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AS THE RECENT coronavirus out-
break has made painfully clear, the 
quantity and quality of our test efforts 
determine what defect rates we mea-
sure. If you don’t test, or test poorly, 
you will discover few defects and may 
be tempted to draw the wrong conclu-
sions about the quality of whatever it 
was that you were testing.

Suppose there are two teams de-
veloping competing products, let’s 
call them team Alice and team Bob. 
If team Alice performs a more rig-
orous testing of their product than 
does team Bob, their number of dis-
covered defects will likely be much 
higher than team Bob’s. One may 
then be tempted to conclude that 
the quality of team Alice’s product 
is lower than that of team Bob. This 
could of course be true, but it would 
be incorrect to conclude that from 
these numbers.

Clearly, the more rigorous testing 
you do, the more problems you will 
find. So, what exactly is a sufficiently 
rigorous way to test software, espe-
cially if that software is safety critical? 
There are some standard guidelines 
that most organizations follow, so we 
may want to look at how good those 

guidelines are. Can we really trust 
software products that were tested to 
the best available standards?

Statement Coverage
The minimum one could require of 
a test strategy is that it exercises ev-
ery executable statement in the code. 
That seems like a relatively mild re-
quirement, but it is not. Consider, for 
instance, a switch statement where 
the cases cover all possible values of 
an enumerated value. Most standards 
require that every switch statement 
also contains a default clause to make 
sure that one does not unintentionally 

skip some cases. In the example, that 
default clause will be unreachable. In 
defensive coding, one also tries to pro-
tect against the unthinkable types of 
errors, just in case some bizarre mal-
function or data corruption leads an 
execution astray in unforeseen ways.

Reaching full statement coverage 
becomes difficult if we have to make 
the impossible happen in all these 
cases. Most organizations there-
fore do not require 100% statement 
coverage in product testing, but aim 
for getting as close to that number as 
possible. This is, in itself, a little unset-
tling because it makes the target level 

Test Fatigue
Gerard J. Holzmann

Digital Object Identifier 10.1109/MS.2020.2986107
Date of current version: 18 June 2020

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore.  Restrictions apply. 



RELIABLE CODE

12 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

negotiable, which means that it can 
give way under time pressure. Simple 
statement coverage also falls short in 
that it ignores the sensitivity of com-
putations to data values. For that, we 
have to look at ways to exercise execu-
tion paths, and not just statements.

It’s All About the Data
For safety critical systems, the cur-
rently prevailing standards, such as 
ISO 26262,1 EN 50128:2011,2 and 
IEC 61508,3 strongly recommend the 
use of a test coverage metric known as 
modified condition/decision coverage 
(MC/DC). One standard, DO-178C,4 
which is dominant in the airspace in-
dustry, goes a step further and defines 
its use as required.

To meet MC/DC requirements, ev-
ery condition in a program not only 
has to evaluate to true and false in 
separate tests, but every clause in the 
condition must also independently 
evaluate to true and false in separate 

tests. This introduces some of the re-
quired sensitivity to data values that 
influence computations. Of course, it 
is not too hard to cheat on this met-
ric and ease the test requirements by 
moving the evaluation of Boolean 
expressions outside decision points, 
that is, placing them in statements 
that are evaluated before each “if” 
statement that has multiple clauses in 
the condition.

Cyclomatics
A different metric, introduced in the 
late 1970s by Thomas McCabe,5 
aims to measure the number of paths 
through the control-flow graph of a 
function. To achieve sufficient path 
coverage of a function, we should now 
run at least as many tests as the cyc-
lomatic complexity number indicates. 
This metric is typically defined by the 
formula E−N + 1, where N is the num-
ber of nodes, and E is the number of 
edges of the control-flow graph.

Not surprisingly, it is also easy to 
cheat on this metric and dramatically 
lower the measured cyclomatic com-
plexity counts without changing the 
functionality of a function. Consider, 
for instance, the switch statement 
shown in Figure 1(a).

The cyclomatic complexity contrib-
uted by the switch statement is n + 1. 
Yet, we can write this same fragment 
of code with a data-driven approach, 
using a lookup table with function 
pointers, as shown in Figure 1(c). Now 
the fragment of code has the minimum 
cyclomatic complexity of one. If n is 
10, using cyclomatic complexity met-
ric, we would need to run at least 11 
tests of the fragment in Figure 1(a), 
but only one for the fragment in Fig-
ure 1(a), even though they perform the 
same computation.

There are proposals, based on ex-
amples like this, to modify the com-
plexity metric by not counting switch 
statements at all. It is not hard to imag-
ine that this will provide an incen-
tive to some developers to rewrite all 
if-then-else statements as switch state-
ments as well, and artificially lower the 
cyclomatic complexity numbers, and 
thus the perceived test burden.

