PyGK: The Python Graph Kernel

Marc Provost
McGill University
marc.provostOmail.mcgill.ca

February 18, 2005

Abstract
This presentation introduces PyGK, the Python Graph Kernel, which will be the core
component of the next generation of AToM?3, the meta-modelling tool developed at
McGill. PyGK is a package implementing Labelled, Directed and Hierarchical Graphs.
We will go over its main features in details with several intuitive examples.

Marc rovos MSDL

Presentation Overview

e Intro to AToM? Structure
e Functional Features

e Examples

e Non-Functional Features
e Performance Analysis

o Q& A

e \What's next?

McGill

Marc rovos MSDL

AToM? Structure

[l : Create Models

[]: Compare Models

[]: Transform Models

McGill

Marc rovos MSDL

Coarse Grained Functional Requirements

Labelled.. Directed.. Hierarchical..

McGill

Marc rovos MSDL

Fine Grained Functional Requirements

e Well-Defined set of operations
e High-level Iteration

e Simple Navigation language

e Primitive Types

e Import/Export to XML

e Undo/Redo

e \ersioning

McGill

Marc rovos MSDL

Well-Defined set of operations

Node

« |#-1d: string
#_label: string

+rename ()
+relabel ()

A

Graph

+add()

<@ +connect()
+disconnect()
+remove ()
+move ()

McGill

Marc Provost

Well-Defined set of operations

root = Graph(ID="root")

Indirect events:
- root.rename("root")
- root.relabel("root")

root = Graph(ID="root", label="Blue")

Indirect events:
- root.rename("root")
- root.relabel("blue")

Figure 1: “CREATE","RENAME", "RELABEL"

root

Events

MSDL

Marc Provost

Well-Defined set of operations

root = Graph(ID="root")

root.add(Node(ID="A", label="Red"))
root.add(Node(ID="B", label="Red"))
root.add(Graph(ID="C", label="Blue"))
root.add(Node(ID="B", label="Yellow", path="C"))
root.add(Node(ID="A", label="Yellow", path="C"))

Alternate syntax
#root['C"] = Node(ID="B", label="Yellow")
#root["C"] = Node(ID="A", label="Yellow")

Figure 2: "ADD"

McGill

Concrete Syntax

root

Abstract Syntax

MSDL

_label: Yellow

_id: root
_label: root
_id: A _id: B _id: C
_label: Red _label: Red | | _label: Blue
_id: A _id: B
_label: Yellow
Event

Marc Provost

Well-Defined set of operations

root

McGill

##Continued from last slide
root.connect("A", "C")

root.connect("C", "B") >

root.connect("A", "C.A")
root.connect("C.A", "C.B")

Figure 3: “CONNECT" Event

MSDL

Marc rovos MSDL

Well-Defined set of operations

##Continued from last slide
root.disconnect("A", "C.A")
root.disconnect("C.A", "C.B")

Figure 4: “DISCONNECT" Event

McGill

Marc rovos MSDL

Well-Defined set of operations

##Continued from last slide
root.move("A", "C.D")
root.move("B", "A")

Indirect events:
- A = root.remove("A")

N - root.disconnect("A", "C")
- A.rename("D") .

- root.add(A, "C")
- root.connect("C.A", "C")

- B = root.remove("B")

- root.disconnect("C", "B")
- B.rename("A")
- root.add(B)
root.connect("C", "A")

Figure 5: “"MOVE" Event

McGill

10

Marc rovos MSDL

Well-Defined set of operations

_>##Cont|nued from last slide .,

root.remove("A")

Indirect event:
root.disconnect("C.A", "A")

C = root.remove("C")

Indirect event:
root.disconnect("C.D", "C")

root = None

Figure 6: "REMOVE" Event

McGill

11

Marc Provost

MSDL

High Level lteration

IMPORTANT: The elements inside a graph are NOT ordered. They are iterated in an undefined order.
Note: This could easily be changed if needed in the future.

for elem in root.iterate() . . .
Bk
for elem in root.iterateAll(traversal="BreathFirst")

McGill

for elem in root.iterateAll(traversal="DepthFirst") . . .

