
Timed languages
for discrete-event systems

Ernesto Posse

. – p.1/64

Outline

Introduction & Motivation

Real-time

Time in modelling formalisms

Time in general purpose programming languages

Properties of time

A mini-timed language

An example

Conclusion

. – p.2/64

Introduction & Motivation

Why time?

Dynamic systems: change of state over time

Implicit vs. explicit time

To describe time-dependent behaviour (modelling):
Do a task with given time-constraints
To answer questions (analysis):
When? How long?
Will it happen before/after/between ...?
Need for observing the time of events or changes

. – p.3/64

Introduction & Motivation

Existing modelling formalisms:

Timed Automata (Alur & Dill ’90, Lynch & Vaandrager
’91)
Timed Petri Nets (Merlin ’74)
Statecharts (Harel ’84)
DEVS (Zeigler ’76 ’2000)

. – p.4/64

Introduction & Motivation

Existing languages:

LOTOS, E-LOTOS and G-LOTOS
Esterel
Lustre
Signal
Argos
...

Process algebras with timing:

Timed CSP
Timed CCS
Timed ACP

. – p.5/64

Introduction & Motivation

Modal logics

Real-time CTL
Real-time LTL

. – p.6/64

Introduction & Motivation

Who uses these?

Companies

European Space Agency, NASA, Airbus, Lockheed
Martin, Texas Instruments, Philips, ...

Areas

Avionics & Aerospace
Defence & Military
Transportation (railways & automotive)
Semiconductors & hardware
Telecom
Human-computer interaction

. – p.7/64

Real-time

Real-time: reactive systems

Real numbers (continuous-time) vs. natural numbers
(discrete-time)

Discrete Event Systems: continuous-time but only
discrete changes of state

. – p.8/64

Real-time

Dinosaurs and circuits

. – p.9/64

Real-time vs. simulated time

Dinosaurs and circuits

Physical clock vs. "logical" clock

. – p.10/64

Real-time vs. simulated time

Gates have time delays before firing

Correct history

(true concurrency)
time 0 2 ...

a 0 0 ...

b 0 1 ...

c 0 1 ...

. – p.11/64

Real-time vs. simulated time

Gates have time delays before firing

Incorrect history

(naive simulation)
time 0 2 4 ...

a 0 0 0 ...

b 0 1 1 ...

c 0 0 1 ...

. – p.12/64

Real-time vs. simulated time

Solution:

Modelling & Analysis:
Abstract physical time as logical time
Timed-traces (sequences of events tagged with
time-stamps)
Abstract simulation algorithms

Simulation: event-scheduling

In timed languages and formalisms, time could be
considered either physical or logical.

Logical trace ! physical trace

. – p.13/64

Time in modelling formalisms

Statecharts: after(delay)

P1
P3

after(5:0)

P2
x

. – p.14/64

Time in modelling formalisms

DEVS: time-advance and elapsed-time

P1
P3

�(P1) = 5:0x; e
P2(x; e)

Æext((P1; e); x) = P2(x; e)Æint(P1) = P3

. – p.15/64

Time in modelling formalisms

Timed Petri Nets: (interval) timed-transitionsT1
[3:0; 8:0℄

P1 P2

. – p.16/64

Time in modelling formalisms

Timed Automata: multiple clocks, clock guards, clock
reset

Guard

Clocks:

ResetAction or input

P2x � 3:0 & 2:0 � y < 5:0; a; y := 0

x,y
P1

. – p.17/64

Time in programming languages

Library functions/procedures:

Sleep
Timeout
Interrupt

Implemented based on the underlying OS

Dependent of the system’s clock

Not primitive language constructs

. – p.18/64

Time in programming languages

def task1():
do_something()

def task2():
do_some_other_thing()

t1 = Timer(30.0, task1)
t2 = Timer(25.0, task2)

t1.start()
t2.start()

sleep(20.0)
t1.cancel()

. – p.19/64

Time in programming languages

class A(Thread):
def run(self):
sleep(5.0)

class B(Thread):
def __init__(self, other):
Thread.__init__(self)
self.other = other

def run(self):
self.other.join(3.0)

a = A()
b = B(a)
a.start()
b.start()

. – p.20/64

Time in programming languages

class A(Thread):
def run(self):
sleep(5.0)

class B(Thread):
def __init__(self, other):
Thread.__init__(self)
self.other = other

def run(self):
self.other.join(3.0)
if self.other.isAlive():

course_of_action_1()
else:

course_of_action_2()

. – p.21/64

Properties of time

Time models: set of assumptions and properties of time
and systems w.r.t. time.

