

ASP.NET MVC Web-Tier

Introduction
Codagen® Technology Accelerators™ consist of pre-built transformation templates and
UML™ profiles that are ready to use in your development projects. Each Accelerator
includes an example that illustrates how you can use Codagen Architect™ to transform a
platform-independent model (PIM) into a platform-specific model that represents the
source code—a “code PSM.”

Purpose
The ASP.NET MVC Web-Tier Technology Accelerator uses Codagen Architect to map a
UML platform-independent model (PIM) into the web-tier of a web application following a
MVC approach that is targeted toward ASP.NET.

Compatibility
This is Version 1.1 of the Technology Accelerator. It requires Codagen Architect Version
3.0 Service Release 2.

What’s New in This Technology Accelerator?
Version 1.1 uses object flows to make the link between the web page classes in the web
page class diagram and activities that represent those same pages in the web page
navigation activity diagram.

About This User Guide
This intention of this document is to familiarize you with the Technology Accelerator,
provide tips on how to apply it to your own projects, and walk you through an example.

Specifically, the guide addresses the following topics:

• Overview of this Technology Accelerator
• Description of input to and output from the Technology Accelerator:

o Required characteristics of the UML PIM input

o Extension of the PIM (the architecture specification)

o Characteristics of the code PSM output

• Transformation of a PIM to a code PSM: description of the code generation
templates

• Applying the Technology Accelerator to your own projects
• Transformation example:

o Files provided

o Steps to generate executable code

o Other steps, if necessary, to complete the example

Page 1 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Overview
ASP.NET is a part of Microsoft® .NET® platform and is used to create web applications.
It provides the environment and all the necessary support classes to run applications
that can render themselves on down-level or up-level browsers, maintain state between
sessions (even within a web farm), and more. ASP.NET does not dictate how an
application should be built.

Using the UML model (PIM) as input, this Technology Accelerator will create a web
application framework that uses ASP.NET. The scope of the Technology Accelerator is
the presentation tier of a web application. The business and data tiers are outside the
scope and are assumed to be created separately.

To use industry practices and diminish development effort as well as maintain separation
of concerns, we have used the Model-View-Controller (MVC) architectural pattern within
the web presentation tier.

The MVC web presentation tier will delegate to the business tier through two facades.
These facades encapsulate the entire business tier through the view exposed by the
business entities present in the PIM. These business entities do not represent the actual
business tier but rather the view of the business tier as needed by the presentation tier
to accomplish actions invoked by the user and return meaningful information. As long as
the two facades cooperate using the data and actions exposed in the business entities,
connection to any business tier is possible.

Figure 1 displays a high-level activity diagram of an interaction between a user and a
web page built by the Technology Accelerator.

Page 2 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Figure 1. Web Client Interaction with a Web Page

Send
Request

Receive
Reply

PreProcess
Page

PostProcess Page

Render Page

Perform PostBack
Action

[PostBack]

Verify Action Outcome
[!PostBack]

Construct Necessary
Business Entities

Perform
Action

[Redirect to next page]

[else]

Business TierWeb TierWeb Client

Input and Output: A Black-Box View
This section takes a black-box view—it describes the expected input to the Codagen
project and the produced output. Specifically, it describes the nature of the PIM,
including its extensions, and the resulting refined physical model that represents the
source code: the code PSM.
The focus is on what goes in and comes out. A later section describes how the
transformation occurs.

Platform-Independent Model
Any UML model that possesses the following characteristics is suitable for use with this
Technology Accelerator to generate a code PSM.

The model must contain three distinct diagram types:

• Business analysis class diagram
• Web page class diagram
• Web page navigation activity diagram
• Business Class Analysis Diagram

Figure 2 represents an abstraction of the business domain entities required by the web
application. As an example, this model would be a first step toward designing a “façade”
to permit the web application to use a legacy database system.

Page 3 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Figure 2. Business Analysis Class Diagram

ShoppingCart

<<Action>> ConfirmCheckout()
<<Action>> AddItem()

<<Action>> RemoveItem()
<<Action>> ChangeItemQuantity()

<<Action>> RemoveAllItems()
<<Action>> Checkout()

(from businesslayer)

Order

ClientName : String
ClientAddressStreet : String
ClientAddressCity : String

ClientAddressState : String
ClientAddressCountry : String

ClientAddressZIP : String
ClientEmail : String

(from businesslayer)

LineItem

Price : Decimal
Quantity : Integer

(from businesslayer)

Item

Code : String
Description : String
ImageURI : String
Price : Decimal

(from businesslayer)

Inventory

<<Action>> RetrieveAllItems()

(from businesslayer)

+lineItems
0..*0..*

+lineItems

1..*1..*

+item

11

+items
0..*0..*

The classes in the diagram represent entities in the business domain (see the stereotype
business entity).

