MSDL presentation

A Brief Introduction to Statistical Mechanics

Indrani A. Vasudeva Murthy

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montréal, Canada

Overview

- The Hamiltonian, the Hamiltonian equations of motion; simple harmonic oscillator.
- Thermodynamics; internal energy and free energy.
- Kinetic theory; phase space and distribution functions.
- Statistical mechanics: ensembles, canonical partition function; the ideal gas.
- Concluding remarks.

Equations of Motion

- Newton's second law: $\mathbf{F}=m \mathbf{a}$.
- Equations of motion: explicit expressions for \mathbf{F}, a.
- Different formulations give a recipe to arrive at this: Lagrangian and Hamiltonian approaches.
- In Classical Mechanics, the Lagrangian formulation is most common leading to Lagrange's equations of motion.
- The Hamiltonian formulation leads to Hamilton's equations of motion.
- In Statistical Mechanics and Quantum Mechanics it is more convenient to use the Hamiltonian formalism.

The Hamiltonian

- The Hamiltonian \mathcal{H} is defined as follows:

$$
\mathcal{H}=T+V .
$$

T : kinetic energy of the system,
V : potential energy of the system.

- For most systems, \mathcal{H} is just the total energy E of the system.
- Knowing \mathcal{H}, we can write down the equations of motion.
- In Classical Physics, $\mathcal{H} \equiv E$, a scalar quantity.
- In Quantum Mechanics, \mathcal{H} is an operator.

Generalized Coordinates

- The concept of a 'coordinate' is extended, appropriate variables can be used. For each generalized coordinate, there is a corresponding generalized momentum (canonically conjugate). Notation:
q_{i} : generalized coordinates;
$p_{i}:$ generalized momenta.
- For example, $\left\{q_{i}\right\} \equiv$ Cartesian coordinates $\{x, y, z\}$ for a free particle. $\left\{q_{i}\right\} \equiv$ the angle θ for a simple pendulum.
- Can transform between the regular coordinates and the generalized coordinates.
- Useful in dealing with constraints.

Generalized Coordinates

- Hamiltonian $\mathcal{H}=\mathcal{H}\left(\left\{q_{i}\right\},\left\{p_{i}\right\}, t\right)=\mathcal{H}(q, p, t)$.
- The generalized coordinates and momenta need not correspond to the usual spatial coordinates and momenta.
- In general for N particles, we have $3 N$ coordinates and $3 N$ momenta.
- Coordinates and momenta are considered 'conjugate' quantities they are on an equal footing in the Hamiltonian formalism.
- Coordinates and momenta together define a phase space for the system.

Equations of Motion

In the Hamiltonian formalism, the equations of motion are given by:

$$
\begin{aligned}
& \frac{\partial \mathcal{H}}{\partial q_{i}}=-\dot{p}_{i} \\
& \frac{\partial \mathcal{H}}{\partial p_{i}}=\dot{q}_{i}
\end{aligned}
$$

Newton's second law!

Equations of Motion

- If there is no explicit time dependence in the Hamiltonian, then

$$
\begin{aligned}
\mathcal{H}(q, p, t) & =\mathcal{H}(q, p) \\
\frac{d \mathcal{H}}{d t}=\frac{\partial \mathcal{H}}{\partial t} & =0
\end{aligned}
$$

\Longrightarrow The energy of the system does not change with time, and it is conserved.

- Symmetries of the Hamiltonian \Longrightarrow conserved quantities.

Simple Harmonic Oscillator (1-D)

Example: Simple Harmonic Oscillator (1-D)

- Consider a block of mass m connected by a spring with spring constant k.
- Its displacement is given by x, has velocity v, momentum $p=m v$.
- One generalized co-ordinate x, its conjugate momentum p.
- The total energy : kinetic energy + potential energy

$$
E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} .
$$

Simple Harmonic Oscillator

The Hamiltonian:

$$
\begin{aligned}
E & =\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\
\mathcal{H} & =\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}
\end{aligned}
$$

Hamilton's equations of motion:

$$
\begin{aligned}
\frac{\partial \mathcal{H}}{\partial x} & =-\dot{p} \\
\frac{\partial \mathcal{H}}{\partial p} & =\dot{x}
\end{aligned}
$$

