed by [callaround]. However, if e′ evaluates to false the tuple is
not needed and should be removed, which is done by the epop() statement.

[callaround] - When looking for higher-order advice matching on an around
advice, the tuples of these matching advice will get E” as their AP, representing
the around advice. In turn, the AP of E”, which is E ’, can be found in the tuple
that was left on the stack by the application of [around].

[epop] - This rule simply pops the top tuple from the join point stack.
After introducing the AP, we can use it to define the helper functions in

Fig. 21: The jpElem(J , i, j) function is used to retrieve a particular E tuple
from the join point stack, relative to the tuple at the top of the stack. Given
that this top E tuple is an nth-order advice, we make use of jpElem(J , E , i, j) to
navigate to the E tuple of the n-ith-order advice. If this tuple is the kth element
in the A record that contains it, the k+jth element is finally returned.

The two advBy functions relate to the @advisedBy clause of a method: One
determines the position at which an advice is mentioned in an @advisedBy clause,
whereas the other retrieves an advice’s class at a certain position in the clause.
Both make use of the advBy(c, m) function (defined in Fig. 12 of Sec. 3.4) to
retrieve the complete @advisedBy clause of a method, which includes the clause
inherited from the super class.

Finally, using jpElem and advBy, we can extend the ContractAJ language
with the following new keywords that will be used to define the contract en-
forcement algorithm: advBy, jpStatic, jpThis, pre, iPre, effProcPre and advPre.
Their semantics is defined in Fig. 22:

[advBy] - The advBy(c, a, c′, m) expression directly uses the advBy function
to retrieve the position in which advice c.a is mentioned in the @advisedBy clause
of c′.m.

[jpStatic] - If the E tuple at the top of J is an nth-order advice, the
jpStatic(i) expression uses jpElem to retrieve the type of the n-ith-order body
being advised.

[jpThis] - This expression is similar to jpStatic, but it retrieves the instance
corresponding to the n-ith-order body being advised.

[pre] - The pre(c, x, obj, obj ′, proc, v1 . . . vn) expression retrieves the precon-
dition e of body c.x, as well as binds all variables in e to their values. These
variables respectively constitute of the this object, the target binding, the proc

keyword and the arguments of c.x.
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Retrieve the jth element in an (n − i)th-order composition,
with an nth-order element at the top of J

jpElem(J , i, j) J = A ; . . . and A = E + . . . and E ′ = jpElem(J , E , i, j)
jpElem(J , i, j) = E ′

jpElem(J , E , i, j) i = 0 and (J = 〈. . . , 〈E1 , . . . , Ek , . . . , Ek+j , . . .〉 , . . .〉 and Ek = E and Ej = E ′
jpElem′(J , E , i, j) = E ′

i > 0 and E = 〈_,_,_,_, E ′′〉 and E ′ = jpElem′(J , E ′′, i − 1 , j)
jpElem′(J , E , i, j) = E ′

Determine at which position c.a is mentioned in the @advisedBy clause of c′.m

advBy(c, a, c′, m)

advBy(c′, m) = (c1, a1, . . . , cn, an)
where a = ai and c ≤ ci and @cj : j 6= i and c ≤ cj < ci)

otherwise i = −1
advBy(c, a, c′, m) = i

Retrieve the class at position i in the @advisedBy clause of c.m

advBy(c, m, i) advBy(c, m) = (c1, a1, . . . , ci, ai, . . . , cn, an)
advBy(c, m, i) = ci

Figure 21. Helper functions

[effProcpre] - The effProcPre(i,j,k,v1 . . . vn) expression is the runtime
equivalent of effProcpre in Fig. 18 of Sec. 5.5, which defines the effective precon-
dition of a proceed call. Parameters i and j are used to describe which advice
contains the proceed call in question, as determined by jpElem(J , i, j). Para-
meter k indicates the position of the advice within the @advisedBy clause (if
any) of its advised join point. The effProcPre expression is defined as three
cases: The first describes the effective precondition if there is an @advisedBy

clause, whereas the second describes the effective precondition in the absence
of an @advisedBy clause. The third case detects invalid advice compositions, as
defined in Sec. 6.1. If jpElem(J , i, j) is not mentioned as the kth element in the
@advisedBy clause, a runtime error is produced, as it is no longer possible to
evaluate the effective precondition in an unambiguous manner.

