

 Statechart to C++ Mapping
Introduction

Goal
This Technology Accelerator™ illustrates the use of Codagen Architect to map UML statechart
diagrams into ANSI C++ source code.

Compatibility
This Codagen Technology Accelerator™ requires Codagen Architect version 3.0, Service
Release1.

Overview
Reactive systems are best modeled with statecharts diagrams since the main focus of these
diagrams is on the possible events that the system can respond to, and how the response is
carried out. With these diagrams, we can visualize the behavior that the system will exhibit in
response to a particular event according to its current state.

An interesting challenge is the transformation of these statecharts into manageable source code.
Several patterns for mapping these statecharts into actual code have been published. In this
Technology Accelerator™, we will use the “State” design pattern (from Gamma et al.) to derive
ANSI C++ code from the model’s class and state diagrams. The basic principle behind this
pattern is that an object’s behavior will change according to its current state, giving the
appearance that its class has changed.

For each class possessing state diagrams (hereafter called a state-based class), the following
subsystem is produced:
• a “context class” representing the subsystem’s entry point, delegating all requests to the

current “state class”
• an abstract “state interface” that defines the methods that each “state class” must implement
• a “ state class” for each possible state that the state-based class can be in, encapsulating a

specific behavior of this state-based class

To illustrate the mapping from statechart diagrams to ANSI C++ code, this Technology
Accelerator™ features a temperature control system that is reactive to the following external
events: user commands (from a control panel, for example) and changes in the ambient
temperature. This system is modeled as a collection of classes containing state diagrams to
illustrate their state dependent behavior.

Page 1 of 7

Technology Accelerator™: Statechart to C++ Mapping

Application Model
This section takes a black-box approach: it describes the project’s expected input and the
produced output (the focus is on the “what”). In other words, it describes the nature of the
platform-independent model (PIM) and the platform-dependent model (PSM).

Page 2 of 7

Technology Accelerator™: Statechart to C++ Mapping

Platform-Independent Model

AnotherModelClass

anotherOperation()

ModelClass
anAttribute

anOperation() +theOtherClass

State-based
class

State1

State2

anOperation t̂heOtherClass.anotherOperation

Any model that possesses the following characteristics can be used as an input for the
Technology Accelerator™ Architect project:
• Each association must have a role name for each navigable end.
• This role name must be used as the target name in the send events
• Each send event to a specific target class must correspond to a method in the target class

interface.
• Each trigger on a transition in a class statechart must correspond to a method in the class

interface.
• Each state in a class statechart must have a transition for each possible trigger (all methods

in the class interface).

Architecture Specification
The following table lists the properties and the associated UML model elements, defined in the
“HeatingSystem.csf” architecture specification file.

Layer/Issue/Property UML

Element
Description

Design Pattern Generic Design Patterns
State Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.
isStateBased Class Defines which class will have its behavior implemented

by multiple state classes, one for each state that the class
may be in.

Page 3 of 7

Technology Accelerator™: Statechart to C++ Mapping

Platform-Specific Model

ModelClass_State_State1 ModelClass_State_State2

ModelClass_StateInterface
<<static>> anAttribute
<<static>> *theOtherClass

<<virtual>> anOperation()
<<virtual>> controlLoop()

ModelClass
anAttribute
*theOtherClass

anOperation()

+stateTable

+currentState

anOperation is defined as
"currentState->anOperation()"

Here are the main characteristics of the PSM produced from the given PIM:

For each class in the PIM (both state-based and non-state based):
• Create a new class with the same name as the PIM class, containing the attributes and

operations of the PIM class. Also add an attribute for each of the PIM class’s outgoing
associations.

For each state-based class in the PIM (classes with statecharts):
• Create the pattern’s State Interface (“ModelClass_StateInterface”). It contains the same

attributes and operations as the PIM state-based class. The attributes are declared as static
so that the context of the state-based class is shared among all of its state classes (described
below). The operations are declared as virtual so that each state class can override it to
implement its own specific behavior.

• Add a reference to the State Interface in the created state-based class, and for each of the
operations in the state-based class interface, forward the request to the appropriate method
in the State Interface class.

For each state in a PIM state-based class:
• Create a “state class” that inherits from the State Interface and add a reference to it in the

state-based class.
• For each triggered outgoing transition, add a method to the state class (these methods

should match the State Interface methods), along with support for the guard, action and send
event of the transition.

• Create a control loop method to handle the logic (guards, actions and send events) for all un-
triggered transitions.

• Finally, create a constructor in the state-based class that will instantiate all state classes and
the logic required to manage the transition between them.

Code Generation Process
This section takes a white-box approach: it describes the project templates (the focus is on the
“how”).

Code Generation Templates
This table contains the important templates for creating the ANSI C++ PSM from the given PIM:

Page 4 of 7

Technology Accelerator™: Statechart to C++ Mapping

Template Name Type Description
Create Business Class Composite This composite template creates a C++ class for every

classifier in the model.
The created class will contain the model class attributes
and methods.
It will also contain a reference attribute for each
association target (for the model class outgoing
associations).

Create State Enumeration Class For every state-based classifier, create an enumeration
that contains an enumerator for each possible state in the
classifier's state machines.

