Theory of Modelling and Simulation

Ernesto Posse

February 11, 2005

Outline

$oldsymbol{X}$ Motivation

★ Hierarchies of System Specification

✗ System morphisms

- **X** System morphisms at the same level of specification
- **X** System morphisms between different levels of specification
- **★** Analysis and verification
- $\pmb{\mathsf{X}}$ Category Theory: the meta-theory

Motivation

- Modelling: description of a (dynamic) system
- Simulation: generation of possible behaviours of a system given a model
- Analysis: reasoning about a system's behaviour

2

Motivation

- Formalisms for
 - modelling: DEVS, Statecharts, Petri Nets, ODEs, PDEs, etc.
 - analysis: temporal logics, other logics.
 - simulation: state trajectories
- Theory:
 - Foundation
 - Common framework to explain/describe formalisms involved
 - Tools for analysis: general properties of systems and/or formalisms
 - Basis for (software) tools

MSD

Progress

 \checkmark Motivation

- **★** Hierarchies of System Specification
- **✗** System morphisms
 - **X** System morphisms at the same level of specification
 - $\pmb{\times}$ System morphisms at different levels of specification
- **★** Analysis and verification
- **★** Category Theory: the meta-theory

- Model = system specification
- A model can be given at different levels of *abstraction* or *specification*
- Modelling process (by refinement:) from abstract to concrete

5

- Dynamic systems: time-varying behaviour
- *Time-base*: ordered set (with a few properties.)
- *Signals* (or *trajectories*): functions from the time-base to some set
- *Segment*: function from a time-interval to some set

- A simple hierarchy:
 - Observation frame: inputs and outputs
 - I/O relation
 - State/Transition
 - Network

- A general hierarchy of system specification is not a total order but a partial order
- Different kinds of abstraction relationships:
 - Structural
 - Behavioural
- Fitting multiple formalisms in the hierarchy
- Mapping formalisms into the hierarchy
 - Formalisms semantics
 - Multi-formalism modelling

Progress

 \checkmark Motivation

- ✔ Hierarchies of System Specification
- **✗** System morphisms
 - **X** System morphisms at the same level of specification
 - $\pmb{\times}$ System morphisms at different levels of specification
- $\pmb{\times}$ Analysis and verification
- **★** Category Theory: the meta-theory

System morphisms

- Some questions:
 - Can I plug-in this component in that network?
 - Can I put system A in place of system B and obtain the same behaviour?
 - I want my system to have this I/O relation. Does this system satisfy it?
 - I know system A has this property. Does system B have that property as well?
- Relate different systems

- At the Observation frame level:
 - Same time-base
 - Same input and output sets
 - Same interface

- At the Observation frame level:
 - Equivalent time-base
 - Equivalent input and output sets
 - Equivalent interface

- At the Observation frame level:
 - Compatible time-base
 - Compatible input and output sets
 - Compatible interface
- Existence of a map between
 - The time-bases (speed)
 - The input and output sets
 - The interfaces

- At the I/O relation level
 - Same I/O relation
 - Containment
 - Bijection
 - Bijection + transformation

- At the S/T level
 - What does it mean for a state/transition system to behave in the same way as another?
 - The concepts of simulation and bisimulation

- A labelled transition system (LTS) is a tuple (S, L, \rightarrow) where
 - S is a set of states
 - -L is a set of labels (e.g. actions, or conditions)
 - $\rightarrow \subseteq S \times L \times S$ is a transition relation
- $\bullet \ \ {\rm We write} \ p \xrightarrow{a} q \ {\rm to} \ {\rm mean} \ (p,a,q) \in \rightarrow$
- An LTS is not a DFA or NFA

 \bullet A simulation is a binary relation $R \subseteq S \times S$ such that if $(p,q) \in R$ then whenever

$$p \xrightarrow{a} p'$$

then

$$q \xrightarrow{a} q'$$

and

 $(p',q')\in R$

- p and q are similar, written $p \preceq q$ if there is a simulation relation R such that $(p,q) \in R$

• A bisimulation is a binary relation $R \subseteq S \times S$ such that if $(p,q) \in R$ then

— whenever
$$p\xrightarrow{a}p'$$
 then $q\xrightarrow{a}q'$ and $(p',q')\in R$, and

- whenever $q \xrightarrow{a} q'$ then $p \xrightarrow{a} p'$ and $(p',q') \in R$
- p and q are bisimilar, written $p \sim q$ if there is a bisimulation relation R such that $(p,q) \in R$
- $\bullet~$ Note: If $p \preceq q$ and $q \preceq p$ then it is not necessarily the case that $p \sim q$

