
0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E JULY/AUGUST 2020 | IEEE SOFTWARE 11

RELIABLE CODE
Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

AS THE RECENT coronavirus out-
break has made painfully clear, the
quantity and quality of our test efforts
determine what defect rates we mea-
sure. If you don’t test, or test poorly,
you will discover few defects and may
be tempted to draw the wrong conclu-
sions about the quality of whatever it
was that you were testing.

Suppose there are two teams de-
veloping competing products, let’s
call them team Alice and team Bob.
If team Alice performs a more rig-
orous testing of their product than
does team Bob, their number of dis-
covered defects will likely be much
higher than team Bob’s. One may
then be tempted to conclude that
the quality of team Alice’s product
is lower than that of team Bob. This
could of course be true, but it would
be incorrect to conclude that from
these numbers.

Clearly, the more rigorous testing
you do, the more problems you will
find. So, what exactly is a sufficiently
rigorous way to test software, espe-
cially if that software is safety critical?
There are some standard guidelines
that most organizations follow, so we
may want to look at how good those

guidelines are. Can we really trust
software products that were tested to
the best available standards?

Statement Coverage
The minimum one could require of
a test strategy is that it exercises ev-
ery executable statement in the code.
That seems like a relatively mild re-
quirement, but it is not. Consider, for
instance, a switch statement where
the cases cover all possible values of
an enumerated value. Most standards
require that every switch statement
also contains a default clause to make
sure that one does not unintentionally

skip some cases. In the example, that
default clause will be unreachable. In
defensive coding, one also tries to pro-
tect against the unthinkable types of
errors, just in case some bizarre mal-
function or data corruption leads an
execution astray in unforeseen ways.

Reaching full statement coverage
becomes difficult if we have to make
the impossible happen in all these
cases. Most organizations there-
fore do not require 100% statement
coverage in product testing, but aim
for getting as close to that number as
possible. This is, in itself, a little unset-
tling because it makes the target level

Test Fatigue
Gerard J. Holzmann

Digital Object Identifier 10.1109/MS.2020.2986107
Date of current version: 18 June 2020

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

negotiable, which means that it can
give way under time pressure. Simple
statement coverage also falls short in
that it ignores the sensitivity of com-
putations to data values. For that, we
have to look at ways to exercise execu-
tion paths, and not just statements.

It’s All About the Data
For safety critical systems, the cur-
rently prevailing standards, such as
ISO 26262,1 EN 50128:2011,2 and
IEC 61508,3 strongly recommend the
use of a test coverage metric known as
modified condition/decision coverage
(MC/DC). One standard, DO-178C,4
which is dominant in the airspace in-
dustry, goes a step further and defines
its use as required.

To meet MC/DC requirements, ev-
ery condition in a program not only
has to evaluate to true and false in
separate tests, but every clause in the
condition must also independently
evaluate to true and false in separate

tests. This introduces some of the re-
quired sensitivity to data values that
influence computations. Of course, it
is not too hard to cheat on this met-
ric and ease the test requirements by
moving the evaluation of Boolean
expressions outside decision points,
that is, placing them in statements
that are evaluated before each “if”
statement that has multiple clauses in
the condition.

Cyclomatics
A different metric, introduced in the
late 1970s by Thomas McCabe,5
aims to measure the number of paths
through the control-flow graph of a
function. To achieve sufficient path
coverage of a function, we should now
run at least as many tests as the cyc-
lomatic complexity number indicates.
This metric is typically defined by the
formula E−N + 1, where N is the num-
ber of nodes, and E is the number of
edges of the control-flow graph.

Not surprisingly, it is also easy to
cheat on this metric and dramatically
lower the measured cyclomatic com-
plexity counts without changing the
functionality of a function. Consider,
for instance, the switch statement
shown in Figure 1(a).

The cyclomatic complexity contrib-
uted by the switch statement is n + 1.
Yet, we can write this same fragment
of code with a data-driven approach,
using a lookup table with function
pointers, as shown in Figure 1(c). Now
the fragment of code has the minimum
cyclomatic complexity of one. If n is
10, using cyclomatic complexity met-
ric, we would need to run at least 11
tests of the fragment in Figure 1(a),
but only one for the fragment in Fig-
ure 1(a), even though they perform the
same computation.

