
Testing Model Tranformations

Bottom Up and Top Down

Amr Al Mallah



Testing Model Transformation

1. Model Transformations frameworks : 
    1.1 MoTif in context of Traffic 2 Petri Net.
  
2. Testing this Model transformation :
    2.1. T-Unit approach (half modular) :
       2.1.1 : Matching problem (in general and in Atom3 models).
       2.1.2 : Criteria matching ( building + compiling + using T-
Unit)

3. Modeling the model transformation framework:
    3.1 Overall testing blocks.
    3.2 Input model generator block.
    3.3 Result acceptor block.
    3.4 The Analyzer/Invoker block  



Testing Model Transformation

Issues/ and comments:
1. Unit Testing approach i.e test cases are already specified.
2. Biggest issue is model comparison. 
3. Integration with Sagar's work .



Example : From Traffic to Petri Nets 

Input:
Traffic System formalism:
 - Generators
 - Road Segments (Capacity)
 - In/out Ports
 - Collectors

Output:
Petri net formalism:
- Places with tokens
- Transitions

 Model to Model transformation 
between different Meta Models 
!



Traffic 2 PN in GG rules

1. Defined the transformation as a bunch of rules executed in a 
specific sequence. 

2. These rules involve a lot of intermediary steps :
1. Add a Petri net Light to each traffic light.
2. Add a Petri net Generator to each traffic generator.
3. ..
4. ..
5. connect Petri net Road segments
6. ..
7. ..
8. remove traffic light .
9. ..

10. ..



Traffic 2 PN in GG rules

Add a PN light to each traffic 
light



Traffic 2 PN in GG rules

Join PN road segments



Traffic 2 PN in MoTif

1. Rule Compiler :

Rule 1

Rule 2



Traffic 2 PN in MoTif

2. Traffic 2 PN MoTif  Model :



Traffic 2 PN in MoTif

2. Traffic 2 PN MoTif  Model :



Traffic 2 PN in MoTif

2. Traffic 2 PN MoTif  Model :



Traffic 2 PN in MoTif

2. Traffic 2 PN MoTif  Model :



Traffic 2 PN in MoTif

2. Traffic 2 PN MoTif  Model :

Success 
out



Traffic 2 PN in MoTif

3. Compile an example input model and link to the generated 
MoTif environment .



Traffic 2 PN in MoTif

4. Execute the 
transformation

Problems :
1. NAC or visit nodes only 

once
2. Different Meta models



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  a produce a report. 



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  a produce a report. 

Model Input in 
Atom3 / Other

Model Output in 
Atom3 / Other

Compile

Input 1

Output 1



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  a produce a report. 

Extended The User Block in 
MoTif to Remember the last 
tranformed graph it received 



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  a produce a report. 

Direct Matching is Dumb: Match Behavior
Not Semantics!! Yet !

RoadSegment:
name: tr_Foo

RoadSegment:
name: tr_bar

Equal ?



Bottom up testing framework : TUnit
3. Compare Result with expected output model.

Criteria1 : Contains-PN-
Generator



Bottom up testing framework : TUnit
3. Compare Result with expected output model.

Criteria2 : Contains-Traffic-Light



Bottom up testing framework : TUnit
3. Compare Result with expected output model.

Criteria3 : Contains-Traffic-
segment



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  a produce a report. 

Direct Matching is Dumb: Match Behavior
Not Semantics!! Yet !

RoadSegment:
name: tr_Foo

Has? C -1 C -3C -2



Bottom up testing framework : TUnit

Main Items Needed for it to be usable:
1. Describing the input, output model pairs
2. Execute the transformation and collect result
3. Compare Result with expected output model.
4. Collect meaningful results and  produce a report. 

1. Extends PyUnit = execution engine
2. Provide accurate mismatch reasons



Bottom up testing framework : TUnit

class TUnit(unittest.TestCase):
    
    def should_have(self, model, criteria):
        answer, message = criteria.check(model)
        assert answer ,message
    
    def should_not_have(self, model, criteria):
        answer,message = criteria.check(model)
        assert not answer, message 
 

 Many More could be added to this !!!



Bottom up testing framework : TUnit

The example:

ran the example with 4 
criteria .

one criteria failed 



3. Modeling the model transformation 
framework: The other direction !?

SUT: 
transformation

Invoker/Analyzer
Block

Input 
Generator

Block

Acceptor 
Block



3. Modeling the model transformation 
framework: The other direction !?

SUT: 
transformation

Invoker/Analyzer
Block

Input 
Generator

Block

Acceptor 
Block

Blocks = DEVS



The invoker analyzer Block

1. Atomic Dev that contain a list of input model files names 
that need to be tested.

2. After each internal transition it produces the name of the 
file for the next model to be tested and wait for the Result

3. When it receives the results it
1.  compares the results to the expected results and 

append to the report .
2. Reads the next model name and send it to the Model 

generator.
Invoker/Analyzer

Block

Blocks = DEVS



Input Model Generator

1. waits for an event called testCase which has parameters for 
the file name ,

2.  loads the file into a model object (Atom3 maybe)
3.  and send it to black box (MoTif Dev) or a black box in a 

Devs container .

Input 
Generator

Block



The Acceptor Block dissected 

Criteria-1

Criteria-2

Criteria-3

Criteria-4

Distributer Collector
Synchronizer

Collector sends the result to Invoker 



Extending the model

SUT: 
transformation

Invoker/Analyzer
           Block

Input 
Generator

Block
Acceptor 
Block

stage 1

stage 2

stage 3

Divide the test exec into multiple stages. 

Add control structure to you testing.



Testing Model Transformation

Issues/ and comments:
1. Unit Testing approach i.e test cases are already specified.
2. Biggest issue is model comparison. ( criteria + XML diff)
3. Integration with Sagar's work .
   3.1 : Need outputs for the generated test cases
   3.2 : Mutation analysis modeling. 



Thank you 

Questions ?