- $Q_1 \preceq P_1$ because there is a simulation R s.t. $(Q_1, P_1) \in R$
- $R = \{(Q_1, P_1), (Q_2, P_2), (Q_3, P_2), (Q_4, P_3), (Q_5, P_4)\}$

• $Q_1 \preceq P_1$ and $P_1 \preceq Q_1$ but $Q_1 \not\sim P_1$

- At the Network level
 - Matching interfaces
 - Graph-homomorphism

28

Progress

✓ Motivation

- ✔ Hierarchies of System Specification
- ✓ System morphisms
 - \checkmark System morphisms at the same level of specification
 - $\pmb{\times}$ System morphisms at different levels of specification
- **★** Analysis and verification
- **✗** Category Theory: the meta-theory

- Structural
- Behavioural
- Mixed

- Structural
 - Between Observation Frame and Network
 - Between Networks
- Usually given by an homomorphism
- Answers the question:

"Can I plug-in this component in that network?"

- Behavioural
 - Between I/O relation and State/Transition
- Answers the questions:
 - "What is the behaviour of this system?"
 - and
 - "Given this I/O relation, does that system satisfy it?"

• S satisfies IOR

• IOR is implemented by S, S', S'', etc.

System morphisms at different levels of specification

- $IOR(S) \subseteq IOR(S')$ if and only if $S \preceq S'$
- IOR(S) = IOR(S') if and only if $S \sim S'$

🐯 McGill

System morphisms at different levels of specification

- Mixed
 - Between I/O relation and Observation Frame
 - Between State/Transition and Observation Frame
 - Between State/Transition and Network

System morphisms at different levels of specification

- Bisimilarity: observational/behavioural equivalence
- \bullet If two systems P and Q are equivalent then no observer should be able to distinguish between them
- If a part P of a composite system (network) C[P] is replaced by another equivalent part Q, then the resulting system C[Q] should behave in the same way
- For all contexts C[-], if $P\sim Q$ then $C[P]\sim C[Q]$
- $\bullet \sim$ should be a congruence

Progress

 \checkmark Motivation

✔ Hierarchies of System Specification

✓ System morphisms

 \checkmark System morphisms at the same level of specification

- ✓ System morphisms at different levels of specification
- **★** Analysis and verification
- **✗** Category Theory: the meta-theory

Analysis and verification

- Analysis: reasoning about systems and formalisms
- Properties:
 - System specific
 - Formalism specific
 - General

Analysis and verification

- Techniques for establishing system specific properties:
 - Manual: by inspection, by formal analysis
 - Automatic: model-checking
- Modal logics: expressing system properties
 - Temporal logics: LTL, CTL, CTL*, etc.
 - Epistemic logics
 - etc.
- Given a system (and a state,) and some formula, determine if it is satisfied or not

Analysis and verification

- Techniques for establishing formalism specific and general properties
 - Manual: by general induction (on the system structure, on the proof of the property, etc.)
 - Automatic: theorem-proving

Progress

 \checkmark Motivation

✔ Hierarchies of System Specification

✓ System morphisms

 \checkmark System morphisms at the same level of specification

- ✓ System morphisms at different levels of specification
- \checkmark Analysis and verification
- **✗** Category Theory: the meta-theory

- A framework for expressing and relating different mathematical concepts.
- A *category* is a mathematical structure that represents a family of *objects* (mathematical structures) **and** their relationships (morphisms.)

- Examples:
 - **Set**: the category of sets and functions
 - **Rel**: the category of sets and relations
 - Mon: the category of monoids and monoid homomorphisms
 - **Pre**: the category of preorders and monotonic functions
 - $\ensuremath{\text{Vec}}$: vector spaces and linear transformations
 - Top: topological spaces and continuous functions
 - Graph: the category of graphs and graph-homomorphisms
 - **ST**: state/transition systems and simulations
 - **Prog**: data-types and programs

- A *functor* is a map between two categories.
- A *natural transformation* is a map between two functors (that go the same way.)
- An *adjunction* is a relation between two functors (that go in opposite ways.)

• Abstraction and refinement are adjoint functors

Progress

 \checkmark Motivation

✔ Hierarchies of System Specification

✓ System morphisms

 \checkmark System morphisms at the same level of specification

- ✓ System morphisms at different levels of specification
- \checkmark Analysis and verification
- ✔ Category Theory: the meta-theory

The end

TaDa!