Each operation of a business entity represents an action that the web application will
perform on the actual business data.

Page 4 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Web Page Class Diagram
Figure 3

Figure 3. Web Page Class Diagram

 represents the web pages in the web application and their links to business
entities.

Template
title : String = "Default Title"

<<Web Page Template>>

Order

ClientName : String
ClientAddressStreet : String
ClientAddressCity : String

ClientAddressState : String
ClientAddressCountry : String

ClientAddressZIP : String
ClientEmail : String

(from businesslayer)

OrderConfirmationPage
title : String = "Order Confirmed"

<<Web Page>>

1+order 1

CheckoutPage
title : String = "Check Out"
ClientName : String
ClientAddressStreet : String
ClientAddressCity : String
ClientAddressState : String
ClientAddressCountry : String
ClientAddressZIP : String
ClientEmail : String

<<Web Page>>

ShoppingCart
(from businesslayer)

1
+cart

1

ShoppingCartPage
title : String = "Your Shopping Cart"

<<Web Page>>

1
+cart
1

Footer
<<Web Page Section>>

Header
<<Web Page Section>>Body

<<Web Page Section>>

1
+footer

1
1

+header
1

1+body 1

ItemDetailPage
title : String = "Product Details"

<<Web Page>>

Item

Code : String
Description : String
ImageURI : String
Price : Decimal

(from businesslayer)

1+item 1

Inventory

<<Action>> RetrieveAllItems()

(from businesslayer)

0..*

+items

0..*

CatalogPage
title : String = "Product Catalog"

<<Web Page>>

0..1

+inventory

0..1

• Each web page in the application is represented as a class (see the stereotype

Web Page).
• Web pages that share common layout and other characteristics can be

modeled as subclasses of a web page template (see the stereotype Web Page
Template).

• Character strings to be inserted into a template are modeled as String
attributes of the web template base class. The attributes’ initial values
represent the values displayed in the page. Web page classes may override
these attributes to specify the value they require.

• Areas of a page to be inserted into a template are modeled as page sections
linked to the web page template by navigable associations (see the
stereotype Web Page Section). The special section identified as the “body”
represents the area where the contents derived from the sub-class web pages
are displayed.

• Each web page that displays business entity-related information can indicate
this dependency in the diagram with an association relationship between the
web page and the business entity from the Business Analysis Class Diagram.

• Web page form fields that do not come from the business entities may be
modeled by attributes or associations of the web page class.

Page 5 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Web Page Navigation Activity Diagram
Figure 4 represents the possible web page navigations in the web application.

Figure 4. Web Page Navigation Activity Diagram

Shop

ChangeItemQuantity ^ShoppingCart.ChangeItemQuantity
RemoveItem ^ShoppingCart.RemoveItem

RemoveAllItems ^ShoppingCart.RemoveAllItems

BrowseCatalog
ReturnToShoppingCart

AddItem ^ShoppingCart.AddItem

ViewCatalog

ViewAllItems Înventory.RetrieveAllItems

ViewOrderConfirmation

ReturnToShoppingCart

ViewItemDetailReturnToShoppingCart

ViewItemDetail

EnterCheckout
Information

Confirm ^ShoppingCart
.ConfirmCheckout

Cancel

Checkout ^ShoppingCart.Checkout

[canContinue]

[else]

checkoutPage :
CheckoutPage

itemDetailPage :
ItemDetailPageshoppingCartPage :

ShoppingCartPage

catalogPage :
CatalogPage

orderConfirmationPage :
OrderConfirmationPage

• Each “Web Page” class in the Web Page Class Diagram must be represented

by an activity in the activity diagram. The activity name does not have to be
the same as the web page class name.

• To link an activity that represents a web page to the corresponding “Web
Page” class, the activity must have an outgoing object flow that terminates in
an object that is an instance of the web page class.

• Each transition between web pages (activities) must indicate the request
(event) that initiates this transition. If the transition invokes an action on the
server, this is represented by a “send event” on the transition. Each “send
event” must correspond to an “Action” operation in the Business Analysis
Class Diagram.

