
Taming Obliviousness in Aspects

using Data-�ow Analysis and Design by Contract

Tim Molderez?, Dirk Janssens

University of Antwerp, Belgium
tim.molderez@ua.ac.be, dirk.janssens@ua.ac.be

1 Introduction

Aspect-oriented programming (AOP) [3] allows for the modularization of crosscutting concerns, which
are those concerns that are typically scattered across several places in source code and are inherently
tangled together with other concerns. An AOP language accomplishes this goal by encapsulating
crosscutting concerns in so-called aspects. The key feature of an aspect is that it can implicitly decide
for itself that a certain body of code should be executed at certain points during a program's execution.
It is well-known in the AOP community that this implicitness both forms the main strength and the
main weakness of AOP. On the one hand, a crosscutting concern can be described in a very compact
manner: Instead of scattering similar-looking code across several places, an aspect can contain that code
inside an advice body, combined with a pointcut expression that speci�es when the advice should be
executed. On the other hand, everyone but the aspect itself is oblivious towards the aspect's existence.
This property of AOP makes an aspect-oriented application more prone to unexpected, and potentially
undesired, behaviour. More speci�cally, the application will inevitably continue to evolve and those
who are unaware of aspects can then inadvertently turn a cooperating aspect into one that causes
undesired behaviour. Even disregarding evolution, the developers who write aspects need to tread
carefully: Because an advice can be applied at a multitude of points during program execution, it is
not always clear what e�ects an advice will have.

2 Approach

In this extended abstract, we will brie�y present our current progress in solving the problems associated
with obliviousness. The end goal is that we develop an approach that allows the developer to identify
undesired behaviour caused by aspects in a quick, precise and easy-to-understand manner. To achieve
this target, we have chosen to tackle obliviousness from two di�erent perspectives, which already are
useful individually, but will later join to meet the end goal. These two perspectives, as indicated by
the title, are data-�ow analysis and design by contract.

Data-�ow analysis - First, using data-�ow analysis, our aim is to make the interactions caused by
aspects visible, both to the developers writing aspects, as well as to those developers being a�ected by
aspects. Moreover, it is important that the analysis �ts in seamlessly with the work�ow of developers.
This primarily means that we should continuously update which interactions are found as the system
evolves, such that the developer can investigate these interactions at any time. It should also be easy
for the developer to identify how an interaction was found, and whether it is relevant to his/her work.
As such, our analysis is a static and incremental data-�ow analysis. Our focus is to �nd all data

? Funded by a doctoral scholarship of the Research Foundation, Flanders (FWO)



dependencies caused within all potential control �ows of each advice, as such data dependencies form
the most interesting and non-trivial kind of interactions to study. The basic analysis algorithm, which
is initially applied to the entire system, consists of two phases: For each advice, a depth-�rst traversal
is performed to �nd all statements where a variable is modi�ed, which might have a non-local e�ect.
Second, for each variable modi�cation that was found, we wish to �nd out who �rst uses that variable
after the advice is executed. In other words, we want to �nd out who is a�ected by the modi�cation
made by that advice. We can then reuse the same algorithm to keep the results updated incrementally.
That is, whenever the developer changes the source code, we can determine which parts of the code
need to be reanalysed, if any. A proof-of-concept of this algorithm is currently being built on top of the
AspectBench Compiler (abc) [1]. Validating this work will primarily focus on measuring time/memory
performance, as well as the number of false positives (i.e. precision), using existing realistic-sized AOP
applications. This validation is done both for the algorithm on the system in its entirety, as well as on
large sets of random, though realistic, changes on the system to validate incremental performance.

Design by contract - The second perspective in tackling obliviousness is found in the area of
design by contract. The aim here is to constrain aspects such that aspects are still allowed to interact,
but to ensure that harmful interactions cannot occur. To accomplish this goal we have studied how
contracts of advice interact with other contracts in the system [4]. We showed that, if an advice adheres
to the so-called �advice substitution principle�, it will not violate the contracts of other components.
As a consequence, the interactions caused by advice will not cause any undesired behaviour elsewhere.
This advice substitution principle is quite similar to Liskov substitution: Where overriding methods
should take into account the contracts of the overridden method, an advice should take into account
the contracts of those points during the execution that it intercepts. A tool, built using aspects, is
also provided that is able to dynamically enforce the advice substitution principle on AspectJ [2]
applications. If a contract is broken, this tool can as well correctly determine who is to blame, based
on Liskov and advice substitution.

Combining data-�ow analysis with contracts - To meet the end goal of detecting undesired
interactions caused by aspects, the work in data-�ow analysis and design by contract is to be combined:
Our data-�ow analysis is able to detect the interactions caused by aspects. This information by itself is
however not su�cient to tell desired interactions from undesired ones. On the other hand, the advice
substitution principle can constrain advice such that it can only perform harmless interactions. If
an advice would however violate the principle, we would like to identify which interaction(s) exactly
is/are responsible for this violation. These observations already hint at how the work in both areas
can be combined, which boils down to answering the following question: Given an interaction caused
by an aspect, will this interaction lead to a contract being broken? That is, assuming this contract
was satis�ed in the absence of that aspect. Validating the answer to this question, which may be a
static or a dynamic technique (or a combination of both), leads back to evaluating how quick, precise
and easy-to-understand the approach is. This can be done by precisely specifying which cases the
approach is or is not able to handle, as well as by measuring performance and precision metrics on a
realistic-sized aspect-oriented application that is augmented with contracts.



References

1. Pavel Avgustinov, Aske Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták, Ond°ej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc : An extensible AspectJ compiler. In
Awais Rashid and Mehmet Aksit, editors, Transactions on Aspect-Oriented Software Development I, volume
3880 of Lecture Notes in Computer Science, pages 293�334. Springer Berlin / Heidelberg, 2006.

2. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of AspectJ.
In J. Lindskov Knudsen, editor, Proceedings European Conference on Object-Oriented Programming 2001,
volume 2072 of LNCS, page 327�353. Springer-Verlag, 2001.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In M. Aksit and S. Matsuoka, editors, ECOOP '97: Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, page 220�242. Springer, 1997.

4. Tim Molderez and Dirk Janssens. Design by contract for aspects, by aspects. In 11th Workshop on Foun-
dations of Aspect-Oriented Languages (FOAL), co-located with AOSD 2012, Potsdam, Germany, 2012.


