Software Reengineering:
Dynamic Analysis: Testing

Henrigue Rocha

Universiteit
Antwerpen

Introduction

 Dynamic Analysis verifies properties of a system during
execution.

e Testing Analysis is one example of Dynamic Analysis

* Unit tests, integration tests, system tests, and acceptance
tests use dynamic testing

__.A

Testing

e Tests are your life insurance! (OORP, p. 149)

e Tests are essential to assure the quality of refactoring
activities.

e Write Tests to Enable Evolution (OORP, p.153)
* Good tests can find bugs on your artifact

e Tests can also detect unwanted behavior

* You can also write tests to understand a part of a system
(OORP, p.179)

* Black box testing is usually more stable for the evolution of
a system (“Test the Interface, Not the Implementation”,
OORP, p.171).

___.A

Unit Testing

* In this session, we focus on Unit Testing.

 There are other types of testing (Integration, Performance,
Security, etc.).

* |t does not mean that Unit Testing is more important, but
those are the tests we can more easily automatize and
benefit from tool support.

___.A

Quality of a Test Suite

How do you know if your unit test cases are good enough?
Are they really testing the application?
When do we stop testing?

Solution: Test Coverage!

___.A

Test Coverage

Number of Covered Items

C = x1009
orerage Total Number of Items /o

Statement (Line, or Code) Coverage
* Branch (Condition) Coverage
 Path Coverage

* Mutation Coverage

___.A

Example: a function to test

int foo(int input, bool bl, bool b2, bool b3) {
int x = input;
int y = 0;
1f (bl)
X++;
1f (b2)
X——y
1f (b3)

Y=X;

return vy; Z;77
}

Statement/Line/Code Coverage

Test Case(s)
ASSERT foo (0, true, true, true) == 0;

int foo(int input, bool bl, bool b2, bool b3) {
int x = input;
int y = 0;
1f (bl)
X++7;
1f(b2)
X==;
1f(b3)

y=X;

return vy; Z;77
}

Statement/Line/Code Coverage

Test Case(s)
ASSERT foo (0, true, true, true) == 0;

int foo(int input, bool bl, bool b2, bool b3) {

100% Statement Coverage “

y

Branch/Condition Coverage

Test Case(s)
ASSERT foo (0, true, true, true) == 0;

int foo(int input, bool bl, bool b2, bool b3) {

1f (bl)

1f (b2)
“ 50% Branch Coverage “

1f (b3)

y
__A

Branch/Condition Coverage

Test Case(s)

ASSERT foo (0, true, true, true) == 0; w
ASSERT foo (0, false, false, false) == 07

int foo(int input, bool bl, bool b2, bool b3) {

100% Branch Coverage “

y

Path Coverage

Paths for three “if” each can be either true (T) or false (F)

r @
@
T F T F T F i F

__.A

T 2

Path Coverage

Test Case(s)
ASSERT foo (0, true, true, true) == 0;
ASSERT foo (0, false, false, false) == 0;

O 25% Path Coverage “

T 2

(9]
1 F T F T F I F

__A

Mutation Testing

* The steps for Mutation Testing are basically:

* Make small changes to the code (Mutants).
Each change is a different mutant.

* For each mutant, run the test cases:

 If one test fails it means your test was good enough to detect
the changes (the mutant is killed).

* If all tests passes, it means your tests did not detect the
changed behavior (the mutant survives).

* Therefore, the more mutants you kill, the better.

Number of Killed Mutants

Mutation Coverage =

Total Number of Mutants |

Mutation Testing: Small Example

Original Test Case
int f (bool a, bool b){ void testf () {
if(a && b) return 1; assert f (true, true)==1;
else return 0; assert f(false, false)==0;
} 7 }
Mutant
int f (bool a, bool b) {
if(a || b) return 1;
else return 0O;
: 7

Mutant Survives

the Test Case l

Mutation Testing: Small Example

Original Test Case
int f (bool a, bool b){ void testf () {
if(a && b) return 1; assert f (true, true)==1;
else return O; assert f (false, false)==0;
} 7 J
Mutant Missing Asser.tlons that
int f (bool a, bool b) { Could Kill this Mutant
if(a || b) return 1; assert f(false, true)==0;

else return O: assert f(true, false)==0;

} 7

___.A

Mutation Coverage

* Assess how good your test cases are at catching faults by
introducing defects into the source code.

e More reliable metric to validate test suite effectiveness.

__-A

Testing Coverage for the Project

* Itis required to show coverage for your Project (in both the
Intermediate and the Final Report)
* At least Statement Coverage, but Branch Coverage is better.

* You should show the chosen coverage before the refactoring,
and after (where hopefully you also added new tests).

* There is no set coverage limit to reach for the project.

e But if your project has a very low coverage you better have a
good explanation for that.

* Focus on increasing the coverage for the parts of the system
that is going to be affected by your refactorings.

___.A