• Each transition may also contain a guard condition to support conditional
transitions between web pages (using the “branch” entity for multiple
transitions that differ only in the guard condition). The guard condition uses
either the current state of the web application or the result of the “send
event,” as we assume that all web activities are performed on the server side
for now.

Page 6 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Architecture Specification
The following table lists the properties that extend the PIM and their associated model
elements. These model extensions are defined in the architecture specification file “CTA
WebApplication.csf.”

Layer/Issue/Property UML Element Description

Presentation Issues related to presentation layer.

Page Navigation Properties related to page navigation.

isNavigation StateMachine True for any state machine that
represents web page navigation. All
other state machines are ignored for
the purposes of generating navigation
code.

Page Composition Properties related to the make-up of
pages.

isPageParameter Association
Attribute

Indicates that the association or
attribute is a replacement parameter
for a page template. For an attribute,
the attribute name is the parameter
name and the initial value is the
replacement string. For an association,
the target role name is the parameter
name and the target class is the Web
Page Section to be inserted. When
used in a Web Page Template instead
of a Web Page, the attribute or
association defines default values that
may be overridden by Web Pages that
use the template.

isPageSection Class Indicates that the class is a Web Page
Section.

isPage Class Indicates that the class is a Web Page.
Note that a Web Page Section named
"body" is automatically generated for
each Web Page.

isPageTemplate Class Indicates that the class is a Web Page
Template. Templates define the layout
of Web Pages and contain parameters
that can be replaced by specific strings
or Web Page Sections for each Web
Page.

isPageTemplateTitle Attribute Indicates that the attribute represents
the page title. Used only in the page
template class to indicate which
parameter(s) should be inserted into
the web page title.

isDefaultTemplate Class Indicates that the template is the
default template for all web pages.

Page 7 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Layer/Issue/Property UML Element Description

isBodySection Class Indicates a page section that serves as
a placeholder in the template for the
web page body. This section will not
be generated as a JSP. Instead, each
Web Page class will generate a page
section that will be inserted into the
template at the point occupied by this
section in the template. A body section
serves only to define two things—the
"key" that identifies the body section
in the template, and "order" value that
positions the body in the sequence of
sections in the template.

Page Layout Properties related to the layout of
pages.

webControlType Association
Attribute

Type of web control to be used when
the attribute or association is
displayed in an editing form.
<undefined> means it will not be
displayed. FixedText means it will be
displayed as ordinary text, not a field.
Note that associations are displayed
only if the target is navigable.

width Association
Attribute

Field width in characters Applies to
TextBox (size attribute).

maxLength Association
Attribute

Maximum # characters accepted by
the field. Applies to TextBox.

order Attribute
Association

Specifies the order of fields in the web
page. Note that attributes and
associations come out in separate
sequences, even if you try to
interleave them by their order values.

isName Attribute Specifies the fields of an object that
constitute a meaningful name for the
object. For example, for a Person
object, it could be firstName and
lastName. For a Product object it could
be productCode. Used when displaying
an association to the object.

includeTarget Role How to handle target end of navigable
association from Web Page.
“forDisplay” target object(s) will be
displayed in page. “forEdit” target
object will be edited in page. Requires
max. target cardinality = 1.

includeTargetDetails Role If when including the target end of an
association in a Web Page (see
includeTarget), you can also display a
table of detail records linked to the

Page 8 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Layer/Issue/Property UML Element Description

target. The target must have max.
cardinality = 1. Navigable associations
from the target will be displayed.

webEventType Transition Specifies the type of web page
element that triggers the transition: a
button in the form, a link at the
bottom of the page, or a link on an
individual item in a table.

CSS Properties related to Cascading Style
Sheets.

Stylesheet Model Stylesheet name. Leading '/' and
context root will be provided by
generated page.

Data Heading Model CSS class name for headings for each
type of data object.

Data Column Label Model CSS class name for column labels in
data tables.

Data Row Label Model CSS class name for row labels in data
tables.

Data Number Cell Model CSS class name for data cells
containing numbers in data tables.

Data Text Cell Model CSS class name for data cells
containing text in data tables.