There are proposals, based on ex-
amples like this, to modify the com-
plexity metric by not counting switch
statements at all. It is not hard to imag-
ine that this will provide an incen-
tive to some developers to rewrite all
if-then-else statements as switch state-
ments as well, and artificially lower the
cyclomatic complexity numbers, and
thus the perceived test burden.

Other proposals have tried to move
the definition of cyclomatic complexity
numbers closer to an MC/DC metric
by increasing the number by one for
every Boolean operator that is used in
conditional tests. The extended metric
produces higher numbers, although it
loses some of the intuition behind the
definition as a pure graph property.
Are any of these metrics sufficient to
achieve adequate test coverage?

Some Gotchas
Something that is easily lost in the de-
bate about useful test metrics is that
the true measure of test quality is not
coverage, but how well it helps us de-
termine if all design requirements are

2 n1

switch (i) {
case 1: fct_1(); break;
case 2: fct_2(); break;
…
case n: fct_n(); break;
default: assert(false); break;
}

(a) (b)

void (* table[])(void) = { fct_1, …, fct_n};
assert(i > 0 && i <= n);
table[i]();

(c)

FIGURE 1. (a) A switch statement with n + 1 cases and (b) the corresponding control-

flow graph with n + 3 nodes and 2(n + 1) + 2 edges, giving a cyclomatic complexity of

n + 1, equal to the number of execution paths. Code that performs the same function

with a lookup table is shown in (c), giving a cyclomatic complexity of just one (assuming

that the assertion is implemented as a function call).

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

 JULY/AUGUST 2020 | IEEE SOFTWARE 13

met. If we have a test suite that ac-
complishes this fully, yet leaves por-
tions of the code uncovered, this either
means that there is redundant code in
the application or that the design re-
quirements are incomplete. Both is-
sues would need addressing before we
would just blindly add test cases that
accomplish nothing but to reach un-
covered parts of the code. But there are
other problems as well.

Figure 2 shows a small fragment
of code written in C, with two con-
ditional tests in a row and the corre-
sponding control-flow graph. The first
condition allows for global pointer
variable p to be assigned the address
of integer parameter named x, and
the second condition allows that same
pointer variable to be dereferenced
and assigned the value of a second in-
teger parameter named y. We’ll leave
aside here the wisdom of using point-
ers to function parameters or manipu-
lating their values in this way, but just
focus on the structure of the control-
flow graph.

Two tests will suffice to get 100%
statement coverage in this case, and
because the conditions are very sim-
ple, they also suffice to achieve 100%
MC/DC coverage. The first test can
be to call fct(0,0), and the second test
fct(1,1). These two tests exercise two
of the four possible paths through
the graph. The remaining two paths
can be reached by calling fct(1,0)
and fct(0,1). The first three of these
tests reveal no problems with the way
this function is written. The last test
though, fct(0,1), will lead to a crash.
So in this case, the MC/DC-compli-
ant test suite covered just 50% of the
paths in the control-flow graph and
fails to reveal a serious bug.

What if we did not have just two
conditional tests in a row but 10 or
100? If we otherwise don’t change
the structure of the graph, just two

separate tests could still produce 100%
MC/DC compliance, but the number of
paths would be 1,024 (210) in the first
case and a staggering 1.27 × 1030 (2100)
in the second case. This means that the
odds of finding a bug, if it exists in just
one of those paths, is 0.1% in the first
case, and just about zero in the second
case. That doesn’t sound too good, so
let’s look at a different example.

Figure 3 shows another small frag-
ment of code, this time containing a
simple for-loop, which is used to as-
sign values to the elements of a locally
declared array, and the corresponding
control-flow graph. How many paths
are there that we can take through this
graph? It depends, of course, on the
value of x + y. All negative values of
the sum will short circuit the loop, but
all positive values (in say, 64-bit inte-
ger arithmetic) will produce a differ-
ent number of iterations of the loop,
and thus a different execution path.
We can achieve 100% MC/DC cover-
age with just a single test though, for
instance, by executing just fct(1,1).
Needless to say, this one test will fail
to reveal the potential out-of-bounds
array-indexing error that is lurking in
this code.

