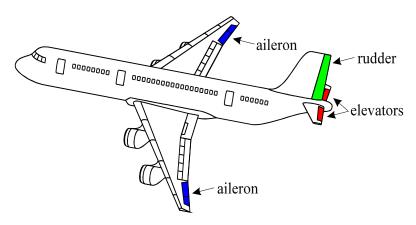
Mode Transition Behavior in Hybrid Dynamic Systems

Pieter J. Mosterman Real-time and Simulation Technologies The MathWorks, Inc. Natick, MA pieter_j_mosterman@mathworks.com

Introduction

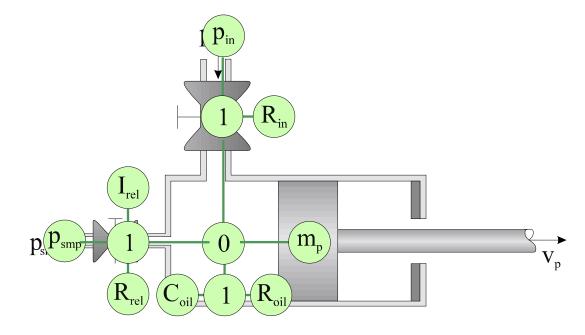
- Mode Transitions in Hybrid Models of Physical Systems
 - hybrid because
 - continuous, differential equations
 - discrete, finite state machine
 - overview of phenomena involved
- Illustrated by Hydraulic Actuator Used for Aircraft Attitude Control Surfaces



MATLAB SIMULINK

Modeling of Physical Systems

- Ideal Picture Model (Schematic)
- Identify Behavioral Phenomena
- For Example, A Hydraulic Actuator



Equation Generation

Compile Constituent Equations

 $\bullet R_{in}$ $f_{in}R_{in} = p_{Rin}$ $\bullet R_{oil}$ $f_R R_{oil} = p_{Roil}$ ◆ C_{oil} $C_{oil}\dot{p}_C = f_R$ $\bullet m_p$ $m_p \dot{v}_p = A_p p_{cyl}$ $\bullet R_{rel}$ $f_{rel}R_{rel} = p_{rel}$ ♦ I_{rel} $I_{rel}\dot{f}_{rel} = p_{rel}$ ◆ *0*, cylinder chamber $v_p = f_{in} - f_{rel}$ ◆ *1*, relief flow pipe $p_{rel} = p_{smp} - f_{rel}R_{rel} + p_{cyl}$ ◆ 1, intake pipe $p_{Rin} = p_{in} - p_{cyl}$ ◆ 1, oil compression $p_{Roil} = p_{oil} - p_C$

MATLABSIMULINK

Equation Processing

Before Simulation

- the number of equations is reduced
 - substitution/elimination
- equations are sorted
 - each equation computes one variable
- equations are solved
 - high index problems may require differentiation of certain equations

Hybrid Behavior

Introduce Valves

- make highly nonlinear behavior piecewise linear
 - intake valve

if
$$v_{in}$$
 then $p_{Rin} = p_{in} - p_{cyl}$ else $f_{in} = 0$

relief valve

if
$$v_{rel}$$
 then $p_{rel} = p_{smp} - f_{rel}R_{rel} + p_{cyl}$ else $f_{rel} = 0$

- Switching Between Modes of Continuous Behavior
 - intake valve, v_{in} , external switch (control law)
 - relief valve, v_{rel} , autonomous switch triggered by physical quantities

$$v_{rel} = p_{cyl} > p_{th}$$

different sets of equations

MATLAB&SIMULINK

Computational Causality

- When Switching Equations
 - computational causality may change
 - re-ordering
 - re-solving
- Example
 - when the intake valve closes, equations change
 - From

$$p_{Rin} = p_{in} - p_{cyl}$$

$$f_{in} = 0$$

- therefore, in this equation
 - p_{Rin} becomes unknown
 - f_{in} becomes known

www.mathworks.com

a = **a**

© 2002 The MathWorks, Inc.