Other proposals have tried to move 
the definition of cyclomatic complexity 
numbers closer to an MC/DC metric 
by increasing the number by one for 
every Boolean operator that is used in 
conditional tests. The extended metric 
produces higher numbers, although it 
loses some of the intuition behind the 
definition as a pure graph property. 
Are any of these metrics sufficient to 
achieve adequate test coverage?

Some Gotchas
Something that is easily lost in the de-
bate about useful test metrics is that 
the true measure of test quality is not 
coverage, but how well it helps us de-
termine if all design requirements are 

2 n1

switch (i) {
case 1: fct_1(); break; 
case 2: fct_2(); break;
…
case n: fct_n(); break;
default: assert(false); break; 
}

(a) (b)

void (* table[])(void) = { fct_1, …, fct_n};
assert(i > 0 && i <= n);
table[i]();

(c)

FIGURE 1. (a) A switch statement with n + 1 cases and (b) the corresponding control-

flow graph with n + 3 nodes and 2(n + 1) + 2 edges, giving a cyclomatic complexity of 

n + 1, equal to the number of execution paths. Code that performs the same function 

with a lookup table is shown in (c), giving a cyclomatic complexity of just one (assuming 

that the assertion is implemented as a function call).
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met. If we have a test suite that ac-
complishes this fully, yet leaves por-
tions of the code uncovered, this either 
means that there is redundant code in 
the application or that the design re-
quirements are incomplete. Both is-
sues would need addressing before we 
would just blindly add test cases that 
accomplish nothing but to reach un-
covered parts of the code. But there are 
other problems as well.

Figure 2 shows a small fragment 
of code written in C, with two con-
ditional tests in a row and the corre-
sponding control-flow graph. The first 
condition allows for global pointer 
variable p to be assigned the address 
of integer parameter named  x, and 
the second condition allows that same 
pointer variable to be dereferenced 
and assigned the value of a second in-
teger parameter named y. We’ll leave 
aside here the wisdom of using point-
ers to function parameters or manipu-
lating their values in this way, but just 
focus on the structure of the control-
flow graph.

Two tests will suffice to get 100% 
statement coverage in this case, and 
because the conditions are very sim-
ple, they also suffice to achieve 100% 
MC/DC coverage. The first test can 
be to call fct(0,0), and the second test 
fct(1,1). These two tests exercise two 
of the four possible paths through 
the graph. The remaining two paths 
can be reached by calling fct(1,0) 
and fct(0,1). The first three of these 
tests reveal no problems with the way 
this function is written. The last test 
though, fct(0,1), will lead to a crash. 
So in this case, the MC/DC-compli-
ant test suite covered just 50% of the 
paths in the control-flow graph and 
fails to reveal a serious bug.

What if we did not have just two 
conditional tests in a row but 10 or 
100? If we otherwise don’t change 
the structure of the graph, just two 

separate tests could still produce 100% 
MC/DC compliance, but the number of 
paths would be 1,024 (210) in the first 
case and a staggering 1.27 × 1030 (2100) 
in the second case. This means that the 
odds of finding a bug, if it exists in just 
one of those paths, is 0.1% in the first 
case, and just about zero in the second 
case. That doesn’t sound too good, so 
let’s look at a different example.

Figure 3 shows another small frag-
ment of code, this time containing a 
simple for-loop, which is used to as-
sign values to the elements of a locally 
declared array, and the corresponding 
control-flow graph. How many paths 
are there that we can take through this 
graph? It depends, of course, on the 
value of x + y. All negative values of 
the sum will short circuit the loop, but 
all positive values (in say, 64-bit inte-
ger arithmetic) will produce a differ-
ent number of iterations of the loop, 
and thus a different execution path. 
We can achieve 100% MC/DC cover-
age with just a single test though, for 
instance, by executing just fct(1,1). 
Needless to say, this one test will fail 
to reveal the potential out-of-bounds 
array-indexing error that is lurking in 
this code.

Both of these first two examples 
are still reasonably simple, but things 
go further downhill fast if we also in-
troduce a small amount of concur-
rency into the code. I’ve often used 
the following example in tutorials and 
courses I’ve given, because it shows the 
nature of the problem so well.

Consider three threads of execu-
tion, with three statements in each. 
That’s a total of only nine statements, 

int *p;

void
fct(int x, int y)
{

if (x)
{  p = &x;
}
if (y)
{  *p = y;
}

}

(a) (b)

FIGURE 2. (a) A code fragment with 

two consecutive conditional tests and 

(b) its corresponding control-flow graph. 