[advpre] - Finally, the advPre(i,j,k,v1 . . . vn) expression is the runtime
equivalent of the static advpre function defined in Fig. 18 of Sec. 5.5. It retrieves
the precondition of an advice body using iPre and determines the value of its
proc keyword. Note that iPre of course is the runtime equivalent of the iPre
function of Fig. 18. Its semantics are not shown here, as the rule is nearly identical
to [pre].

7.2 Contract enforcement in ContractAJ

After defining the extensions to the ContractAJ language, we can make use of
them to present our contract enforcement algorithm. This algorithm has been
implemented as a number of judgements, based on the algorithm for the object-
oriented ContractJava language of Findler et al. [18]. Applying these judgements
will transform a ContractAJ program into a new version of the program where
support for contract enforcement is added. What is different from Findler et
al. [18] is that, because contract enforcement is a crosscutting concern, we can
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[advBy] P ` 〈E[advBy(c, a, c′, m)],S,J 〉 ↪→ 〈E[i],S,J 〉
where i = advBy(c, a, c′, m)

[jpStatic] P ` 〈E[jpStatic(i)],S,J 〉 ↪→ 〈E[c],S,J 〉
where E = jpElem(J , i, 1) and E = 〈c,_,_,_,_〉

[jpThis] P ` 〈E[jpThis(i)],S,J 〉 ↪→ 〈E[obj],S,J 〉
where E = jpElem(J , i, 1) and E = 〈_,_, obj,_,_〉

[pre] P ` 〈E[pre(c, x, obj, obj ′, proc, v1 . . . vn)],S,J 〉
↪→ 〈E[e[obj/this, obj ′/tgt, proc/proc, v1/var1, . . . , vn/varn],S,J 〉
and class c{ . . . @requires e . . . t x(var1 , . . . , varn) . . . } is in P
and tgt = target(c, x)

[effProcpre] P ` 〈E[effProcPre(i,j,k,v1 . . . vn)],S,J 〉
↪→ 〈E[if(ifCond[obj/this, obj ′/tgt, v1/var1, . . . , vn/varn]){

advPre(i,j,k,v1 . . . vn)

} else {effProcPre(i,j,k + 1,v1 . . . vn)},S,J 〉
where jpElem(J , i, j) = 〈c, a, obj,_, E〉 and E = 〈c′, m, obj ′,_,_〉
and advBy(c, a, c′, m) 6= −1 and c 6 advBy(c′, m, k)
and 〈a, (t1, . . . , tn → t), (var1, . . . , varn , e)〉 ∈ c
and ifCond = ifPcut(c, a) and tgt = target(c, a)

[effProcpre] P ` 〈E[effProcPre(i,j,k,v1 . . . vn)],S,J 〉
↪→ 〈E[pre(c′,m′,obj′,obj′′,proc,v1 . . . vn))],S,J 〉
where jpElem(J , i, j) = 〈c, m, obj,_, E〉 and E = 〈c′, m′, obj ′,_, E ′′〉
and advBy(c, m, c′, m′) = −1
and if isMethod(c′, m′) then (proc = true and obj′′ = null)
else (proc = effProcPre(i + 1,1,advBy(c′, m′, c′′, m′′),v1 . . . vn)

and E ′′ =
〈
c′′, m′′, obj ′′,_,_

〉
)

[effProcpre] P ` 〈E[effProcPre(i,j,k,v1 . . . vn)],S,J 〉
↪→ 〈E[error("@advisedBy mismatch, expected instance of c′")],S,J 〉
where jpElem(J , i, j) = 〈c,_,_,_, E〉 and E = 〈c′, m′,_,_,_〉
and c′′ = advBy(c′, m′, k) and c � c′′