12

Marc rovos MSDL

Simple Navigation Language

e Every operation acting on a graph takes one or multiple path arguments. A path is used
to locate the elements concerned by the operation. A path is simply a string “X.Y.Z"
navigating through the graph hierarchy.

A = root.get("C.A")

C = root.get("C")

B = C.get("root.B") .

#maybe in the future:
CA = root.get("A>C.A")

McGill

13

Marc Provost

Primitive Types

Node

« |#_id: string

PrimitiveTypes

+getValue()
+setValue()
+isMeta()

i

MSDL

#_label: string

+rename()
A node contains only an id and a +relabezl§)
label. In order to support complex
models, the graph kernel supports
generalized nodes containing values.
A graph will use them as if they were Graph
generic nodes. At some point +add()
in the future, AToM3 will understand the ~ — + [rsomeetO
meaning of an "Int" node in a given model. :;gj;zz*;()
Right now, the kernel itself cannot tell
the difference. Note that a new event
is added for the primitive types: "SETVALUE".

SymbolTable

McGill

List

Bool Float

String

Int

14

Marc Provost MS DL
Import/Export to XML

e A simple XML graph language (AGL) was designed to export graphs to stable storage.

e To ease reuse, one AGL file is generated for each children graph contained in a the
exported graph.

e Now very simple to use..

McGill

15

Marc Provost

McGill

Import/Export to XML

MSDL

gen = AGLGenerator(root, directory="./")

gen.genCode()

loader = AGLLoader(directory="./")
root = AGLLoader.load("root")

C = AGLLoader.load("root.C")

top = Graph(ID="top")
top.add(C)

top.add(root)

top

16

Marc Provost MS DL
Undo / Redo

e Still in development :)
e |s based on the notion of events presented previously

e When executed, an event will be pushed on a stack with the necessary information to
perform the inverse operation.

e Each Graph will remember the performed operations that concerns it.

e | am now explaining this on the board :)

McGill

17

MSDL

Marc Provost

Versioning

e Generalizes Undo/Redo
e Basically, a version groups a set of events that were performed on a model.

e A user can modify a model and at any point in time define a particular state to be a
version X. At this point, a new Undo/Redo stack is initialized.

e When exporting the models to stable storage, all the Undo/Redo information for each
version is also saved.

e \When importing a model, a particular version could be imported, or even more than one
version.

McGill .

MSDL

Marc Provost

Non-Functionnal Features

e Fast, but consumes a lot of memory. (Partly due to python)
e Simple Design, minimal

e Easy to use (I Hope!)

e Heavily tested (I am still creating new test cases)

e Optimized for meta-modelling:

— Hashtables were used in combination with lists: fast element retrieval, fast iteration.
Good for simulators, code generators.

McGill }

Marc Provost

McGill

avg tine (sec)

1.5

8.5

Iteration Performance Conmparison

{BF5}

T T
internal ——

generator
iterator

e
-—_HH
HH""-\-_
A\H"‘x‘_,_,_'—'—'__'_ﬂx
"'\-_._________\-
e
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

denzity

MSDL

20

Marc Provost

McGill

tine F188 nodes

Henory Usage

T
internal

o8

188

158

288
nun nodes S1688

298

Joa

398

488

MSDL

21

Marc Provost

e Why no labelled edges?

e Dangling edges?

e Why no hyper edges?

e What about ports?

e What about cyclic hierarchy?

e Any other questions?

McGill

Q&A

MSDL

22

Marc Provost

What’'s Next

e Undo, Redo, Versioning
e Tests, Tests, Tests..
e Higraph morphisms (already have graph morphisms)

e Higraph Transformation!

MSDL

23

