Theory of Modelling and Simulation

Ernesto Posse

February 11, 2005

Outline

X Motivation
X Hierarchies of System Specification
X System morphisms
\boldsymbol{X} System morphisms at the same level of specification
\boldsymbol{X} System morphisms between different levels of specification
\mathbf{x} Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

Motivation

- Modelling: description of a (dynamic) system
- Simulation: generation of possible behaviours of a system given a model
- Analysis: reasoning about a system's behaviour

Motivation

- Formalisms for
- modelling: DEVS, Statecharts, Petri Nets, ODEs, PDEs, etc.
- analysis: temporal logics, other logics.
- simulation: state trajectories
- Theory:
- Foundation
- Common framework to explain/describe formalisms involved
- Tools for analysis: general properties of systems and/or formalisms
- Basis for (software) tools

Progress

\checkmark Motivation

X Hierarchies of System Specification

X System morphisms
\boldsymbol{X} System morphisms at the same level of specification
\boldsymbol{X} System morphisms at different levels of specification
X Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

Hierarchies of System Specification

- Model $=$ system specification
- A model can be given at different levels of abstraction or specification
- Modelling process (by refinement:) from abstract to concrete

Hierarchies of System Specification

- Dynamic systems: time-varying behaviour
- Time-base: ordered set (with a few properties.)
- Signals (or trajectories): functions from the time-base to some set
- Segment: function from a time-interval to some set

Hierarchies of System Specification

- A simple hierarchy:
- Observation frame: inputs and outputs
- I/O relation
- State/Transition
- Network

Hierarchies of System Specification

Hierarchies of System Specification

Hierarchies of System Specification

Hierarchies of System Specification

Hierarchies of System Specification

Hierarchies of System Specification

- A general hierarchy of system specification is not a total order but a partial order
- Different kinds of abstraction relationships:
- Structural
- Behavioural
- Fitting multiple formalisms in the hierarchy
- Mapping formalisms into the hierarchy
- Formalisms semantics
- Multi-formalism modelling

Progress

\checkmark Motivation
\checkmark Hierarchies of System Specification

X System morphisms
\boldsymbol{X} System morphisms at the same level of specification
\boldsymbol{X} System morphisms at different levels of specification
X Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

System morphisms

- Some questions:
- Can I plug-in this component in that network?
- Can I put system A in place of system B and obtain the same behaviour?
- I want my system to have this I/O relation. Does this system satisfy it?
- I know system A has this property. Does system B have that property as well?
- Relate different systems

System morphisms at the same level of specification

- At the Observation frame level:
- Same time-base
- Same input and output sets
- Same interface

System morphisms at the same level of specification

- At the Observation frame level:
- Equivalent time-base
- Equivalent input and output sets
- Equivalent interface

System morphisms at the same level of specification

- At the Observation frame level:
- Compatible time-base
- Compatible input and output sets
- Compatible interface
- Existence of a map between
- The time-bases (speed)
- The input and output sets
- The interfaces

System morphisms at the same level of specification

- At the I/O relation level
- Same I/O relation
- Containment
- Bijection
- Bijection + transformation

System morphisms at the same level of specification

- At the S / T level
- What does it mean for a state/transition system to behave in the same way as another?
- The concepts of simulation and bisimulation

System morphisms at the same level of specification

- A labelled transition system (LTS) is a tuple (S, L, \rightarrow) where
- S is a set of states
- L is a set of labels (e.g. actions, or conditions)
- $\rightarrow \subseteq S \times L \times S$ is a transition relation
- We write $p \xrightarrow{a} q$ to mean $(p, a, q) \in \rightarrow$
- An LTS is not a DFA or NFA

System morphisms at the same level of specification

- A simulation is a binary relation $R \subseteq S \times S$ such that if $(p, q) \in R$ then whenever

$$
p \xrightarrow{a} p^{\prime}
$$

then

$$
q \xrightarrow{a} q^{\prime}
$$

and

$$
\left(p^{\prime}, q^{\prime}\right) \in R
$$

- p and q are similar, written $p \preceq q$ if there is a simulation relation R such that $(p, q) \in R$

System morphisms at the same level of specification

- A bisimulation is a binary relation $R \subseteq S \times S$ such that if $(p, q) \in R$ then
- whenever $p \xrightarrow{a} p^{\prime}$ then $q \xrightarrow{a} q^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in R$, and
- whenever $q \xrightarrow{a} q^{\prime}$ then $p \xrightarrow{a} p^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in R$
- p and q are bisimilar, written $p \sim q$ if there is a bisimulation relation R such that $(p, q) \in R$
- Note: If $p \preceq q$ and $q \preceq p$ then it is not necessarily the case that $p \sim q$