Simple Harmonic Oscillator

$$
\begin{aligned}
k x & =-\dot{p} \\
\frac{p}{m} & =\dot{x}
\end{aligned}
$$

Rearrange, two first order ODEs:

$$
\begin{aligned}
\frac{d p}{d t} & =-k x ; \quad \text { Newton's Law } \\
\frac{d x}{d t} & =\frac{p}{m}
\end{aligned}
$$

Can get the usual second order ODE:

$$
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0
$$

Thermodynamics

- Thermodynamics: phenomenological and empirical.
- A thermodynamic system: any macroscopic system.
- Thermodynamic parameters (state variables): measurable quantities such as pressure P, volume V, temperature T, magnetic field H.
- A thermodynamic state is specified by particular values of $P, V, T, H \ldots$
- An equation of state: a functional relation between the state variables. Example: for an ideal gas, $P V=n R T$.
- Other thermodynamic quantities: internal energy E, entropy S, specific heats C_{V}, C_{P} (response functions).

Thermodynamics

- At equilibrium, observe average behaviour.
- The internal energy $E=$ average total energy of the system $:<\mathcal{H}>$.
- Intensive and Extensive variables.
- Intensive variables do not depend on the size of the system. Examples: pressure P, temperature T, chemical potential μ.
- Extensive variables depend on the size of the system. Examples: the total number of particles N, volume V, internal energy E, entropy S.
- The first law of thermodynamics: energy conservation: change in internal energy = heat supplied - work done by the system. Mathematically:

$$
d E=T d S-P d V+\mu d N
$$

Thermodynamics

- T, P, μ are generalized forces, intensive. Each associated with an extensive variable, such that change in internal energy $=$ generalized force \times change in extensive variable.
- $\{T, S\},\{-P, V\},\{\mu, N\}$ are conjugate variable pairs.
- Thermodynamic potentials: analogous to the mechanical potential energy. Energy available to do work - 'free energy'. The free energy is minimized, depending on the conditions.

Thermodynamics

- Helmholtz free energy:

$$
\begin{aligned}
F & =E-T S \\
d F & =d E-T d S-S d T \\
& =T d S-P d V+\mu d N-T d S-S d T \\
d F & =-P d V-S d T+\mu d N
\end{aligned}
$$

- Like E, the potentials contain all thermodynamic information.
- Equation of state from the free energy - relates state variables:

$$
P(V, T, N)=-\left.\frac{\partial F}{\partial V}\right|_{T, N}
$$

Kinetic Theory

- A dilute gas of a large number N of molecules in a volume V.
- The temperature T is high, the density is low.
- The molecules interact via collisions.
- An isolated system will always reach equilibrium by minimizing its energy. At equilibrium its energy does not change with time.
- Consider, for each molecule, $\{\mathbf{r}, \mathbf{p}\}: 3$ spatial coordinates, 3 momenta.
- Each particle corresponds to a point in a 6-D phase space. The system as a whole can be represented as N points.
- Not interested in the detailed behaviour of each molecule.

Kinetic Theory - 6-D Phase Space

Kinetic Theory

- Define a distribution function $f(\mathbf{r}, \mathbf{p}, t)$ so that

$$
f(\mathbf{r}, \mathbf{p}, t) d \mathbf{r} d \mathbf{p}
$$

gives the number of molecules at time t lying within a volume element $d \mathbf{r}$ about \mathbf{r} and with momenta in a momentum-space volume $d \mathbf{p}$ about p.

- $f(\mathbf{r}, \mathbf{p}, t)$ is just the density of points in phase space.
- Assume that f is a smoothly varying continuous function, so that:

$$
\int f(\mathbf{r}, \mathbf{p}, t) d \mathbf{r} d \mathbf{p}=N
$$

Kinetic Theory

- Problem of Kinetic Theory: Find f for given kinds of collisions (binary, for example) - can be considered to be a form of interaction.
- Explicit expressions for pressure, temperature; temperature is a measure of the average kinetic energy of the molecules.
- The limiting form of f as $t \rightarrow \infty$ will yield all the equilibrium properties for the system, and hence the thermodynamics.
- Maxwell-Boltzmann distribution of speeds for an ideal gas at equilibrium at a given temperature: Gaussian.
- Find the time-evolution equation for f - the equation of motion in phase space.
- Very messy!