[advpre] P ` 〈E[advPre(i,j,k,v1 . . . vn)],S,J 〉
↪→ 〈E[iPre(c,a,obj,obj′,effProcPre(i,j + 1,k + 1,v1 . . . vn),v1 . . . vn))],S,J 〉
where jpElem(J , i, j) = 〈c, a, obj,_, E〉 and E = 〈_,_, obj ′,_,_〉

Figure 22. Semantics of contract enforcement expressions

implement it by adding a number of aspects. The judgements that form the
contract enforcement transformation have the following shape:

context ` lhs ⇀ rhs

This can be read as: “Within context, an occurrence of lhs in the source
code produces the code in rhs”. The most important judgements describing the
contract enforcement algorithm are shown in Fig. 23:

[def ] - This rule specifies the ⇀def judgement, which describes the entire
transformation at a high level: the transformation is initiated by applying this
judgement to every class in the program. As a result, a contract-checking class
(Contract_c) will be generated for each existing class (c). An example is given
in Fig. 24 where the contract checking class Contract_Security is generated for
class Security.



47

[def ]

xj is a method or an advice for j ∈ [1, m]
P, c ` xj ⇀adv xcheckj if @c′′ : xj ∈ c′′ and c < c′′

P, c ` xj ⇀pre xprej P, c ` xj ⇀post xpostj

P ` declare precedence . . . ; . . . class c extends c′ {x1 . . . xm} . . . main{ . . . } ⇀def
declare precedence . . . ,Contract_c.xcheck1, . . . ,Contract_c.xcheckm; . . .
class Contract_c extends Object {xcheck1 . . . xcheckm}

class c extends c′ {x1 . . . xm xpre1 . . . xprem xpost1 . . . xpostm}

. . . main{Contract_c c_c = new Contract_c; . . . }

[advm]

P, c ` t m(t1 x1, . . . ,tn xn)) ⇀adv
around m: call(t c.m(t1 x1, . . . ,tn xn)) && target(dyn) {

if(pre(jpStatic(0),m,dyn,null,true,x1 . . . xn)) {

dyn.m_SbsPreCheck(x1 . . . xn)

} else {error("Precondition violation: getStackTrace[1]")}

let {returnV al=proceed(dyn,x1 . . . xn)} in {

if(post(jpStatic(0),m,returnVal, dyn,null,true,x1 . . . xn)) {

dyn.m_SbsPostCheck(returnVal,x1 . . . xn)

} else {error("Postcondition violation:" dyn)};
returnV al}}

[advar]

P, c ` around a: call|execution(t c′.x(t1 x1 . . . tn xn) ⇀adv
around a: execution(t c.a(t1 x1 . . . tn xn)) && this(dyn) {

let {i = advBy(jpStatic(0),a,jpStatic(1),x)} in {

if(i ==-1) { // If the user-advice is not mentioned in @advisedBy

let {jpP re = effProcPre(0,1,-1,x1 . . . xn)

advP re = pre(jpStatic(0), a, dyn, jpThis(1), jpPre x1 . . . xn)} in {

if(jpPre) {

if(!advPre) {error("ASP violation, precondition too strong:" dyn)}
} else {error ("Precondition violation: getStackTrace[1]")}}

let {returnVal=proceed(dyn,x1 . . . xn)

jpP ost = effProcPost(0,1,-1,x1 . . . xn)

advP ost = post(jpStatic(0), a, returnVal, dyn, jpThis(1), jpPost, x1 . . . xn)} in {

if(jpPost) {

if(!advPost) {error("ASP violation, postcondition too weak:" dyn)}
} else {error("Postcondition violation:" dyn)};
returnVal}

} else { // If the user-advice is mentioned in @advisedBy

let {proc = effProcPre(0,2,i + 1,x1 . . . xn)

pre = pre(jpStatic(0), a, dyn, jpThis(1), proc, x1 . . . xn)} in {

if(pre) {dyn.a_SbsPreCheck(jpThis(1), proc, x1 . . . xn)

