Timed languages for discrete-event systems Ernesto Posse

Outline

- Introduction & Motivation
- Real-time
- Time in modelling formalisms
- Time in general purpose programming languages
- Properties of time
- A mini-timed language
- An example
- Conclusion

- Why time?
- Dynamic systems: change of state over time
- Implicit vs. explicit time
 - To describe time-dependent behaviour (modelling): Do a task with given time-constraints
 - To answer questions (analysis):
 When? How long?
 Will it happen before/after/between ...?
 - Need for observing the time of events or changes

- Existing modelling formalisms:
 - Timed Automata (Alur & Dill '90, Lynch & Vaandrager '91)
 - Timed Petri Nets (Merlin '74)
 - Statecharts (Harel '84)
 - DEVS (Zeigler '76 '2000)

- Existing languages:
 - LOTOS, E-LOTOS and G-LOTOS
 - Esterel
 - Lustre
 - Signal
 - Argos
 -
- Process algebras with timing:
 - Timed CSP
 - Timed CCS
 - Timed ACP

- Modal logics
 - Real-time CTL
 - Real-time LTL

- Who uses these?
- Companies
 - European Space Agency, NASA, Airbus, Lockheed Martin, Texas Instruments, Philips, ...
- Areas
 - Avionics & Aerospace
 - Defence & Military
 - Transportation (railways & automotive)
 - Semiconductors & hardware
 - Telecom
 - Human-computer interaction

Real-time

- Real-time: reactive systems
- Real numbers (continuous-time) vs. natural numbers (discrete-time)
- Discrete Event Systems: continuous-time but only discrete changes of state

Real-time

Dinosaurs and circuits

Dinosaurs and circuits

Physical clock vs. "logical" clock

Gates have time delays before firing

Correct history

Gates have time delays before firing

Incorrect history

(naive simulation)

time	0	2	4	
а	0	0	0	
b	0	1	1	
С	0	0	1	

Solution:

- Modelling & Analysis:
 - Abstract physical time as logical time
 - Timed-traces (sequences of events tagged with time-stamps)
 - Abstract simulation algorithms
- Simulation: event-scheduling
- In timed languages and formalisms, time could be considered either physical or logical.
- \checkmark Logical trace \longleftrightarrow physical trace

Statecharts: after(delay)

DEVS: time-advance and elapsed-time

 $\delta^{ext}((P_1, e), x) = P_2(x, e)$ $\delta^{int}(P_1) = P_3$

Timed Petri Nets: (interval) timed-transitions

- Timed Automata: multiple clocks, clock guards, clock reset
 - Clocks: x,y

- Library functions/procedures:
 - Sleep
 - Timeout
 - Interrupt
- Implemented based on the underlying OS
- Dependent of the system's clock
- Not primitive language constructs

```
def task1():
    do_something()
```

```
def task2():
    do_some_other_thing()
```

```
t1 = Timer(30.0, task1)
t2 = Timer(25.0, task2)
```

```
t1.start()
t2.start()
```

sleep(20.0)
t1.cancel()

```
class A(Thread):
    def run(self):
        sleep(5.0)
class B(Thread):
    def __init__(self, other):
        Thread.__init__(self)
        self.other = other
    def run(self):
        self.other.join(3.0)
```

```
a = A()
b = B(a)
a.start()
b.start()
```

```
class A(Thread):
  def run(self):
    sleep(5.0)
class B(Thread):
  def __init__(self, other):
    Thread. init (self)
    self.other = other
  def run(self):
    self.other.join(3.0)
    if self.other.isAlive():
      course_of_action_1()
    else:
      course_of_action_2()
```

- Time models: set of assumptions and properties of time and systems w.r.t. time.
- Assumptions
 - Events are instantaneous
 - Newtonian time: single global logical clock
 - Real numbers as time-base
 - Maximal parallelism
 - Maximal progress

- Time base:
 - Real numbers vs. natural numbers
 - Total linear order vs. partial order

- Distinguish between "event transitions" and "evolution"
- Event (or action) transitions

$$P \xrightarrow{\alpha} P'$$

Time evolution

$$P \stackrel{d}{\rightsquigarrow} P'$$

Evolution is deterministic

Time additivity and time interpolation

- Time closure
- Zeno sequence (infinite sequence of evolution with finite duration)

$$\sum_{i=0}^{\infty} d_i = d < \infty$$

Time closure: every Zeno sequence has a limit

$$\sum_{i=0}^{\infty} d_i = d < \infty$$

- No progress
- Zeno-divergence: Never reaching a limit

$$\begin{array}{c} P_0 & -\frac{1/2}{2} \\ P_1 & \hline & & \\ P_2 & -\frac{1/4}{2} \\ P_3 & \hline & & \\ P_4 & -\frac{1/8}{2} \\ P_4 & \hline & & \\ P_4 & -\frac{1/8}{2} \\ P_4 & \hline & & \\ P_4 & -\frac{1/8}{2} \\ P_4 & \hline & & \\ P_4 & -\frac{1/8}{2} \\ P_4 & \hline & & \\ P_4 & -\frac{1/8}{2} \\ P_4 & -\frac{1/8}{2}$$

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1 < \infty$$

- No progress
- Spin-divergence: getting stuck in an instant

Timed languages

- Common primitives
 - Sleep
 - Delay (uninterruptable sleep)
 - Timeout
 - Interrupt
 - Event-time dependence

- Describing simple reactive and interactive processes
- Based on Timed CSP and Timed CCS
- Processes exist and execute in parallel
- Communication by message-passing over channels
- Abstraction mechanisms

The dead process

0

Single action

 $Printer = accept.job \rightarrow print.job \rightarrow 0$ $DoInternalStuff = \tau \rightarrow \tau \rightarrow \tau \rightarrow 0$