With seven nodes and 10 edges, the 

cyclomatic complexity is four.

void
fct (int x, int y)
{  int i, a[4];

for (i = 0; i < x+y; i++) 
{  a[i] = i;
}

}

(a) (b)

FIGURE 3. (a) A code fragment with a loop and (b) its corresponding control-flow 

graph. With five nodes and seven edges, the cyclomatic complexity is three.
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without any conditional tests or 
loops—just straight-line code, as dis-
played in Figure 4.

How many possible execution paths 
are there for this system? If we assume 
arbitrary interleaving, using a process 
scheduler that is fully unconstrained, 
you can visualize the executions with 
a Rubik’s cube, where every path from 
one corner of the cube to the opposite 
corner, traveling along the edges of the 
27 smaller cube segments, is a pos-
sible execution path. Say the steps of 
thread_1 move in the x-axis alongside 
the cube edges, the steps of thread_2 
move along the y-axis, and the steps of 
thread_3 along the z-axis.

If you do the calculation, you’ll 
see that there are 1,680 such paths 
through the cube. But, any single one 
such path will produce 100% MC/DC 
coverage. If only one of these interleav-
ing paths would lead to a crash (there 
are more), that would mean that the 
odds of uncovering it with that single 
test would be 1 in 1,680, or less than 
0.06%. Note that this is still a very 
small system. The code that runs the 
Mars Curiosity Rover built at NASA’s 
Jet Propulsion Laboratory, for ex-
ample, has roughly 2.8 million lines 
of code executing in approximately 
120 different parallel tasks. Although 

there are constraints in this case on 
task interleaving, the number of pos-
sible executions is astonishingly large. 
So, is there something else we can do 
that is not more burdensome than 
MC/DC compliance testing already is, 
that can perform better?

Fuzzing
A popular alternative method is fuzz 
testing. The basic approach is simple: 
randomize the inputs to the software 
under test. It is likely to shake out bugs, 
especially where input values fall out-
side the range that a developer expects. 
Generally, the best approach is to bias 
the input selections to likely vulnerable 
spots, for instance, near boundary val-
ues, but we can still look at how well 
a purely random set of tests performs.

For this experiment, I took a ran-
domly generated graph using a pro-
gram created by mathematician 
Richard Johnsonbaugh. I generated 
a graph with 1,000 nodes and 2,000 
edges and an average fanout for each 
node of seven successors. A total of 
781 of the nodes are reachable from 
a preselected start node. How many 
of those reachable nodes can we find 
with a series of random walks? For 
the experiment, we limited the max-
imal length of a test run to a fixed 

5,000 steps to avoid getting bogged 
down in cycles.

We can take the graph to represent 
not just a control-flow graph but a full 
program execution graph, with explicit 
data values, so that each path through 
this graph is representative of a true 
execution. The same state in a control-
flow graph could then appear in many 
places in the execution graph, when 
it is reached for different data values. 
Given that, the 1,000 node graph is 
only a tiny example of what we can 
expect to see for a full program execu-
tion of a real software application.

Figure 5 shows the number of vis-
ited nodes if we perform between 10 
and 100,000 random test runs in this 
graph. The solid line shows the per-
centage of the visited nodes that are 
unique, that is, after we remove dupli-
cates when the same nodes are visited 
repeatedly in different tests.

The effective coverage that is re-
alized increases quickly for the first 
few tests, but then flattens and more 
slowly reaches an asymptote, making it 
harder and harder to increase coverage 
further. Even after 100,000 runs of up 
to 5,000 steps each, we never reach all 
781 nodes. The time needed for these 
tests grows, of course, linearly with 
the number of tests performed, which, 

int x,  y,  r;
int *p, *q, *z;
int **a;

thread_1() // initialize    
{

p = &x;
q = &y;
z = &r;

}

(a)

thread_3() // access z via a and p
{

a = &p;
*a = z;

**a = 12;
}

(c)

thread_2() // swap *p and *q
{

r = *p;
*p = *q;
*q = r;

}

(b)

FIGURE 4. (a)–(c) The three parallel threads of execution, with three statements in each, without conditionals or loops. Because 

there are no conditional paths, the cyclomatic complexity of each function is one.
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even for this small graph, can quickly 
become excessively large (we stopped 
the tests after 26 h of runtime). The 
main reason for the inefficiency of this 
test suite is the amount of duplicate 
work that is done, with tests perform-
ing the same executions over and over. 
So, is there no hope?

Graph Algorithms
What if we used a plain depth-first 
search algorithm from the same start 
node in the graph and see how long it 
takes to visit each node? As you might 
expect, it takes just one single “test” 
to do this, and this run visits all 781 
unique nodes, for 100% coverage, in a 
fraction of a second.

How can we make use of the large 
difference between the performance 
of a depth-first search algorithm com-
pared with the relatively low coverage 
that can be obtained with randomized 
tests or test suites that are compliant 
with an MC/DC metric?

