
Software Reengineering:
Dynamic Analysis: Testing

Henrique Rocha

Introduction

• Dynamic Analysis verifies properties of a system during
execution.

• Testing Analysis is one example of Dynamic Analysis
• Unit tests, integration tests, system tests, and acceptance

tests use dynamic testing

2

Testing

• Tests are your life insurance! (OORP, p. 149)
• Tests are essential to assure the quality of refactoring

activities.
• Write Tests to Enable Evolution (OORP, p.153)
• Good tests can find bugs on your artifact
• Tests can also detect unwanted behavior

• You can also write tests to understand a part of a system
(OORP, p.179)

• Black box testing is usually more stable for the evolution of
a system (“Test the Interface, Not the Implementation”,
OORP, p.171).

3

Unit Testing

• In this session, we focus on Unit Testing.
• There are other types of testing (Integration, Performance,

Security, etc.).
• It does not mean that Unit Testing is more important, but

those are the tests we can more easily automatize and
benefit from tool support.

4

Quality of a Test Suite

How do you know if your unit test cases are good enough?
Are they really testing the application?
When do we stop testing?

Solution: Test Coverage!

5

Test Coverage

• Statement (Line, or Code) Coverage
• Branch (Condition) Coverage
• Path Coverage
• Mutation Coverage

6

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝐼𝑡𝑒𝑚𝑠
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠

×100%

Example: a function to test

7

int foo(int input, bool b1, bool b2, bool b3){
int x = input;
int y = 0;
if(b1)

x++;
if(b2)

x--;
if(b3)

y=x;
return y;

}

Statement/Line/Code Coverage

8

int foo(int input, bool b1, bool b2, bool b3){
int x = input;
int y = 0;
if(b1)

x++;
if(b2)

x--;
if(b3)

y=x;
return y;

}

ASSERT foo(0, true, true, true) == 0;
Test Case(s)

Statement/Line/Code Coverage

9

int foo(int input, bool b1, bool b2, bool b3){
int x = input;
int y = 0;
if(b1)

x++;
if(b2)

x--;
if(b3)

y=x;
return y;

}

ASSERT foo(0, true, true, true) == 0;
Test Case(s)

100% Statement Coverage

Branch/Condition Coverage

10

int foo(int input, bool b1, bool b2, bool b3){
int x = input;
int y = 0;
if(b1)

x++;
if(b2)

x--;
if(b3)

y=x;
return y;

}

ASSERT foo(0, true, true, true) == 0;
Test Case(s)

50% Branch Coverage

Branch/Condition Coverage

11

int foo(int input, bool b1, bool b2, bool b3){
int x = input;
int y = 0;
if(b1)

x++;
if(b2)

x--;
if(b3)

y=x;
return y;

}

ASSERT foo(0, true, true, true) == 0;
ASSERT foo(0, false, false, false) == 0;

Test Case(s)

100% Branch Coverage

New Test

Path Coverage

12

Paths for three “if” each can be either true (T) or false (F)

Path Coverage

13

ASSERT foo(0, true, true, true) == 0;
ASSERT foo(0, false, false, false) == 0;

Test Case(s)

25% Path Coverage

Mutation Testing

• The steps for Mutation Testing are basically:
• Make small changes to the code (Mutants).

Each change is a different mutant.
• For each mutant, run the test cases:

• If one test fails it means your test was good enough to detect
the changes (the mutant is killed).

• If all tests passes, it means your tests did not detect the
changed behavior (the mutant survives).

• Therefore, the more mutants you kill, the better.

14

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑖𝑙𝑙𝑒𝑑 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

Mutation Testing: Small Example

15

int f(bool a, bool b){
if(a && b) return 1;
else return 0;

}

Original

Mutant

void testf(){
assert f(true, true)==1;
assert f(false, false)==0;

}

int f(bool a, bool b){
if(a || b) return 1;
else return 0;

}

Test Case

Mutant Survives
the Test Case

Mutation Testing: Small Example

16

int f(bool a, bool b){
if(a && b) return 1;
else return 0;

}

Original

Mutant

void testf(){
assert f(true, true)==1;
assert f(false, false)==0;

}

int f(bool a, bool b){
if(a || b) return 1;
else return 0;

}

Test Case

assert f(false, true)==0;
assert f(true, false)==0;

Missing Assertions that
Could Kill this Mutant

Mutation Coverage

• Assess how good your test cases are at catching faults by
introducing defects into the source code.

• More reliable metric to validate test suite effectiveness.

17

Testing Coverage for the Project

• It is required to show coverage for your Project (in both the
Intermediate and the Final Report)
• At least Statement Coverage, but Branch Coverage is better.
• You should show the chosen coverage before the refactoring,

and after (where hopefully you also added new tests).

• There is no set coverage limit to reach for the project.
• But if your project has a very low coverage you better have a

good explanation for that.
• Focus on increasing the coverage for the parts of the system

that is going to be affected by your refactorings.

18