} else {error("Precondition violation: getStackTrace[1]")}}

let {returnVal=proceed(dyn,x1 . . . xn)

proc = effProcPost(0,2,i + 1,x1 . . . xn)

post = post(jpStatic(0), a dyn, jpThis(1), proc, x1 . . . xn)} in {

if(post) {dyn.a_SbsPostCheck(jpThis(1), proc, returnV al, x1 . . . xn)

} else {error("Postcondition violation:" dyn)};
returnVal}}}

[prem]

P, c ` t m(t1 x1, . . . , tn xn) {e}⇀pre
boolean m_SbsPreCheck(t1 x1, . . . , tn xn) {

let{next=(∃?super.m_SbsPreCheck(x1 . . . xn)

res=pre(c, m, this, null, true, x1 . . . xn)} in {

if (!next || res) {

res
} else {error("SBS’ violation, precondition too strong:" this)}}

Figure 23. Contract enforcement judgements
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declare precedence Security.authenticate, contract_Security.authenticate;

class Bank {
@requires u.getBank()==this
@ensures result!=null && result.getOwner()==u
@advisedBy Security.authenticate
Account createAccount(User u) {...}}

class Security {
@requires proc
@ensures if(isLoggedIn(u)){proc}else{true}
around authenticate: call(Account Bank.createAccount(User u)) && target(b) {...}
boolean authenticate_SbsPreCheck(Bank b,boolean proc,User u) { ... }
boolean authenticate_SbsPostCheck(Bank b,boolean proc,Account returnVal,User u) {...}}

class Contract_Security {
around authenticate: execution(Account Security.authenticate(User u)) && this(dyn) {
let{i=advBy(Security,authenticate,Bank,createAccount)} in {
if(i==-1) { ...
} else {
let{proc="u.getBank()==this"
pre="u.getBank()==this"} in {
if(pre) {dyn.authenticate_SbsPreCheck(jpThis(1),proc,u)
} else {error("Precondition violation: getStackTrace[1]")}}

let{returnVal=proceed(dyn,u)
proc="result!=null && result.getOwner()==u"
post="if(isLoggedIn(u)){result!=null && result.getOwner()==u}else{true}"} in {
if(post) {dyn.authenticate_SbsPostCheck(jpThis(1),proc,returnVal,u)
} else {error("Postcondition violation:" dyn)};
returnVal}}}

main {
Contract_Security c_security = new Contract_Security; ...}

Figure 24. Example of a contract enforcement aspect

First, the declare precedence statement is extended to ensure that every
advice in Contract_c has a lower precedence than all other advice. This is ne-
cessary to make sure that the existing advice will not interfere with contract
enforcement advice at shared join points. Next, we can examine the definition of
Contract_c itself: For each method/advice xj in c, an advice xcheckj is added to
Contract_c. This around advice is executed whenever xj is called and will then
perform contract enforcement. To avoid confusion, henceforth we will call the
contract enforcement advice “contract-advice”. Normal advice defined in the ori-
ginal program will be called “user-advice”. Note that the xcheckj contract-advice
are only created for non-overriding methods/advice. It would be redundant to
add them to overriding members due to the use of a call pointcut, which also
matches on subtypes. The code of each contract-advice is produced by the ⇀adv
judgement, defined in the [adv] rules (only [advm] and [advar] are shown). Next,
xprej and xpostj are two helper methods that are added to the existing c class;
they check whether the SBS’ pre- and postcondition rules hold. These two meth-
ods are specified by the [pre] and [post] rules (only [prem] is shown). Finally,
the program’s main expression is extended such that Contract_c is instantiated.

[advm] - This rule specifies the contract-advice that enforces contracts of
methods. An around contract-advice is used for this purpose, associated with a
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call pointcut that matches whenever c.m is called, where c is (a subtype of)
the static type of the call.

