
PyGK: The Python Graph Kernel

Marc Provost

McGill University

marc.provost@mail.mcgill.ca

February 18, 2005

Abstract
This presentation introduces PyGK, the Python Graph Kernel, which will be the core
component of the next generation of AToM3, the meta-modelling tool developed at
McGill. PyGK is a package implementing Labelled, Directed and Hierarchical Graphs.
We will go over its main features in details with several intuitive examples.



Marc Provost

Presentation Overview

• Intro to AToM3 Structure

• Functional Features

• Examples

• Non-Functional Features

• Performance Analysis

• Q & A

• What’s next?

1



Marc Provost

AToM3 Structure

2



Marc Provost

Coarse Grained Functional Requirements

3



Marc Provost

Fine Grained Functional Requirements

• Well-Defined set of operations

• High-level Iteration

• Simple Navigation language

• Primitive Types

• Import/Export to XML

• Undo/Redo

• Versioning

4



Marc Provost

Well-Defined set of operations

5



Marc Provost

Well-Defined set of operations

Figure 1: “CREATE”,“RENAME”, “RELABEL” Events

6



Marc Provost

Well-Defined set of operations

Figure 2: “ADD” Event

7



Marc Provost

Well-Defined set of operations

Figure 3: “CONNECT” Event

8



Marc Provost

Well-Defined set of operations

Figure 4: “DISCONNECT” Event

9



Marc Provost

Well-Defined set of operations

Figure 5: “MOVE” Event

10



Marc Provost

Well-Defined set of operations

Figure 6: “REMOVE” Event

11



Marc Provost

High Level Iteration

12



Marc Provost

Simple Navigation Language

• Every operation acting on a graph takes one or multiple path arguments. A path is used
to locate the elements concerned by the operation. A path is simply a string “X.Y.Z”
navigating through the graph hierarchy.

13



Marc Provost

Primitive Types

14



Marc Provost

Import/Export to XML

• A simple XML graph language (AGL) was designed to export graphs to stable storage.

• To ease reuse, one AGL file is generated for each children graph contained in a the
exported graph.

• Now very simple to use..

15



Marc Provost

Import/Export to XML

16



Marc Provost

Undo / Redo

• Still in development :)

• Is based on the notion of events presented previously

• When executed, an event will be pushed on a stack with the necessary information to
perform the inverse operation.

• Each Graph will remember the performed operations that concerns it.

• I am now explaining this on the board :)

17



Marc Provost

Versioning

• Generalizes Undo/Redo

• Basically, a version groups a set of events that were performed on a model.

• A user can modify a model and at any point in time define a particular state to be a
version X. At this point, a new Undo/Redo stack is initialized.

• When exporting the models to stable storage, all the Undo/Redo information for each
version is also saved.

• When importing a model, a particular version could be imported, or even more than one
version.

18



Marc Provost

Non-Functionnal Features

• Fast, but consumes a lot of memory. (Partly due to python)

• Simple Design, minimal

• Easy to use (I Hope!)

• Heavily tested (I am still creating new test cases)

• Optimized for meta-modelling:

– Hashtables were used in combination with lists: fast element retrieval, fast iteration.
Good for simulators, code generators.

19



Marc Provost

20



Marc Provost

21



Marc Provost

Q & A

• Why no labelled edges?

• Dangling edges?

• Why no hyper edges?

• What about ports?

• What about cyclic hierarchy?

• Any other questions?

22



Marc Provost

What’s Next

• Undo, Redo, Versioning

• Tests, Tests, Tests..

• Higraph morphisms (already have graph morphisms)

• Higraph Transformation!

23