System morphisms at the same level of specification

- $Q_{1} \preceq P_{1}$ because there is a simulation R s.t. $\left(Q_{1}, P_{1}\right) \in R$
- $R=\left\{\left(Q_{1}, P_{1}\right),\left(Q_{2}, P_{2}\right),\left(Q_{3}, P_{2}\right),\left(Q_{4}, P_{3}\right),\left(Q_{5}, P_{4}\right)\right\}$

System morphisms at the same level of specification

Machine P

Machine Q

- $Q_{1} \preceq P_{1}$ and $P_{1} \preceq Q_{1}$ but $Q_{1} \nsim P_{1}$

System morphisms at the same level of specification

- At the Network level
- Matching interfaces
- Graph-homomorphism

System morphisms at the same level of specification

System morphisms at the same level of specification

System morphisms at the same level of specification

MSDL

Progress

\checkmark Motivation
\checkmark Hierarchies of System Specification
\checkmark System morphisms
\checkmark System morphisms at the same level of specification
X System morphisms at different levels of specification
\boldsymbol{x} Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

System morphisms at different levels of specification

- Structural
- Behavioural
- Mixed

System morphisms at different levels of specification

- Structural
- Between Observation Frame and Network
- Between Networks
- Usually given by an homomorphism
- Answers the question:
"Can I plug-in this component in that network?"

System morphisms at different levels of specification

- Behavioural
- Between I/O relation and State/Transition
- Answers the questions:
"What is the behaviour of this system?"
and
"Given this I/O relation, does that system satisfy it?"

System morphisms at different levels of specification

- S satisfies IOR

System morphisms at different levels of specification

- IOR is implemented by $S, S^{\prime}, S^{\prime \prime}$, etc.

System morphisms at different levels of specification

- $\operatorname{IOR}(S) \subseteq \operatorname{IOR}\left(S^{\prime}\right)$ if and only if $S \preceq S^{\prime}$
- $\operatorname{IOR}(S)=\operatorname{IOR}\left(S^{\prime}\right)$ if and only if $S \sim S^{\prime}$

System morphisms at different levels of specification

- Mixed
- Between I/O relation and Observation Frame
- Between State/Transition and Observation Frame
- Between State/Transition and Network

System morphisms at different levels of specification

- Bisimilarity: observational/behavioural equivalence
- If two systems P and Q are equivalent then no observer should be able to distinguish between them
- If a part P of a composite system (network) $C[P]$ is replaced by another equivalent part Q, then the resulting system $C[Q]$ should behave in the same way
- For all contexts $C[-]$, if $P \sim Q$ then $C[P] \sim C[Q]$
- \sim should be a congruence

Progress

\checkmark Motivation
\checkmark Hierarchies of System Specification
\checkmark System morphisms
\checkmark System morphisms at the same level of specification
$\boldsymbol{\checkmark}$ System morphisms at different levels of specification

X Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

Analysis and verification

- Analysis: reasoning about systems and formalisms
- Properties:
- System specific
- Formalism specific
- General

Analysis and verification

- Techniques for establishing system specific properties:
- Manual: by inspection, by formal analysis
- Automatic: model-checking
- Modal logics: expressing system properties
- Temporal logics: LTL, CTL, CTL*, etc.
- Epistemic logics
- etc.
- Given a system (and a state,) and some formula, determine if it is satisfied or not

Analysis and verification

- Techniques for establishing formalism specific and general properties
- Manual: by general induction (on the system structure, on the proof of the property, etc.)
- Automatic: theorem-proving

Progress

\checkmark Motivation
$\boldsymbol{\checkmark}$ Hierarchies of System Specification
\checkmark System morphisms
\checkmark System morphisms at the same level of specification
$\boldsymbol{\checkmark}$ System morphisms at different levels of specification
\checkmark Analysis and verification
\boldsymbol{X} Category Theory: the meta-theory

Category Theory: the meta-theory

- A framework for expressing and relating different mathematical concepts.
- A category is a mathematical structure that represents a family of objects (mathematical structures) and their relationships (morphisms.)

Category Theory: the meta-theory

- Examples:
- Set: the category of sets and functions
- Rel: the category of sets and relations
- Mon: the category of monoids and monoid homomorphisms
- Pre: the category of preorders and monotonic functions
- Vec: vector spaces and linear transformations
- Top: topological spaces and continuous functions
- Graph: the category of graphs and graph-homomorphisms
- ST: state/transition systems and simulations
- Prog: data-types and programs

Category Theory: the meta-theory

- A functor is a map between two categories.
- A natural transformation is a map between two functors (that go the same way.)
- An adjunction is a relation between two functors (that go in opposite ways.)

Category Theory: the meta-theory

- Abstraction and refinement are adjoint functors

Progress

\checkmark Motivation
\checkmark Hierarchies of System Specification
\checkmark System morphisms
\checkmark System morphisms at the same level of specification
$\boldsymbol{\checkmark}$ System morphisms at different levels of specification
\checkmark Analysis and verification
\checkmark Category Theory: the meta-theory

The end

TaDa!