In the contract-advice’s body, the precondition of m is first checked, in class
jpStatic(0), which corresponds to the receiver’s static type in the c.m call. If
this precondition check fails, we state that “getStackTrace[1]” is to be blamed.
In most cases, this simply means that the caller of the method is to be blamed.
However, if one or more user-advice are present at this method, the previous
user-advice in the composition is to be blamed. We can only blame this previous
advice; otherwise an error would have been generated earlier by the contract-
advice that check each user-advice. After pre(jpStatic(0),m,. . .) is checked,
we invoke dyn.m_SbsPreCheck, the SBS’-checking helper method, which is spe-
cified in rule [prem]. After this SBS’-check has passed for the preconditions,
we can make a proceed call to execute the method that we are checking. Once
this is done, the postconditions are checked, which is analogous to checking the
preconditions.

[advar] - This lengthy rule specifies the contract-advice that checks all around
user-advice. The reason for its length is the fact that it handles both ASP-
compliant advice and advice mentioned in an @advisedBy clause. First, we try
to determine the position (i) of the user-advice within the @advisedBy clause of
its advised join point using advBy. If it returns -1, this indicates the user-advice
is not mentioned in the @advisedBy clause (if there was one), which implies the
user-advice is ASP-compliant:

ASP-compliant advice - We first determine the precondition of the ad-
vised join point in jpPre. This precondition corresponds to the effective pre-
condition of the user-advice’s proceed call, which is why effProcPre(0,1,. . .) is
used. The precondition of the user-advice itself is stored in advPre (with jpPre
as the value of the proc keyword). Next, jpPre is checked: Similar to [advm],
“getStackTrace[1]” is to be blamed if the test fails. If the test passes, advPre
is tested next: If checking the user-advice’s precondition fails, we know it is too
strong and the ASP is broken. If this check passes, we can proceed with ex-
ecuting the user-advice, do the analogous checks for postconditions and finally
return the user-advice’s return value.

Advice mentioned in an @advisedBy clause - In case the user-advice
is mentioned in an @advisedBy clause, we will first determine the value of the
proc keyword using effProcPre(0,2,i + 1,. . .). The pre variable then contains
the user advice’s precondition. The contract enforcement procedure itself is
quite similar to [advm]: The precondition is first tested. If this test passes,
dyn.a_SbsPreCheck should be tested, as the elements in an @advisedBy clause can
also match with subtypes. Once this test passes, the proceed call is made and the
analogous postcondition tests are done. Fig. 24 presents an example of a contract-
advice, such that the contracts that will be checked are visible. These concrete
contracts are only shown to improve the example’s clarity. The actual source
code of Contract_Security.authenticate would show pre, effProcPre, post and
effProcPost expressions instead, as this contract-advice should also be able to
enforce the contracts of any user-advice that override Security.authenticate.
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[prem] - This rule checks that the precondition of a particular method is
not stronger than any of its ancestors. This is done by recursively traversing
up the subtype hierarchy tree with a super.m_SbsPreCheck call. (The ∃? symbol
before super.m_SbsPreCheck means: if m_SbsPreCheck does not exist in super,
the call is left out.) There is also a similar [pre] variant of this rule (not shown)
for advice: The only difference is that this helper method contains two extra
parameters: the value of the target binding and the value of the proc keyword.

To finish up the contract enforcement algorithm, we should still discuss the
[adv] rules that are not shown in Fig. 23. The [advar] rule that was discussed
here is focused on around user-advice. We should also specify separate variants
for before and after user-advice, which are mostly similar to [advar]. In case of
before advice, the postcondition checks are replaced by only checking the post-
condition of the advice itself, i.e. without testing the ASP or SBS’. If this check
fails, the advice itself is to blame. If the before advice interferes with the next
element in the composition, this will be detected by that element’s precondition
check, which will correctly blame getStackTrace[1]. The after advice is treated
similarly, precondition checks are replaced by only checking the precondition of
the advice itself.