Form Label Model CSS class name for form field labels.
Form Mandatory Flag Model CSS class name for flag that indicates

a mandatory field in a form.
Form Number Field Model CSS class name for form number input

fields.
Form Text Field Model CSS class name for form text input

fields.
Section Heading Model CSS class name for JSP Section

Heading.
Validation Properties related to input validation.

isMandatory Attribute Indicates that this input field is
mandatory.

Business
Business Entities

isBusinessEntity Class
Parameter
Attribute

Used to identify objects that have
sense from the MVC View and
Controller layers. They capture
information that must be present and
generable from the MVC Model.

isAction Operation Identifies an Action that can be
invoked on the MVC.

isActionOutputParam
eter

Parameter Describes data that are returned after
an Action is performed.

Technology Accelerator Issues closely related to the

Page 9 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Layer/Issue/Property UML Element Description

technology accelerator
implementations.

Main Used to group all main templates that
drive the generation process.

Support Used to group all templates that are
not directly executed but are executed
from the main templates.

JSP WAF Technology-dependent values for the
JSP WAF Technology Accelerator.

defaultLocale Model Default locale for the web application.

As a convenience, the following stereotypes are supported by the architecture
specification. Use of these stereotypes is optional, as you can achieve the same effect by
setting the corresponding properties.

Stereotype UML Element Description
Action Operation Identifies operations that correspond to

Controller Actions.
 isAction = True

business entity Class Identifies business entity classes.
 isBusinessEntity = True.

Web Activity StateMachine Identifies an Activity Diagram that models
web navigation.
 isNavigation = True.

Web Page Class Identifies a class that models a web page.
 isPage = True.
 isPageSection = True.

Web Page Section Class Identifies a class that models a web page
section.
 isPageSection = True.

Web Page Template Class Identifies a class that models a web page
template.
 isPageTemplate = True.

Page 10 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Output: The Code PSM
This section describes the main elements of the MVC web application that are produced
by the Technology Accelerator for a given PIM. illustrates these elements. Figure 5

Figure 5. MVC Application and Relationships

The ASP.NET paradigm does not
This MVC pattern represents centralize the processing of user
the presentation tier of an requests but handles them
application. ASP.NET is used directly through the target ASPX

here only. web page. The target ASPX Web
Page must hence delegate action
invocation to the Controller.

View
Controller

The View interrogates
the Model to retrieve Controllers invoke
data for rendering. In this actions on the
implementation, the Model to modify
Model does not notify its state. Model the View that its state
has changed.

This Technology Accelerator does not create
the Model; it merely creates, through two
packages (Model.Keys and Model.Values), a
facade to the Model. The business tier is
implemented elsewhere, and the facade
interfaces with the business tier to perform
actions or access data.

The MVC is separated into three sections:

• Model
• Controller
• View

Page 11 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

The Model
The Model represents the business tier. As the Technology Accelerator does not generate
the business tier, the Model contains two packages, Model.Keys and Model.Values, which
represent the view of the business tier that is needed for the application to function
correctly. illustrates Model.Keys, and illustrates Model.Values. Figure 6

Figure 6. The Model.Keys Package

Figure 7

Value
ObjectID : String

BusinessEntityXXX
Attribute1 : Integer
Attribute2 : String
Attribute3 : AnotherBusinessEntityDerivedFromValue

This object
represents a
business entity.
Each business entity
has an ObjectID.

For each business entity in the
PIM, an object derived from Value
will be created.

This object will contain public
attributes for the data it
represents and will have
associations to other business
entities rendered as attributes or
collections.

Page 12 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Figure 7. The Model.Values Package

This object represents a
key for accessing or
identifying a business
entity. Keys don't have Key
data elements and provide ObjectID : String
the means for retrieving or
referencing the associated
business entity.

BusinessEntityXXXKey

For each business entity
in the PIM, an object
derived from Key will be
created.

The Controller
The Controller (Figure 8) represents the actions that can be performed on the Model and
how to invoke them. The Controller contains an object called ModelFacade, which
contains one static operation for each action. Each operation contains a Code Pocket™,
which should be filled by a developer, to orchestrate elements on the business tier to
achieve the desired result.

Page 13 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Figure 8. The MVC Controller

Base class for the controller
associated to a particular web
page. Every web page has a View
PageController. (from PSM)

ModelFacade
PageController

Action1()
Delegates Action2()

Action3()

XXXPage
For each action

Controller permissible on a business
entity, a corresponding Action1() operation will be created
in this class.