The key here is that the depth-first 
search algorithm can remember nodes 
that have been visited before and can 
backtrack efficiently to a previous 
point in the search to explore alterna-
tives for moving forward. To enable 
backtracking, we should be able to 
either save complete search states on 
a stack or to recreate a previous state 
by undoing the last action performed. 
That is simple for small graphs but can 
be expensive for execution graphs of a 
realistic size, where a single-state de-
scription could require the storage of 
hundreds of kilobytes or more. There 
are tools such as logic model check-
ers that can optimize this process, but 
they are not always easy to use.

The Mars Rover
The following numbers can show 
what is possible though. I was involved 
in the testing of the flash file system 
software for the Curiosity Rover that 

landed on the surface of Mars in Au-
gust 2012, and that today still con-
tinues its exploration of the Martian 
surface. The flash file system code is 
roughly 6,000 lines of code, so it’s not 
particularly large, but it is quite com-
plex. Standard testing of the code was 
a required part of the development 
process, with the usual goal of getting 
as close as possible to 100% statement 
coverage. There was no requirement to 
also maximize MC/DC coverage or to 
consider the cyclomatic complexity of 
functions at this time.

Jointly, the approximately 100 unit 
tests that were defined for this code 
reached 35,796 unique system states. 
Across six modules from this code, the 
median value of the statement coverage 
that was realized in these tests was a 
respectable 98%, meeting the formal 
test requirements.

We also instrumented the same 
code to do a randomized search. After 
approximately 5 h, the randomized 
search had reached 398 Million system 

states, exploring roughly 50,000 exe-
cution paths. That’s already quite a bit 
better than the standard test suite. We 
then repeated the test by instrumenting 
the code for a depth-first search using 
the Spin6 model checker as the search 
engine. After running this test for an-
other 5 h, the search had reached 745 
million distinct system states, while 
exploring approximately 50 million 
distinct execution paths. The numbers 
are summarized in Table 1. So, in this 
application, the more rigorous tests 
explored four orders-of-magnitude-
more states and execution paths than 
with standard test methods, bringing 
a comparable increase in rigor and in 
the number of problems discovered in 
these tests.

Given the effort that is required to 
set up this type of model-driven test, 
this level of rigor is typically only fea-
sible for a subset of the truly critical 
modules within a larger application. 
The full Mars Rover software counted 
roughly 2.8 million lines of code, of 
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FIGURE 5. The cumulative coverage of random test runs in a random graph of 1,000 

nodes and 2,000 edges, with 781 nodes reachable.
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which the 6,000 lines for the flash file 
system was only a small part.

Static Testing
Test rigor is, of course, not an all-or-
nothing issue. What if you do not 
have the resources to explore the type 
of rigorous code exercise that I de-
scribed previously? Fortunately, there 
are still some very good choices, and 
for the Mars Rover software, we used 
them all.

The most direct method for in-
creasing the level of rigor of a software 
test effort is currently to use tools that 
work by performing symbolic execu-
tions of the code while testing for po-
tential anomalies. A single symbolic 
execution uses ranges of possible data 
values, capturing the possible effect of 
large numbers of concrete executions, 

although with less precision. One can 
even use this type of framework to 
reason backwards and answer ques-
tions like “for which input data values 
can a given statement execution result 
in an error, such as a nil-pointer defer-
ence, an out-of-bounds array-indexing 
error, or the evaluation of an uninitial-
ized variable?”

The tools that can do this type of 
analysis are static source code ana-
lyzers, which have quickly gained in 
popularity. If you can afford it, it is 
recommended to use more than just 
one state-of-the-art static source code 
analyzer. For the Mars Rover flight 
software, for example, we used five 
different source code analyzers. There 
is surprisingly little overlap in the out-
put of the tools: most tools currently 
on the market are developed with a 

particular strength and theoretical 
foundation, and they excel at the cor-
responding type of analyses. The com-
bined results of all the tools were an 
integral part of the code reviews that 
we used on the Rover software.7

The best part of static code analy-
sis is perhaps that the checks that are 
performed are automated and can be 
run repeatedly, from the moment cod-
ing starts, on every new module check-
in and on every integration build. This 
addresses another common feature of 
standard testing: test fatigue. After all, 
“exhaustive” testing often means that 
testing continues until either the test 
team, or the time available to them, 
is exhausted. 
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Table 1. A comparison of coverage for three different 
test methods of the Mars Curiosity Rover flash file 

system software.

Number of unique 
states reached

Number of 
execution paths

Standard unit test with 98% statement coverage 35,796 100

Randomized fuzz test 398 million 50,000

Depth-first search instrumented test 745 million 50 million
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