7.3 AspectJ implementation

To demonstrate an instantiation of our contract enforcement algorithm in a
full programming language, we have implemented it as a lightweight design by
contract library for AspectJ, which is available for download9. The library itself
is written completely using the constructs provided by AspectJ itself. As the
library consists of aspects, and aspects are implicitly instantiated in AspectJ,
contract enforcement is automatically enabled as soon as the library is included
on a project’s build path. Contracts are specified as strings in Java annotations
(@ensures, @requires, @invariant); they are evaluated at runtime by a scripting
engine. To keep the library small and simple, we make the assumption that the
developer will not produce any side effects in the program’s contracts, rather
than build a fleshed-out behavioural interface specification language like JML.
Contracts have access to the necessary information to implement basic design
by contract support in AspectJ: the this object, parameters, the return value
(in case of postconditions) and the old() function to evaluate expressions in the
pre-state of a method/advice execution and retrieve the result in the post-state.

Regarding the implementation of the enforcement algorithm, most of the al-
gorithm can be translated fairly directly from ContractAJ to AspectJ. Rather
than creating a contract enforcement aspect per class/aspect, the implementa-
tion only has two contract enforcement aspects that handle all method/advice
executions. The extensions made in Sec. 7.1 can be reproduced in AspectJ using
reflection and the thisJoinPoint variable. The AspectJ counterpart of the AP
(the fifth element in each E tuple) is also available in higher-order advice as the
9 The library and source code are available at: https://github.com/timmolderez/adbc

https://github.com/timmolderez/adbc
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last argument of thisJoinPoint.getArgs(), which points to the thisJoinPoint

variable10 of the advised join point.
One subtle difference between the algorithm and the implementation is con-

cerned with making sure that a contract-advice always is the very last advice
to be executed in an advice composition, which requires using an execution
pointcut. This is due to the fact that, in AspectJ, an advice matching at a call
join point is always executed before an advice that matches at the corresponding
execution join point. This is not the case for ContractAJ, due to its simpler join
point model discussed in Sec. 2.3. Using an execution pointcut creates a new
problem, as AspectJ only provides access to the dynamic type of the advised
method call. We also need to know the static type to be able to determine which
contracts need to be enforced. Luckily, we can work around this problem by in-
troducing a helper advice that matches on any call join point, and temporarily
stores the static type in a stack, until contract enforcement is performed at the
corresponding execution join point.

8 Related work

Observers and assistants - There are several related papers in the field of
modular reasoning for aspects. Most closely related is the work on observers
and assistants by Clifton and Leavens [11,13,12]. Their work focuses on modular
reasoning in AspectJ, using JML as the specification language. On the surface,
our work looks quite similar to theirs, as our distinction between ASP-advice
and non-ASP advice is akin to the distinction between observers and assistants.
As mentioned in Sec. 4, the main difference between ASP-compliant advice and
observers is that the ASP is defined in terms of the advice’s specification rather
than its implementation. This allows the ASP to be more permissive than the
notion of observers: An observer can only modify the state it owns, as well as
global state. In Clifton’s thesis [13], observers (also called spectators) are further
restricted since around advice must make exactly one proceed call. ASP-advice
is not subjected to these restrictions: In addition to the state it owns and global
state, ASP-advice may also modify any state that is being modified by the join
points it advises, as long as the specifications of its advised join points are
taken into account. Likewise, ASP-compliant advice may make as many proceed
calls (including zero) as desired. To give a few examples that distinguish ASP-
compliant advice from observers: Consider a caching aspect for e.g. a database.
Whenever a query is made, an advice would test the cache. This advice would
be ASP-compliant, as it does not alter the database’s behaviour. It is however
not an observer, since the advice does not make a proceed call on a cache hit.
Another kind of example, closely related to context-oriented programming [20],
would be an advice that acts like an overriding method (i.e. a body of code that
extends the behaviour of an existing method), but one that is only active within

10 One caveat is that an advice body should make use of its thisJoinPoint variable in
order for it to be available for higher-order advice.
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a certain context, e.g. a particular control flow. Such an advice should be ASP-
compliant, just like overriding methods should be SBS-compliant. However, if
this advice modifies a field in the receiver of the advised method calls, it cannot
be an observer, as this field is not owned by the corresponding aspect.