Implicit Modeling

- Deal With Causal Changes Numerically
- Valve Behavior
 - residue on f_{in}

$$0 = if v_{in} then - p_{Rin} + p_{in} - p_{cyl} else f_{in}$$

• residue on f_{rel}

$$0 = if v_{rel} then - p_{rel} + p_{smp} - f_{rel}R_{rel} + p_{cyl} else f_{rel}$$

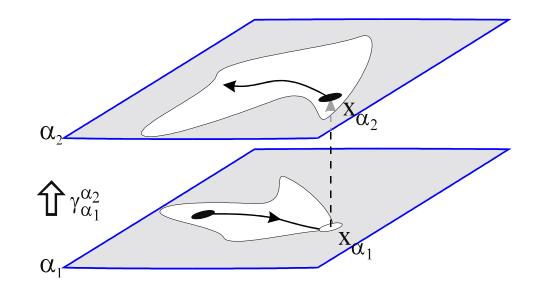
- Implicit Numerical Solver (e.g., DASSL)
 - designed to handle this formulation

MATLAB SIMULINK

Hybrid Dynamic Behavior

Geometric View

- modes of continuous, smooth, behavior
- patches of admissible state variable values



Specification Parts

- Hybrid Behavior Specification
 - a function, *f*, that defines continuous, smooth, behavior for each mode $f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B_{\alpha_i}u = 0$
 - an inequality, γ , that defines admissible state variable values

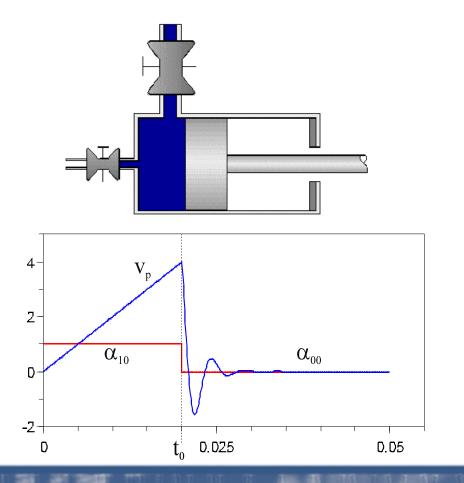
$$\gamma_{\alpha_i}^{\alpha_{i+1}}:C_{\alpha_i}x+D_{\alpha_i}u\geq 0$$

MATLAB SIMULINK

Dynamics

- Behavior Characteristics
 - *C*⁰, i.e., no jumps in state variables
 - steep gradients
- Example
 - when the intake valve closes, piston velocity quickly reduces to 0

www.mathworks.com

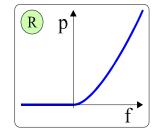


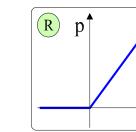
© 2002 The MathWorks, Inc.

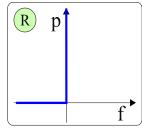
The Next Step

Remove Steep Gradients

- e.g., singular perturbation
- Algebraic Constraints Between State Variables
 - high index systems
 - subspace with admissible (continuous) dynamic behavior
 - discontinuities (jumps) in state behavior





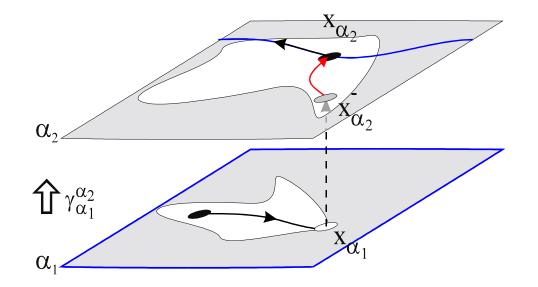


MATLAB&SIMULINK

Hybrid Dynamic Behavior - Refined

Geometric View

- modes of continuous, smooth, behavior
- patches of admissible state variable values
- manifold of dynamic behavior



Specification Parts

Hybrid Behavior Specification

- a function, *f*, that implicitly defines for each mode
 - continuous, smooth, behavior
 - state variable value jumps

$$f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B_{\alpha_i}u = 0$$

 an inequality, γ, that defines admissible generalized state variable values

$$\gamma_{\alpha_i}^{\alpha_{i+1}}:C_{\alpha_i}x + D_{\alpha_i}u \ge 0$$

www.mathworks.com

for explicit reinitialization (semantics of x⁻)

$$f_{\alpha_i}: E_{\alpha_i}\dot{x} + A_{\alpha_i}x + B^u_{\alpha_i}u + B^x_{\alpha_i}x^- = 0$$