For each web page, an
object deriving from
PageController will be Ouput Data
created. It will have one

Input Data operation per action, which
is invokable on that page.
The actual work of the
action is delegated to the
ModelFacade object.

Base class used
to receive data
from an action.

Base class
used to ActionResult

ActionData transfer data to
an action.

XXXActionResult
XXXActionData Attribute1 : Integer

BusinessElement1 : BusinessElement1Key Attribute1 : Integer
BusinessElement1 : BusinessElement1Key

For each action, an ActionResult For each action, an ActionData derived derived class will be created. The class will be created. The data it holds data it holds are the output are the input parameters of the action. parameters of the action. References to business entities are References to business entities are handled through keys. handled through keys.

Page 14 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

The View
The View (Figure 9) shows the elements that interface with ASP.NET to provide the
presentation (GUI) to the user. The user perceives the system as a series of web pages.
Some pages can be protected while others cannot. One of the pages is the starting point
of the application. Although the client can request any page manually, the page
preprocess mechanism must be prepared to handle this case. The MVC View uses HTTP
client redirections to perform page changing. This is a bit slower than changing pages on
the server but maintains a cleaner application state as viewed by the web browser, as its
page cache, backward-forward navigation, and history mechanisms remain coherent.

The View contains an object called ModelFactory, which contains one static operation for
each business entity. Each operation contains a Code Pocket™, which should be filled by
a developer, to construct a business entity with data that comes from the business tier.

The View contains one object for each web page. Each web page object contains a link
to a PageController to invoke individual actions. Each web page object also contains
getters for the different business entities that the page has access to (getters delegate
to ModelFactory). Finally, each web page object contains event handlers that correspond
to the transitions in the navigation activity diagram. These event handlers invoke the
action and act upon the result to cause navigation to the proper page.

Page 15 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Figure 9. The MVC View

Web pages that are accessible
via the Web must derive from this
object. It is provided by ASP.NET

From PIM to Code PSM: Inside the Black Box
This section describes the principal code generation templates in the Technology
Accelerator—the mechanisms that transform the PIM into the web-tier of a MVC-based
ASP.NET web application PSM. The focus is on how the PIM is transformed into source
code.

System.Web.UI.Page
<<ASP.NET>> and provides most of the ASP.

NET functionality including
viewstate, state management,
caching, authentication, and
more.

Each page in the PIM
generates a class
that derives from

XXXPage System.Web.UI.Page. +myController PageController Each page has a
(from Controller) GetBusinessEntity1() myController attribute

1 1 OnEvent1() that will link it to its
OnEvent2() corresponding

controller for invoking
actions.

The getters in the
page simply

The event handlers are delegate to
called by unique code ModelFactory,
to invoke the action, Delegates enforcing which
verify its result, and business entities
navigate to the are available from
corresponding page specific pages
automatically. as modeled in

the PIM.

For each business entity,
a corresponding operation ModelFactory is created in this class.
Each operation will include

GetBusinessEntity1() unique code to create the
GetBusinessEntity2() specified business entity.

Page 16 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Template Name Type Description

Main Composite Simply serves to start the Technology
Accelerator.

ASP.NET MVC Codagen
Technology Accelerator

Composite Actually drives the Technology Accelerator. Logs
the version and the Technology Accelerator
name and then coordinates the creation of all
necessary elements.

MVC Model Composite Creates everything that is related to the Model
part of the MVC.

MVC View Composite Creates everything that is related to the View
part of the MVC.

MVC Controller Composite Creates everything that is related to the
Controller part of the MVC.

ASP.NET Specific Composite Creates everything that is specific to ASP.NET.
MVC View \ Create
Business Entities Getters

Composite For each Business Entity that can be accessed by
a web page, creates the corresponding getter as
well as the associated ASPX testing code.

MVC Controller \ Fill
ModelFacade and Create
ActionData and
ActionResults

Composite For each action, creates the input and output
structures as well as the corresponding
operation in the ModelFacade class, which must
be filled by unique code to modify the state of
the business tier.

MVC Model \ Create
Model Keys and Values

Composite Creates the facade for the MVC Model, which
corresponds to an abstraction of the business
tier.

MVC View \ Fill
ModelFactory

Composite For each Business Entity, creates a
corresponding operation that must be filled by
unique code to create the corresponding Value
derived object according to a Key.

MVC View \ Create
CodeBehinds

Composite Creates, for every web page, the CodeBehind file
and its PageController attribute.

Also create its navigation links.