Moreover, ASP-compliant advice are guaranteed to preserve modular reas-
oning, on the assumption that each module correctly implements its own spe-
cifications. Ensuring that an advice is ASP-compliant can be done statically by
the developer, given the advice’s specifications and those of its join point shad-
ows. On the other hand, it is undecidable in general to statically ensure that an
observer will only modify its own/global state and will make one proceed call in
any control flow path. Granted, in case of ASP-compliant advice, the undecidab-
ility problems have been delegated to the assumption that each module correctly
implements its own specifications. Nonetheless, this problem is well-known and
the vast amount of work that strives to approximate a solution can be readily
leveraged.

Clifton and Leavens’ notion of assistants is closely related to the use of
@advisedBy clauses. Restoring modular reasoning for assistants is done by expli-
citly mentioning these aspects in an accepts statement in a module, to indicate
that any join points in this module may be advised by the mentioned advice.
Using an @advisedBy clause has a similar purpose, but it is more fine-grained:
An @advisedBy clause is associated with a method and mentions a number of
advice, which makes it straightforward to tell which advice are expected at a
particular method call. Constructing the effective specification of an advice is
also done very differently: In case of assistants, a graph is constructed that con-
tains the possible advice compositions per join point shadow. The specification
of each path in the graph is then constructed by composing the specification of
each node on the path and eliminating all intermediate states, which can be a
demanding process. It also does not prevent interference between the advice, as
before/after advice are not constrained such that they take into account their
implicit proceed call. In case of non-ASP advice, the effective specification is
arguably much simpler to construct, the IPR of Sec. 5.6 prevents interference
and the specification leaves room for extension using overriding advice or higher-
order advice. Finally, Clifton and Leavens’ work also approaches around advice
quite differently: There is no equivalent of a proc keyword. Instead, the specific-
ation of an around advice is split up into a before and an after part. The before
part refers to all code up until a proceed call is made, and the after part refers
to the code after a proceed call is made. This becomes more complex/verbose
once proceed calls appear in control statements (e.g. in an authentication or
authorization advice). Multiple specification cases are needed, as there now are
multiple possible before-and after parts. While the proc keyword does not expose
when/whether a proceed call will be made, it also is simpler to use.

Translucid contracts - The work on translucid contracts for the Ptolemy
language [6] is closely related as well. The Ptolemy language requires all advis-
able join points to be announced explicitly as events, including which information
is exposed to event handlers (similar to advice). Each event is associated with
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its own specifications called translucid contracts. The modules that announce
events are aware of these contracts, and event handlers have to comply with the
contracts in order not to cause any surprising effects. While this approach is
flexible in the sense that the event announcer can be oblivious of which, how
many or in what order event handlers are present, this flexibility arguably also
makes it more difficult to design the specifications of events such that they are
sufficiently restrictive for the event announcer, but sufficiently permissive for any
event handlers that might register to the event. An @advisedBy clause is more re-
strictive, as it announces which advice are expected, in what order, but it leaves
open which (sub)types should implement the listed advice. Another difference
between translucid contracts and our approach is that translucid contracts are
grey-box specifications, as they also expose how event handlers should alter con-
trol flow, i.e. when a proceed call is made or not. Our contracts in ContractAJ
are black-box, yet the use of the proc keyword often gives away on what con-
ditions a proceed call is made. Nonetheless, the proc keyword is nothing but a
placeholder for another module’s pre- or postcondition, and is not a guarantee
that an advice body will (or will not) make a proceed call on certain conditions.