Assumptions

Events are instantaneous
Newtonian time: single global logical clock
Real numbers as time-base
Maximal parallelism
Maximal progress

. – p.22/64

Properties of time

Time base:

Real numbers vs. natural numbers
Total linear order vs. partial order

1 20

t3t4
t5t2

t1t0
. – p.23/64

Properties of time

Distinguish between “event transitions" and “evolution"

Event (or action) transitionsP ��! P 0
Time evolution P d P 0

. – p.24/64

Properties of time

Evolution is deterministic

P 00P

P 0
d

d

. – p.25/64

Properties of time

Time additivity and time interpolation

d
d+ d0

d0
P 00P

P 0

. – p.26/64

Properties of time

Time closure

Zeno sequence (infinite sequence of evolution with finite
duration)

P0 d0 P1 d1 P2 d2

1Xi=0 di = d <1

. – p.27/64

Properties of time

Time closure: every Zeno sequence has a limit

P0 d0 P1 d1 P2 d2 dn Pnd1Xi=0 di = d <1

. – p.28/64

Properties of time

No progress

Zeno-divergence: Never reaching a limit

P0 P1 P2 P3 P4�1 �21=2 1=4 1=8

1Xi=1 12i = 1 <1

. – p.29/64

Properties of time

No progress

Spin-divergence: getting stuck in an instant

P0 P1 P2 P3 P4�1 �2�1 �2 �2

. – p.30/64

Timed languages

Common primitives

Sleep
Delay (uninterruptable sleep)
Timeout
Interrupt
Event-time dependence

. – p.31/64

A mini-timed language

Describing simple reactive and interactive processes

Based on Timed CSP and Timed CCS

Processes exist and execute in parallel

Communication by message-passing over channels

Abstraction mechanisms

. – p.32/64

A mini-timed language

The dead process 0

. – p.33/64

A mini-timed language

Single action

�! P �P
Example Printer = aept:job! print:job! 0DoInternalStuff = � ! � ! � ! 0

. – p.34/64

A mini-timed language

Alternative actions

�1 ! P1 j�2 ! P2 j ::: j�n ! Pn �2P1 P2 Pn�1 �n
ExamplePrinter = aept:job! print:job! 0 j shutdown! 0

. – p.35/64

A mini-timed language

Output action (sending a message over a channel)

!v ! P
Input action (receiving a message over a channel)

?x! P (x)
ExamplePrinter = aept?job! print!job! 0

. – p.36/64

A mini-timed language

Recursion: loops

N = P (N)
ExamplePrinter = aept:job! print:job! Printer

OneCellBuffer = in?x! out!x! OneCellBuffer

. – p.37/64

A mini-timed language

Parallel composition

P1 jjP2 P1 P2

Example Leg1 = up:1! down:1! Leg1Leg2 = down:2! up:2! Leg2Robot = Leg1 k Leg2

. – p.38/64

A mini-timed language

Sequential composition

P1 ; P2 P1 P2

Example Runner = run! 0Walker = walk ! 0Jumper = jump! 0Group = (Runner kWalker); Jumper

. – p.39/64

A mini-timed language

(Limited) support for dynamic structure:V irus = reprodue! (V irus jjV irus)

V irus reprodue������! V irus jjV irusreprodue������! V irus jjV irus jjV irusreprodue������! V irus jjV irus jjV irus jjV irusreprodue������! � � �

. – p.40/64

A mini-timed language

Communication:

Message-passing over channels
Unicasting vs. Multicasting
Synchronous vs. asynchronous

. – p.41/64

A mini-timed language

CommunicationCell = in?x! out!x! Cell

in?x out!x Cellin out

. – p.42/64

A mini-timed language

Boss = line!order ! BossWorker = line?x! do(x)!WorkerFatory = Boss jjWorker

line line
do(x) doneline?xline!order

Boss Worker

Channels are common names

. – p.43/64

A mini-timed language

BigFatory = Boss jjWorker jjWorkerline Worker
line Worker

lineBoss
Unicasting vs. Multicasting

Unicasting leads to non-determinism

. – p.44/64

A mini-timed language

Boss = line!order ! BossWorker = line?x! do(x)!WorkerFatory = Boss jjWorker
Synchronous communication: (rendez-vous or
handshake) send action is blocking