Handling of Systems With High Index

- DASSL Handles Index 2 Systems
 - implicit formulation for continuous behavior
- Requires Consistent Initial Conditions When Mode Changes Occur
 - compute from implicit formulation to make jump space (projection) explicit
 - for example, sequences of subspace iteration
 - space of dynamic behavior: $V^{n+1} = A^{-1} E V^n$, $V^0 = R^n$
 - jump space: $T^{n+1} = E^{-1} A T^n, T^0 = \{0\}$
 - or, decomposition in (pseudo) Kronecker Normal Form

Projections

www.mathworks.com

- Linear Time Invariant Index 2 System
 - derive pseudo Kronecker Normal Form (numerically stable)

$$\begin{bmatrix} E_{11} & 0 & 0 \\ 0 & 0 & E_{22,12} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_f \\ \dot{x}_{i,1} \\ \dot{x}_{i,2} \end{bmatrix} + \begin{bmatrix} A_{11} & A_{12,1} & A_{12,2} \\ 0 & A_{22,11} & A_{22,12} \\ 0 & 0 & A_{22,22} \end{bmatrix} \begin{bmatrix} x_f \\ x_{i,1} \\ x_{i,2} \end{bmatrix} + \begin{bmatrix} B_1 \\ B_{2,1} \\ B_{2,2} \end{bmatrix} u = 0$$

• after integration (no impulsive input behavior), consistent values are

$$\begin{aligned} x_f &= x_f^- - E_{11}^{-1} A_{12,1} A_{22,11}^{-1} E_{22,12} (x_{i,2} - x_{i,2}^-) \\ x_{i,1} &= A_{22,11}^{-1} (-B_{2,1} u + E_{22,12} \dot{x}_{i,2}) - A_{22,12} x_{i,2} \\ x_{i,2} &= -A_{22,22}^{-1} B_{2,2} u \end{aligned}$$

The Hydraulic Actuator

www.mathworks.com

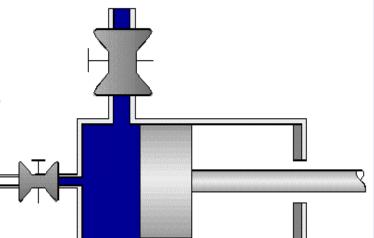
Generalized State Jumps for Each Mode

Mode	Projection
α_{00}	$f_{rel} = 0$
	$v_p = 0$
α_{01}	$v_p = (m_p v_p - I_{rel} f_{rel})/(m_{rel} + m_p)$
	$f_{rel} = (m_p v_p - I_{rel} f_{rel}) / (m_{rel} + m_p)$
α_{10}	$v_p = v_p$
10	$v_p = v_p$ $f_{rel} = 0$
α_{11}	$v_p = v_p^{-1}$
	$\dot{f_{rel}} = \dot{f_{rel}}$

MATLABESIMULINK

A Scenario

- Intake Valve Is Open
 - piston starts to move
- Intake Valve Closes
 - piston inertia causes pressure build-up
 - pressure reaches critical value
- Relief Valve Opens
 - cylinder pressure decreases



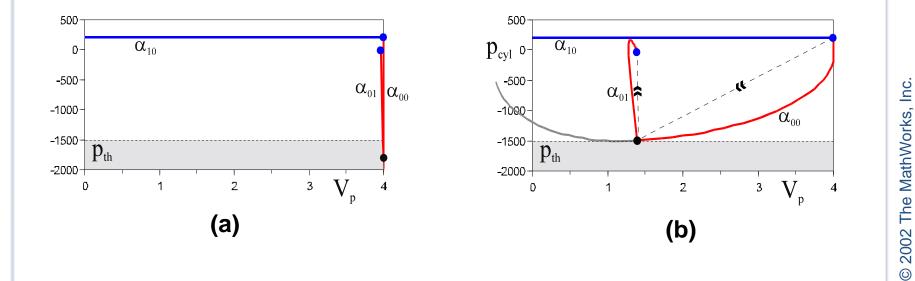
⇒ Interaction Between Mode Transition Behavior