Alternative actions

$$\alpha_1 \to P_1 \mid \alpha_2 \to P_2 \mid \dots \mid \alpha_n \to P_n$$

$$(P_1) \quad (P_2) \quad \dots \quad (P_n)$$

Example

 $Printer = accept.job \rightarrow print.job \rightarrow 0 | shutdown \rightarrow 0$

Output action (sending a message over a channel)

 $c!v \to P$

Input action (receiving a message over a channel)

$$c?x \to P(x)$$

Example

 $Printer = accept?job \rightarrow print!job \rightarrow 0$

Recursion: loops

$$N = P(N)$$

Example

 $Printer = accept.job \rightarrow print.job \rightarrow Printer$

 $OneCellBuffer = in?x \rightarrow out!x \rightarrow OneCellBuffer$

Parallel composition

 $P_1 || P_2$

 $Leg_1 = up.1 \rightarrow down.1 \rightarrow Leg_1$ $Leg_2 = down.2 \rightarrow up.2 \rightarrow Leg_2$ $Robot = Leg_1 \parallel Leg_2$

Sequential composition

 $P_1; P_2$

Example

(Limited) support for dynamic structure:

 $Virus = reproduce \rightarrow (Virus || Virus)$

- Communication:
 - Message-passing over channels
 - Unicasting vs. Multicasting
 - Synchronous vs. asynchronous

Communication

 $Cell = in?x \rightarrow out!x \rightarrow Cell$

 $in \phi Cell \phi out$

 $Boss = line!order \rightarrow Boss$ $Worker = line?x \rightarrow do(x) \rightarrow Worker$ Factory = Boss || Worker

Channels are common names

BigFactory = Boss || Worker || Worker

- Unicasting vs. Multicasting
- Unicasting leads to non-determinism

 $Boss = line!order \rightarrow Boss$ $Worker = line?x \rightarrow do(x) \rightarrow Worker$ Factory = Boss || Worker

- Synchronous communication: (rendez-vous or handshake) send action is blocking
- Asynchronous communication: send action is non-blocking

Channels are common names

 $Cell = in?x \rightarrow out!x \rightarrow Cell$

But what if we want

Process interface: parameters in its definition

 $Cell(in, out) = in?x \rightarrow out!x \rightarrow Cell(in, out)$

in and out are now private

 Such definition can be thought of as a "class" of processes

Process instantiation

Cell(a, b)

becomes

 $a?x \to b!x \to Cell(a, b)$

 $Cell(a, b) \mid\mid Cell(b, c)$

 $a?x \to b!x \to Call(a,b) \quad || \quad b?x \to c!x \to Cell(b,c)$

 $Cell(a,b) \mid\mid Cell(b,c)$

 $a?x \to b!x \to Call(a,b) \quad || \quad b?x \to c!x \to Cell(b,c)$

Hiding (abstraction)

$$P \setminus \{x_1, x_2, ..., x_n\}$$
 or new $x_1, x_2, ..., x_n : P$

Example

 $TwoCellBuffer(in, out) = (Cell(in, m) || Cell(m, out)) \setminus \{m\}$

Timed-prefix (when)

Example

 $Timer(in, out) = begin \rightarrow in?x@e \rightarrow out!e \rightarrow Timer(in, out)$

Time-out (non-blocking wait)

Example

 $Printer = (accept?job \rightarrow print!job \rightarrow 0) \stackrel{100}{\triangleright} (shutdown \rightarrow 0)$

 $AtomicDEVS state = (in?x@e \to S_1(x, e)) \stackrel{ta}{\triangleright} S_2$

Simple delay (blocking wait)

$$\alpha \xrightarrow{d} P$$
$$=$$
$$\alpha \rightarrow (0 \stackrel{d}{\triangleright} P)$$

Interval delay (non-deterministic delay)

$$\alpha \xrightarrow{D} P$$

• Examples:

 $Runner = ready \rightarrow set \rightarrow go! \xrightarrow{[6.0,20.0]} finnish \rightarrow 0$

$$Sem(seg) = Red(seg)$$

$$Red(seg) = 0 \stackrel{10}{\triangleright} Green(seg)(10)$$

$$Green(seg)(n) = (seg!@e \to Green(seg)(n-e)) \stackrel{n}{\triangleright} Red(seg)$$

$$Car(seg)(speed) = seg?length \xrightarrow{length/speed} seg!$$
$$\rightarrow Car(seg)(speed)$$

 $SemSeg(in, out, sem)(l) = in?car \rightarrow car!l \rightarrow car?$ $\rightarrow sem? \rightarrow out!car$ $\rightarrow SemSeg(in, out, sem)(l)$

$$Gen(seg)(p) = \operatorname{new} car : (Car(car)(20))$$
$$|| seg!car \xrightarrow{p} Gen(seg)(p) \rangle$$

Network = new a, b, c, d, e, f : (Gen(a)(5))|| Seg(a, b)(10)||| Gen(c)(15)|||Seg(c,b)(30)||| Seg(b, d)(20)||| Seg(a, d)(20)||| SemSeg(d, f, e)(10)||| Seg(f, c)(30)| $||Sem(e)\rangle$

Comparison of languages and formalisms

- DEVS and Statecharts: easy to model with timeouts & timed-prefix
- Timed Petri Nets: ?
- Timed automata: no multiple clocks
- LOTOS = CSP + ACT ONE, E-LOTOS = Timed CSP + ACT ONE
- Esterel: natural numbers as time-base; "counting" signals; deterministic
- CSP vs. CCS: multiway synchronization
- CSP, CCS vs ACP: non-blocking delay