ASP.NET Specific \
Create ASPXs

Composite For each web page, creates the ASPX file.

MVC View \ Create
Navigation Events

Composite Creates, for each transition a web page can
have, an event handler that will perform action
invocation, results checking, and page
navigation.

Also creates the test ASPX file that associates
the actions testing block to a web page.

MVC Controller \ Create
Page Controllers

Composite Creates a PageController descendent for each
web page, and inserts within it the relevant
action invocation operations.

Page 17 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Applying the Technology Accelerator to Your Own Projects
Typically, you will use the supplied projects as the starting point for your own ASP.NET
MVC Web-Tier generation projects.

The best way to do this is to create a new C# or Visual Basic .NET project, and import
the Technology Accelerator into your project.

Required Files
You will need the following files:

File Description
Either CTA ASP.NET MVC.gpcs Codagen Architect project for C#
Or CTA ASP.NET MVC.gpvb Codagen Architect project for VB .NET
WebApplication.csf Codagen Architect architecture specification
ASP.NET MVC Web Application.pdf This document

Configure the .NET Code Integrators
Note that to integrate code from Codagen Architect using the .NET Code Integrators to
an “empty web project,” you must take special steps to configure Microsoft IIS and
Microsoft VisualStudio.NET correctly on your development station.

The following steps assume that your files will be generated in a directory named
c:\rd\shoppingcart and that the URL to access it will be http://localhost/shoppingcart.

1. Verify that Microsoft IIS is correctly installed and running on your station.
2. Verify that Microsoft ASP.NET is also installed and configured. It should have had

been installed automatically by Microsoft VisualStudio.NET if Microsoft IIS was
already installed.

3. Create the c:\rd\shoppingcart directory, into which Codagen Architect will
generate all its files.

4. Share the c:\rd\shoppingcart directory as an IIS Virtual Directory named
shoppingcart with the following permissions: read, write, and directory listing.
Note that the directory name and its associated virtual directory name must be
the same.

5. Make sure the directories NTFS permissions (if applicable) are set correctly.
Invalid configuration could lead to a debugging problem or file-viewing problem
that you will have to resolve manually.

6. Set Codagen Architect project properties to the following:

Output folder c:\rd\shoppingcart
Solution file name shoppingcart.sln
Project file name http://localhost/shoppingcart/shoppingcart

7. After the initial code generation, if VB .NET was targeted, before you include the

ASPX files in the VS.NET project, blank out the root namespace that is found in
the VS.NET project properties.

Page 18 of 22

http://localhost/shoppingcart

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Create and Develop the Project
The best way to proceed is to create a new C# or VB .NET project, and import the
Technology Accelerator into your project.

1. Create your own architecture specification by copying or importing the file
WebApplication.csf. You must do this to avoid losing the references to the tagged
values when you import the templates

2. Create a Codagen Architect C# or VB project, and import the main template.
Importing this template will automatically import all the other templates it uses

3. Adapt the imported templates—renaming them if desired, deleting any that you
no longer need, and revising their logic to suit your needs. Change the conditions
to select the classes from which you want to generate source code.

4. Add your own templates to generate additional code for your application and
environment

A Working Example
To illustrate how to use this Technology Accelerator in your development projects, we
have provided an example of an application-specific PSM (code PSM) for you to generate
including the necessary files and step-by-step instructions. This Technology Accelerator
uses a simple shopping cart example.

The ShoppingCart business entity gathers the user’s current purchases. The user can
add Items from the Inventory to the ShoppingCart. When a ShoppingCart is purchased,
an Order is created out of it, and the ShoppingCart is deleted.

Web pages are created to display the contents of one or more of these business entities.
In addition, navigation between the web pages is made possible by events that might
trigger actions that will act upon these business entities.

Files Included in the Example
So that you can generate and compile executable code, the following files are included:

Rose\ShoppingCart.mdl The Rational Rose model for the shopping cart example
Example\CS If your target language is C#, the unique files that you must

copy to the generation directory to make the shopping cart
example fully functional

Example\VBNET If the target language is VB.NET, the unique files that you
must copy to the generation directory to make the shopping
cart example fully functional

Generate the Example
This section describes the additional steps required to generate the PSM model, compile
the resulting code, and execute the sample application. To assist you in these steps, the
example includes a Rose model of the shopping cart. This will permit the generation of
all structural code and a sample GUI that allows you to test the sample application.