Create State Interface for
state-based class

Composite This composite template will create a State Interface for
each state-based class containing the signatures of every
method plus a "control loop" method.

Create Classes from States Composite For each state in a classifier's statecharts, create a class
that inherits the State Interface.

Create State reference Composite Create references to the state classes within the state-
based class.

Create State Table Composite Create a state table in the context classes large enough to
hold the references to the state classes. This table will be
used for state transitions.

State-Based Class
Constructor

Method This constructor will instantiate all possible state classes
and inserts them into the state transition table.

Create Attributes
Getters/Setters in State-
Based Class

Composite All getter/setters in the state-based class are forwarded to
the current state.

Create method from state
transition

Method Called by “Create Classes from States”. Create a method
from the trigger on a state's outgoing transition.

Example Model
The temperature control system in this example is composed of four entities: the thermostat, the
furnace relay, the air conditioner relay and a thermometer.

Of these entities, it is the thermostat that is of particular interest. It is this entity that is the central
“controller” of the system. It constantly monitors the current temperature (from the thermometer)
and activates/deactivates the furnace and air conditioner relays in order to bring the ambient
temperature up/down to the target temperature. The thermostat also listens for user commands
which permit to start and stop the whole temperature control system and to change the target
temperature.

Note: the system’s air conditioner and furnace are directly linked to the thermometer since we
choose not to model the ambient air, which is normally found between them.

Generating the Example
This section describes the additional steps required to generate the PSM model, compile the
resulting code, and execute the example. To assist in these steps, the example provides a Rose
model of the temperature control system and a “main” C++ file (TemperatureControlSystem.cpp)
that mimics a control panel for controlling the temperature control system.

Files provided
Here is a list of files included in this Technology Accelerator™:

 Temperature Control System.pdf – this document

Page 5 of 7

Technology Accelerator™: Statechart to C++ Mapping

 TemperatureControl.mdl – the Rose model for the temperature control system
 StatePattern.mdl – the Rose model that explains the project templates
 HeatingSystem.csf – Codagen Architect architecture specification file
 TemperatureControlSystem.gpcpp – Architect project templates
 src\TemperatureControlSystem.cpp – Main function of the test application

PSM generation
1. Open the provided Rose model: TemperatureControl.mdl
2. From the TemperatureControlSystem package in the model, invoke Codagen Architect –

Implement
3. Generate code using every template (Generate All command)

Code to add manually
Add the following two lines of code (these lines are required for the heating/cooling elements to
affect the “ambient air”):
1. In the code pocket of the “controlLoop” method in the file

TemperatureControlSystem_AirConditionerRelay_State_On.cpp, add the following:
 theThermometer->currentTemp--;

2. In the code pocket of the “controlLoop” method in the file
TemperatureControlSystem_FurnaceRelay_State_On.cpp, add the following:
 theThermometer->currentTemp++;

Code compilation
1. Using your favorite C++ compiler, create a project containing all the generated source code

along with the provided “main” C++ file (TemperatureControlSystem.cpp).
2. Compile your new project

Example testing
The Temperature Control System is tested using a prompt-based application (the “main” function
is provided in “TemperatureControlSystem.cpp”). This application displays the current and target
temperatures, along with a short menu for controlling the system. With this menu, you can
change the current and target temperatures, turn the system on or off and activate a cycle of the
control loops. Each control loop cycle will affect the temperature by one degree, if required.

Copyright and Trademark Information
The software described in this document is furnished under a license agreement or non-
disclosure agreement. The software may be used or copied only in accordance with the terms of
those agreements. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means electronic or mechanical, including photocopying and
recording for any purpose other than the purchaser’s personal use, without the prior written
permission of Codagen Technologies Corp.

Codagen Technologies Corp.
2075 University St., Suite 1020
Montreal (Quebec)
Canada H3A 2L1

Codagen® and Generation Template® are registered trademarks of Codagen Technologies
Corp. The Codagen logo and design and the terms White Box, Code Pocket, and Technology
Accelerator are service marks or trademarks (™) of Codagen Technologies Corp.

ANSI is a registered trademark of the American National Standards Institute.

Page 6 of 7

Technology Accelerator™: Statechart to C++ Mapping

Page 7 of 7

Borland, Together, and ControlCenter are trademarks or registered trademarks of Borland
Software Corporation.

IBM is a trademark of the IBM Corporation in the United States or other countries or both.

Java is a trademark of Sun Microsystems, Inc.

Rational and Rational Rose are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries.

Visual Studio, C#, Visual Basic, Visual Modeler, .NET, Windows NT, Windows 2000, Windows
XP, Windows 98 and Visio are trademarks or registered trademarks of Microsoft Corporation.

All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective holders.

©1999-2003 Codagen Technologies Corp.

	Introduction
	Goal
	Compatibility
	Overview

	Application Model
	Platform-Independent Model
	Architecture Specification
	Platform-Specific Model

	Code Generation Process
	Code Generation Templates

	Example Model
	Generating the Example
	Files provided
	PSM generation
	Code to add manually
	Code compilation
	Example testing

	Copyright and Trademark Information