Asynchronous communication: send action is
non-blocking

. – p.45/64

A mini-timed language

Channels are common namesCell = in?x! out!x! Cell

Cell jjCell outin Cell
outin outin Cell

. – p.46/64

A mini-timed language

But what if we want

outin in Cell outCell

. – p.47/64

A mini-timed language

Process interface: parameters in its definition

Cell(in; out) = in?x! out!x! Cell(in; out)in and out are now private

Such definition can be thought of as a “class” of
processes

. – p.48/64

A mini-timed language

Process instantiation Cell(a; b)
becomes a?x! b!x! Cell(a; b)

. – p.49/64

A mini-timed language

Cell(a; b) jjCell(b;)=a?x! b!x! Call(a; b) jj b?x! !x! Cell(b;)

Cell Cellb ba
. – p.50/64

A mini-timed language

Cell(a; b) jjCell(b;)=a?x! b!x! Call(a; b) jj b?x! !x! Cell(b;)
Cell Cell

b
baa b

. – p.51/64

A mini-timed language

Hiding (abstraction)Pnfx1; x2; :::; xng or new x1; x2; :::; xn : P
ExampleTwoCellBuffer(in; out) = (Cell(in;m) jjCell(m; out))nfmg

outin in Cell outCell

. – p.52/64

A mini-timed language

Timed-prefix (when)

��t! P (t) ��t
P (t)

ExampleTimer(in; out) = begin! in?x�e! out!e! Timer(in; out)

. – p.53/64

A mini-timed language

Time-out (non-blocking wait)

P1 d. P2 P1 P2d
Example

Printer = (aept?job! print!job! 0) 100. (shutdown! 0)

AtomiDEV Sstate = (in?x�e! S1(x; e)) ta. S2

. – p.54/64

A mini-timed language

Simple delay (blocking wait)

� d�! P=�! (0 d. P)

. – p.55/64

A mini-timed language

Interval delay (non-deterministic delay)

� D�! P
Examples:

Runner = ready ! set! go! [6:0;20:0℄�����! finnish! 0

. – p.56/64

Example: a traffic network

Seg Seg Seg

Seg

Seg

SemSeg

Car Sem

Car

. – p.57/64

Example: a traffic network

Seg

Seg

Seg

Seg

Seg

Car

outin arsegin ar
in ar

in ar
ar

out
outout

out

in

. – p.58/64

Example: a traffic network

Seg

Seg

Seg

Seg

SemSeg

Car

Sem

in ar
in ar

in ar
ar

out
outout

out

in
outin ar

sem
seg

seglink

. – p.59/64

Example: a traffic network

Sem(seg) = Red(seg)Red(seg) = 0 10. Green(seg)(10)Green(seg)(n) = (seg!�e! Green(seg)(n� e)) n. Red(seg)

Car(seg)(speed) = seg?length length=speed��������! seg!! Car(seg)(speed)

. – p.60/64

Example: a traffic network

Seg(in; out)(length) = in?ar ! ar!length! ar?! out!ar! Seg(in; out)(length)

SemSeg(in; out; sem)(l) = in?ar ! ar!l ! ar?! sem?! out!ar! SemSeg(in; out; sem)(l)

Gen(seg)(p) = new ar : (Car(ar)(20)jj seg!ar p�! Gen(seg)(p))

. – p.61/64

Example: a traffic network

Seg Seg Seg

Seg

Seg

SemSeg

SemGen

Gen

b d ea f

. – p.62/64

Example: a traffic network

Network = new a; b; ; d; e; f : (Gen(a)(5)jjSeg(a; b)(10)jjGen()(15)jjSeg(; b)(30)jjSeg(b; d)(20)jjSeg(a; d)(20)jjSemSeg(d; f; e)(10)jjSeg(f;)(30)jjSem(e))

. – p.63/64

Comparison of languages and formalisms

DEVS and Statecharts: easy to model with timeouts &
timed-prefix

Timed Petri Nets: ?

Timed automata: no multiple clocks

LOTOS = CSP + ACT ONE, E-LOTOS = Timed CSP +
ACT ONE

Esterel: natural numbers as time-base; “counting"
signals; deterministic

CSP vs. CCS: multiway synchronization

CSP, CCS vs ACP: non-blocking delay

. – p.64/64

	{}
	{Outline}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Real-time}
	{Real-time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in programming languages}
	{Time in programming languages}
	{Time in programming languages}
	{Time in programming languages}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Timed languages}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Comparison of languages and formalisms}