Also included is a simple business tier linked to a data tier. The data tier is not persisted
to persistent storage; all of the data live in the ASP.NET process. The inventory, upon
initial usage, randomly creates 100 items, whose codes are named “itemXXX,” where
XXX is the item number. The business tier validates data and handles errors but is not

Page 19 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

transacted, that is, its state is not rolled-back if an unhandled error is fired that might
leave the data tier in an unknown state.

To generate the code PSM, follow these steps:

1. Open the Rose model (Rose\ShoppingCart.mdl)
2. Right-click on the shoppingcart package, and launch

Codagen Architect>Implement.
3. Open either the CTA ASP.NET MVC.gpcs or the CTA ASP.NET MVC.gpvb project.
4. Configure the project as described in the section "Generate the Example" (output

directory and so forth).

5. To generate the code PSM, click Generate All .

Enhance the Generated Code
You can test the shopping cart without adding any code at all (see the next sections),
but the system will throw exceptions where critical Code Pockets™ should be populated.
For the shopping cart to become functional, simply add the unique code files to the
generation directory (replace existing files) as mentioned in the following sections.

Compile the Code
Code generated by the Technology Accelerator should not encounter problems when
compiling. If it does, this might be due to the usage of types that are not referenced
automatically by the project.

1. For correct compilation to occur, add references to the following assemblies:
System and System.Web.

2. Then link the ASPX files to the project.
When added to the project, they will automatically become associated to their
code behind files.

3. To use the unique code files, copy them to the generation directory, replacing
any existing files. Then add the new files to the project.

Test the Code
The generated sample user interface is easy to use and simply demonstrates how to use
the generated code. It is intended for testing purposes only. The example will create
enough of the GUI for you to test two things:

1. To test the actions of a specific page, navigate to that page. Provide the correct
input data, and press invoke.
The result of the action will be displayed.

2. To test the code to retrieve a business entity, navigate to a specific page. Once
the entity is retrieved, its ToString() operation is called to display a textual
description. By default, this operation displays the complete name of the object.
This behavior can be overloaded depending on your business entities.

In both cases, typing null (in a C# project) or Nothing (in a VB.NET project) will
initialize the corresponding variable to no references.

If you wish to create a user-friendly custom GUI, simply copy the unique code included
with the Technology Accelerator This will allow you to use the shopping cart as if it were
a real, production-quality web site.

Page 20 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

References
Pattern-Oriented Software Architecture–A System of Patterns, pp.125-143, Bushmann et
al., Wiley 1996

Page 21 of 22

Codagen Technology Accelerator — ASP.NET MVC Web-Tier

Page 22 of 22

Copyright and Trademark Information
Copyright © 1999-2003 Codagen Technologies Corp.

The software described in this document is furnished under a license agreement or non-
disclosure agreement. The software may be used or copied only in accordance with the
terms of those agreements. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means electronic or mechanical,
including photocopying and recording for any purpose other than the purchaser’s
personal use, without the prior written permission of Codagen Technologies Corp.

Codagen Technologies Corp.
2075 University St., Suite 1020
Montreal (Quebec)
Canada H3A 2L1

Codagen® and Generation Template® are registered trademarks of Codagen
Technologies Corp. Architect, the Codagen logo and design, and the terms White Box,
Code Pocket, and Technology Accelerator are service marks or trademarks (™) of
Codagen Technologies Corp.

Rational® and Rational Rose® are registered trademarks of International Business
Machines Corporation and Rational Software Corporation, in the United States, other
countries, or both.

UML is a trademark of Object Management Group, Inc. in the United States and/or other
countries.

Visual Studio, C#, Visual Basic, and .NET are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective holders.

	Introduction
	Purpose
	Compatibility
	What’s New in This Technology Accelerator?
	About This User Guide
	Overview

	Input and Output: A Black-Box View
	Platform-Independent Model
	Web Page Class Diagram
	Web Page Navigation Activity Diagram

	Architecture Specification
	Output: The Code PSM
	The Model
	The Controller
	The View

	From PIM to Code PSM: Inside the Black Box
	Applying the Technology Accelerator to Your Own Projects
	Required Files
	Configure the .NET Code Integrators
	Create and Develop the Project

	A Working Example
	Files Included in the Example
	Generate the Example
	Enhance the Generated Code
	Compile the Code
	Test the Code
	References
	Copyright and Trademark Information

