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Abstract
This presentation introduces PyGK, the Python Graph Kernel, which will be the core
component of the next generation of AToM?3, the meta-modelling tool developed at
McGill. PyGK is a package implementing Labelled, Directed and Hierarchical Graphs.
We will go over its main features in details with several intuitive examples.
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Presentation Overview

e Intro to AToM? Structure
e Functional Features

e Examples

e Non-Functional Features
e Performance Analysis

o Q& A

e \What's next?

McGill
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AToM? Structure

[l : Create Models

[]: Compare Models

[]: Transform Models

McGill
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Coarse Grained Functional Requirements

Labelled.. Directed.. Hierarchical..

McGill
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Fine Grained Functional Requirements

e Well-Defined set of operations
e High-level Iteration

e Simple Navigation language

e Primitive Types

e Import/Export to XML

e Undo/Redo

e \ersioning

McGill
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Well-Defined set of operations

Node

« |#-1d: string
#_label: string

+rename ()
+relabel ()

A

Graph

+add()

<@ +connect()
+disconnect()
+remove ()
+move ()

McGill
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Well-Defined set of operations

root = Graph(ID="root")

Indirect events:
- root.rename("root")
- root.relabel("root")

root = Graph(ID="root", label="Blue")

Indirect events:
- root.rename("root")
- root.relabel("blue")

Figure 1: “CREATE","RENAME", "RELABEL"

root

Events

MSDL
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Well-Defined set of operations

root = Graph(ID="root")

root.add(Node(ID="A", label="Red"))
root.add(Node(ID="B", label="Red"))
root.add(Graph(ID="C", label="Blue"))
root.add(Node(ID="B", label="Yellow", path="C"))
root.add(Node(ID="A", label="Yellow", path="C"))

# Alternate syntax
#root['C"] = Node(ID="B", label="Yellow")
#root["C"] = Node(ID="A", label="Yellow")

Figure 2: "ADD"

McGill

Concrete Syntax

root

Abstract Syntax

MSDL

_label: Yellow

_id: root
_label: root
_id: A _id: B _id: C
_label: Red _label: Red | | _label: Blue
_id: A _id: B
_label: Yellow
Event
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Well-Defined set of operations

root

McGill

##Continued from last slide
root.connect("A", "C")

root.connect("C", "B") >

root.connect("A", "C.A")
root.connect("C.A", "C.B")

Figure 3: “CONNECT" Event

MSDL
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Well-Defined set of operations

##Continued from last slide
root.disconnect("A", "C.A")
root.disconnect("C.A", "C.B")

Figure 4: “DISCONNECT" Event

McGill
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Well-Defined set of operations

##Continued from last slide
root.move("A", "C.D")
root.move("B", "A")

Indirect events:
- A = root.remove("A")

N - root.disconnect("A", "C")
- A.rename("D") .

- root.add(A, "C")
- root.connect("C.A", "C")

- B = root.remove("B")

- root.disconnect("C", "B")
- B.rename("A")
- root.add(B)
root.connect("C", "A")

Figure 5: “"MOVE" Event

McGill
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Well-Defined set of operations

_>##Cont|nued from last slide .,

root.remove("A")

Indirect event:
root.disconnect("C.A", "A")

C = root.remove("C")

Indirect event:
root.disconnect("C.D", "C")

root = None

Figure 6: "REMOVE" Event

McGill
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High Level lteration

IMPORTANT: The elements inside a graph are NOT ordered. They are iterated in an undefined order.
Note: This could easily be changed if needed in the future.

for elem in root.iterate() . . .
Bk
for elem in root.iterateAll(traversal="BreathFirst")

McGill

for elem in root.iterateAll(traversal="DepthFirst") . . .
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Simple Navigation Language

e Every operation acting on a graph takes one or multiple path arguments. A path is used
to locate the elements concerned by the operation. A path is simply a string “X.Y.Z"
navigating through the graph hierarchy.

A = root.get("C.A")

C = root.get("C")

B = C.get("root.B") .

#maybe in the future:
CA = root.get("A>C.A")

McGill
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Primitive Types

Node

« |#_id: string

PrimitiveTypes

+getValue()
+setValue()
+isMeta()

i

MSDL

#_label: string

+rename()
A node contains only an id and a +relabezl§)
label. In order to support complex
models, the graph kernel supports
generalized nodes containing values.
A graph will use them as if they were Graph
generic nodes. At some point +add()
in the future, AToM3 will understand the ~ — + [rsomeetO
meaning of an "Int" node in a given model. :;gj;zz*;()
Right now, the kernel itself cannot tell
the difference. Note that a new event
is added for the primitive types: "SETVALUE".

SymbolTable

McGill

List

Bool Float

String

Int
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Import/Export to XML

e A simple XML graph language (AGL) was designed to export graphs to stable storage.

e To ease reuse, one AGL file is generated for each children graph contained in a the
exported graph.

e Now very simple to use..

McGill
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McGill

Import/Export to XML

MSDL

gen = AGLGenerator(root, directory="./")

gen.genCode()

loader = AGLLoader(directory="./")
root = AGLLoader.load("root")

C = AGLLoader.load("root.C")

top = Graph(ID="top")
top.add(C)

top.add(root)

top
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Undo / Redo

e Still in development :)
e |s based on the notion of events presented previously

e When executed, an event will be pushed on a stack with the necessary information to
perform the inverse operation.

e Each Graph will remember the performed operations that concerns it.

e | am now explaining this on the board :)

McGill
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Versioning

e Generalizes Undo/Redo
e Basically, a version groups a set of events that were performed on a model.

e A user can modify a model and at any point in time define a particular state to be a
version X. At this point, a new Undo/Redo stack is initialized.

e When exporting the models to stable storage, all the Undo/Redo information for each
version is also saved.

e \When importing a model, a particular version could be imported, or even more than one
version.

McGill .
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Non-Functionnal Features

e Fast, but consumes a lot of memory. (Partly due to python)
e Simple Design, minimal

e Easy to use (I Hope!)

e Heavily tested (I am still creating new test cases)

e Optimized for meta-modelling:

— Hashtables were used in combination with lists: fast element retrieval, fast iteration.
Good for simulators, code generators.

McGill }
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e Why no labelled edges?

e Dangling edges?

e Why no hyper edges?

e What about ports?

e What about cyclic hierarchy?

e Any other questions?

McGill

Q&A

MSDL
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What’'s Next

e Undo, Redo, Versioning
e Tests, Tests, Tests..
e Higraph morphisms (already have graph morphisms)

e Higraph Transformation!

MSDL
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