Pipa and CONA - In Zhao et al. [43], the design of Pipa is presented,
a language to specify contracts for AspectJ programs, as an extension to the
JML specification language. The interaction of an advice with the base system
is viewed from a weaving perspective, at a syntactical level: the contracts of an
advice are woven into the contracts of the corresponding advised methods. There
is no notion of an advice substitution principle however, as no constraints are
placed on how an advice’s contracts should relate to those of advised methods.
In Lorenz et al. [28], aspects are classified as agnostic, obedient or rebellious.
Each of the three types correspond to aspects with only ASP-compliant advice.
To enforce that an aspect is of a particular type, blame assignment tables are
presented for each type. Developers can indicate which of the three types an as-
pect belongs to, and a prototype implementation called CONA will then perform
contract enforcement using these blame assignment tables. The CONA tool uses
aspects to enforce contracts on objects, but uses objects to enforce contracts on
aspects. The work of Agostinho et al. [1] as well is based on the advice substitu-
tion principle in Wampler [41] and informally discusses its application to various
concrete aspect-oriented languages (AspectJ, CaesarJ and FuseJ).

Modular reasoning in AOP-like languages - Related work can also
be found for other types of languages similar to AOP: the work of Thüm [40]
discusses design by contract for feature-oriented programming. Several different
approaches to integrate design by contract are discussed and compared in a
number of use cases. The “explicit contract refinement” approach is closest to
the ASP, as it is based on method refinement and has the original keyword,
which is similar to proc. The different approaches are compared on a number of
case studies, and some cases were identified where none of the approaches were
sufficiently expressive, which could indicate the need for a construct similar to
the @advisedBy clause.
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In Hähnle et. al [36], design by contract is discussed for delta-oriented pro-
gramming, which is as well closely related to AOP. Liskov substitution [27] is
adapted to this type of languages. It also demonstrates that making a language’s
constructs more dynamic also makes it more difficult to reason about: a dynamic
element is present, in the sense that the feature configuration of delta-oriented
programs can take on various different forms. As a consequence, method con-
tracts will need to take into account more than just the superclass. This is similar
to the fact that our proc keyword depends on the advised join point.

Finally, there are also several related papers that focus on restoring modu-
lar reasoning by establishing new kinds of interfaces between aspects and the
modules they advise, such as open modules [2], crosscutting program interfaces
(XPIs) [39,35], join point types [38] or join point interfaces [7]. While some
of these interfaces restrict what each aspect is allowed to advise, this work is
mostly complementary to ours, in the sense that such intermediate interfaces
can alleviate the fragile pointcut problem and reduce the number of reasoning
tasks for developers of aspects.

9 Conclusion

In this paper an approach has been presented to achieve modular reasoning
in aspect-oriented languages, using the ContractAJ language. This approach is
centred around an advice substitution principle and the @advisedBy clause. For
those advice that satisfy the ASP, obliviousness can be preserved without af-
fecting modular reasoning. For all other advice, the @advisedBy clause should
be used to become aware of such advice. Apart from the fact that each advice
should take into account the contracts of any (implicit) proceed calls, there are
no restrictions on what an advice is allowed to do. The approach is shown to pre-
serve modular reasoning when making method/proceed calls and an algorithm
is provided to perform runtime contract enforcement.

In terms of future work, case studies can be performed to study our ap-
proach on existing AspectJ applications and to answer questions such as: What
proportion of all advice is ASP-compliant versus non-ASP-compliant? If an ad-
vice advises a large amount of join point shadows, can there be a lot of coupling
between the advice and its shadows? In other words, does the developer always
need to pay close attention to the value of the proc keyword or is it unlikely to
cause conflicts with our approach?

Another interesting path of future work is to provide support for static con-
tract enforcement. That is, the ability to determine statically whether an advice
satisfies the ASP or not. If not, we should examine whether the advice is men-
tioned in the relevant @advisedBy clauses. Finally, another path worth exploring
is to study invariants and frame conditions in more detail, and to extend the
approach with e.g. an ownership type system such that it can be used for formal
verification.
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