MATLAB SIMULINK

Phase Space of Cylinder Scenario

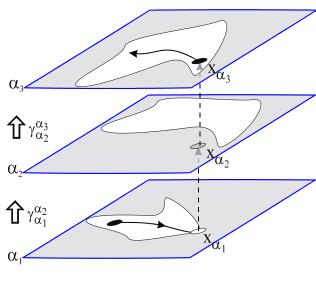
Projection Is Aborted

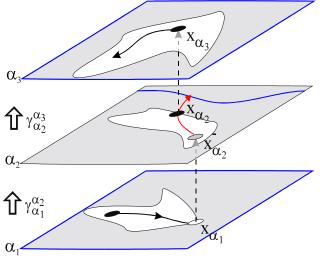
- immediately
- after partial completion



Sequences of Mode Changes

- (a) State Outside of a Patch in the New Mode
- (b) During Projection State Values are Reached Outside of a Patch in the New Mode





Impulses

- High Index Systems May Contain Impulsive Behavior
 - in case of the hydraulic cylinder, $p > p_{th}$, would always hold if not $v_p = v_p^-$
 - unknown where the patch is abandoned
- In-Depth Analysis of Switching Conditions
 - solve for required x(t)
 - compute earliest $t = t_s$ at which $\gamma(x(t), u(t), t) \ge 0$
 - substitute t_s to compute $x(t_s)$
- Complex Switching Structure

www.mathworks.com

Additional Difficulty When Interacting Fast Transients (e.g., collision)

Detailed Analysis of the Projection

- Cylinder Example (Imaginary Eigenvalues, $\lambda = \lambda_r + i \lambda_i$)
 - from detailed model

www.mathworks.com

• solve for *p*

$$p(t) = e^{\lambda_r t} \left(p^- \cos(\lambda_i t) - \frac{1}{\lambda_i} \left(\frac{1}{C_1} v_p^- + \lambda_r p^- \right) \sin(\lambda_i t) \right)$$

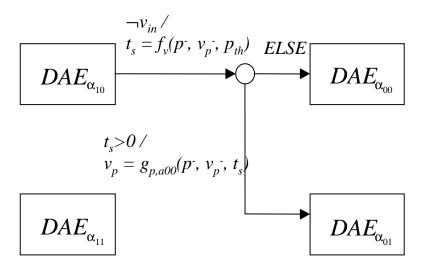
• substitute *t* at which $p(t) > p_{th}$

$$v_p = e^{\lambda_r t_s} (v_p^- \cos(\lambda_i t) - (\frac{R_2}{I_1} v_p^- - \frac{p_1}{I_1} + \lambda_r v_p^-) \frac{\sin(\lambda_i t_s)}{\lambda_i})$$

MATLAB SIMULINK

Complex Switching Structure

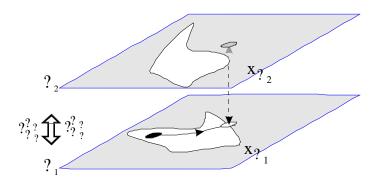
Explicit Re-Initialization

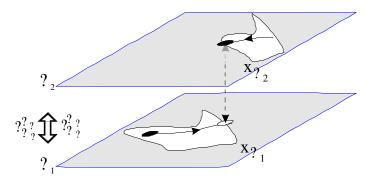


Chattering

What If the New Mode Switches Back

- immediately \Rightarrow inconsistent model, no solution
- after infinitesimal period of time \Rightarrow chattering behavior, solve with
 - equivalent control
 - equivalent dynamics



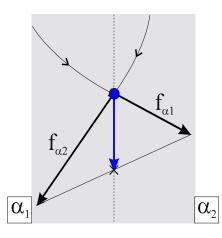


MATLAB SIMULINK

Equivalent Dynamics

Chattering

- fast component
 - remove
- slow component
 - weighted mean of instantaneous vector fields (Filippov Construction)
- sliding behavior



Ontology

Phase Space Transition Behavior Classification

- mythical (state invariant)
- pinnacle (state projection aborted)
- continuous
 - interior (continuous behavior)
 - boundary (further transition after infinitesimal time advance)
 - sliding (repeated transitions after each infinitesimal time advance)
- Combinations of Behavior Classes

MATLABESIMULINK

The MathWorks

Conclusions

- Mode Transition Behavior
 - Rich
 - Complex
- Requires
 - special algorithms/computations
 - model verification analyses
- How to Efficiently Generate Behavior (e.g., for Real-time Applications)?

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.