Ensembles and Statistical Mechanics

- Gibbs introduced the concept of an ensemble.
- Earlier: N particles in the 6-D phase space.
- Ensemble: A single point in 6 N -dimensional phase space represents a given configuration.
- A given macrostate with $\{E, T, P, V, \ldots\}$ corresponds to an ensemble of microstates: 'snapshots' of the system at different times.
- Ergodic hypothesis: Given enough time, the system explores all possible points in phase space.

Ensemble Theory - 6N-D Phase Space

$3 \mathbf{N}$ coordinates

Ensembles and Statistical Mechanics

- Central idea: replace time averages by ensemble averages.
- Time Average: For any quantity $\phi(\mathbf{r}, \mathbf{p}, t)$:

$$
<\phi(\mathbf{r}, \mathbf{p}, t)>=\frac{1}{\tau} \int_{0}^{\tau} \phi(\mathbf{r}, \mathbf{p}, t) d t
$$

- Ensemble Average: For $\tau \rightarrow \infty$:

$$
\begin{aligned}
<\phi(\mathbf{r}, \mathbf{p}, t) & >=\int \rho(\mathbf{r}, \mathbf{p}) \phi(\mathbf{r}, \mathbf{p}, t) d \mathbf{r} d \mathbf{p} \\
d \mathbf{r} & =d \mathbf{r}_{1} d \mathbf{r}_{2} \ldots \ldots d \mathbf{r}_{N} \\
d \mathbf{p} & =d \mathbf{p}_{1} d \mathbf{p}_{2} \ldots \ldots d \mathbf{p}_{N}
\end{aligned}
$$

Ensembles

- $\rho(\mathbf{r}, \mathbf{p})$: probability density, $\rho(\mathbf{r}, \mathbf{p}) d \mathbf{r} d \mathbf{p}$: probability of finding the system in a volume element $[d \mathbf{r} d \mathbf{p}]$ around (\mathbf{r}, \mathbf{p}).
- Different ensembles: microcanonical, canonical and grand canonical ensembles.
- Microcanonical ensemble: isolated systems with fixed energy and number of particles, no exchange of energy or particles with the outside world. Not very useful !

Ensembles

- Canonical ensemble: Energy is not fixed, can exchange E with a reservoir; N fixed.
- Grand canonical ensemble: Both energy and N can vary.
- In the canonical ensemble, the probability of a given configuration with energy E (corresponding to Hamiltonian \mathcal{H}) :

$$
p_{c}=\frac{e^{-\beta \mathcal{H}(\mathbf{r}, \mathbf{p})}}{Z_{N}(V, T)} .
$$

- $\beta=1 / k_{B} T, k_{B}$: Boltzmann constant $=R / N_{A}$.
- $e^{-\beta \mathscr{H}(\mathbf{r}, \mathbf{p})}$: Boltzmann factor or Boltzmann weight.

The Canonical Partition Function

$$
Z_{N}(V, T)=\frac{1}{N!h^{3 N}} \int d \mathbf{r} d \mathbf{p} e^{-\beta \mathcal{H}(\mathbf{r}, \mathbf{p})}
$$

h : Planck's constant.

- Z_{N} : phase space volume, each volume element weighted with the Boltzmann factor.
- From Z_{N}, we can calculate various thermodynamic quantities.

The Canonical Partition Function

- For example: internal energy E is given by the ensemble average $<\mathcal{H}>$ of the Hamiltonian:

$$
\begin{aligned}
E & =<\mathcal{H}> \\
& =\frac{1}{Z_{N}(V, T)} \int d \mathbf{r} d \mathbf{p} \mathscr{H} e^{-\beta \mathscr{H}(\mathbf{r}, \mathbf{p})}
\end{aligned}
$$

- Also, more conveniently,

$$
E=-\left.\frac{\partial \ln Z_{N}(V, T)}{\partial \beta}\right|_{N, V}
$$

The Canonical Partition Function

Can show that it is related to the Helmholtz free energy F :

$$
\begin{gathered}
F=E-T S \\
Z_{N}(V, T)=e^{-\beta F} \\
F=-k_{B} T \ln Z_{N}(V, T) .
\end{gathered}
$$

Example: The Ideal Gas

- One of the simplest statistical systems: a gas of N non-interacting particles, each of mass m, in a volume V at temperature T.
- The Hamiltonian $\mathcal{H}=$ Kinetic Energy:

$$
\begin{equation*}
\mathcal{H}=\sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2 m}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m} . \tag{1}
\end{equation*}
$$

- The canonical partition function:

$$
\begin{gathered}
Z_{N}(V, T)=\frac{1}{N!h^{3 N}} \int d \mathbf{r} d \mathbf{p} e^{-\beta \mathcal{H}(\mathbf{r}, \mathbf{p})} \\
Z_{N}(V, T)=\frac{1}{N!h^{3 N}} \int d \mathbf{r} d \mathbf{p} \exp \left(-\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}\right) .
\end{gathered}
$$

Example: The Ideal Gas

$$
\begin{aligned}
& Z_{N}= \frac{V^{N}}{N!h^{3 N}}\left(\int_{-\infty}^{\infty} d p e^{-\beta p^{2} / 2 m}\right)^{3 N} \\
& Z_{N}=\frac{V^{N}}{N!h^{3 N}}(\sqrt{2 \pi m / \beta})^{3 N} \\
& \quad=\frac{V^{N}}{N!h^{3 N}}\left(2 \pi m k_{B} T\right)^{3 N / 2}
\end{aligned}
$$

$\ln Z_{N}=N \ln V+\frac{3}{2} N[\ln (2 \pi m)-\ln \beta]-\ln N!-3 N \ln h$.

The Ideal Gas

- Can calculate macroscopic thermodynamical quantities.
- Average (kinetic) energy of the gas:

$$
\begin{aligned}
E & =-\frac{\partial \ln Z_{N}}{\partial \beta} \\
& =-\frac{\partial\left(-\frac{3}{2} N \ln \beta\right)}{\partial \beta} \\
& =\frac{3}{2} \frac{N}{\beta} \\
E & =\frac{3}{2} N k_{B} T .
\end{aligned}
$$

- Average (kinetic) energy per particle: $\frac{E}{N}=\frac{3}{2} k_{B} T$.

The Ideal Gas

$$
\ln Z_{N}=N \ln V+\frac{3}{2} N[\ln (2 \pi m)-\ln \beta]-\ln N!-3 N \ln h
$$

The Helmholtz free energy:

$$
F=-k_{B} T \ln Z_{N}
$$

The ideal gas equation of state:

$$
P(V, T, N)=-\left.\frac{\partial F}{\partial V}\right|_{T, N}
$$

The Ideal Gas

Equation of state:

$$
\begin{aligned}
P & =-\frac{\partial\left(-k_{B} T N \ln V\right)}{\partial V} \\
& =\frac{N k_{B} T}{V} \\
P V & =n N_{A} k_{B} T \\
P V & =n R T
\end{aligned}
$$

The Partition Function

- The partition function approach is very important because of its success.
- A whole range of equilibrium phenomena can be understood this way.
- Recipe: Write down the Hamiltonian - mostly interested in the potential energy term:

$$
V=V_{e x t}+V_{i n t}
$$

- The $V_{\text {int }}$ term includes all the interactions: two-body, three-body ...
- Get the free energy from the partition function.
- Minimize the free energy: the equilibrium 'ground state' of the system.

Extensions?

- The Hamiltonian can be either discrete or continuous.
- Continuous systems: concept of fields (example: density field, magnetization field, field of interactions).
- When dealing with fields, the Hamiltonian, and the free energy, become functionals :

$$
\mathcal{H}=\mathcal{H}[\phi(\mathbf{r}, t)]
$$

- Use field theory techniques and variational calculus.
- Non-equilibrium: time-dependent Hamiltonian, dissipation \Longrightarrow transport properties; failure of equilibrium statistical mechanics.
- Deal with time-dependent probabilities: stochastic equations.

Concluding Remarks

- What has all this to do with research at MSDL ?
- Look for universal features and quantify them: symmetry properties; conservation laws ?
- Equivalent concepts to: generalized coordinates, energy, energy minimization.
- Typical scales in a problem: length and time. Approximations based on this.
- Map one problem onto another: reduce it to something you know (SHO).
- Apply the statistical mechanical approach to agents.