Both of these first two examples
are still reasonably simple, but things
go further downhill fast if we also in-
troduce a small amount of concur-
rency into the code. I’ve often used
the following example in tutorials and
courses I’ve given, because it shows the
nature of the problem so well.

Consider three threads of execu-
tion, with three statements in each.
That’s a total of only nine statements,

int *p;

void
fct(int x, int y)
{

if (x)
{ p = &x;
}
if (y)
{ *p = y;
}

}

(a) (b)

FIGURE 2. (a) A code fragment with

two consecutive conditional tests and

(b) its corresponding control-flow graph.

With seven nodes and 10 edges, the

cyclomatic complexity is four.

void
fct (int x, int y)
{ int i, a[4];

for (i = 0; i < x+y; i++)
{ a[i] = i;
}

}

(a) (b)

FIGURE 3. (a) A code fragment with a loop and (b) its corresponding control-flow

graph. With five nodes and seven edges, the cyclomatic complexity is three.

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

without any conditional tests or
loops—just straight-line code, as dis-
played in Figure 4.

How many possible execution paths
are there for this system? If we assume
arbitrary interleaving, using a process
scheduler that is fully unconstrained,
you can visualize the executions with
a Rubik’s cube, where every path from
one corner of the cube to the opposite
corner, traveling along the edges of the
27 smaller cube segments, is a pos-
sible execution path. Say the steps of
thread_1 move in the x-axis alongside
the cube edges, the steps of thread_2
move along the y-axis, and the steps of
thread_3 along the z-axis.

If you do the calculation, you’ll
see that there are 1,680 such paths
through the cube. But, any single one
such path will produce 100% MC/DC
coverage. If only one of these interleav-
ing paths would lead to a crash (there
are more), that would mean that the
odds of uncovering it with that single
test would be 1 in 1,680, or less than
0.06%. Note that this is still a very
small system. The code that runs the
Mars Curiosity Rover built at NASA’s
Jet Propulsion Laboratory, for ex-
ample, has roughly 2.8 million lines
of code executing in approximately
120 different parallel tasks. Although

there are constraints in this case on
task interleaving, the number of pos-
sible executions is astonishingly large.
So, is there something else we can do
that is not more burdensome than
MC/DC compliance testing already is,
that can perform better?

Fuzzing
A popular alternative method is fuzz
testing. The basic approach is simple:
randomize the inputs to the software
under test. It is likely to shake out bugs,
especially where input values fall out-
side the range that a developer expects.
Generally, the best approach is to bias
the input selections to likely vulnerable
spots, for instance, near boundary val-
ues, but we can still look at how well
a purely random set of tests performs.

For this experiment, I took a ran-
domly generated graph using a pro-
gram created by mathematician
Richard Johnsonbaugh. I generated
a graph with 1,000 nodes and 2,000
edges and an average fanout for each
node of seven successors. A total of
781 of the nodes are reachable from
a preselected start node. How many
of those reachable nodes can we find
with a series of random walks? For
the experiment, we limited the max-
imal length of a test run to a fixed

5,000 steps to avoid getting bogged
down in cycles.

We can take the graph to represent
not just a control-flow graph but a full
program execution graph, with explicit
data values, so that each path through
this graph is representative of a true
execution. The same state in a control-
flow graph could then appear in many
places in the execution graph, when
it is reached for different data values.
Given that, the 1,000 node graph is
only a tiny example of what we can
expect to see for a full program execu-
tion of a real software application.

Figure 5 shows the number of vis-
ited nodes if we perform between 10
and 100,000 random test runs in this
graph. The solid line shows the per-
centage of the visited nodes that are
unique, that is, after we remove dupli-
cates when the same nodes are visited
repeatedly in different tests.

The effective coverage that is re-
alized increases quickly for the first
few tests, but then flattens and more
slowly reaches an asymptote, making it
harder and harder to increase coverage
further. Even after 100,000 runs of up
to 5,000 steps each, we never reach all
781 nodes. The time needed for these
tests grows, of course, linearly with
the number of tests performed, which,

int x, y, r;
int *p, *q, *z;
int **a;

thread_1() // initialize
{

p = &x;
q = &y;
z = &r;

}

(a)

thread_3() // access z via a and p
{

a = &p;
*a = z;

**a = 12;
}

(c)

thread_2() // swap *p and *q
{

r = *p;
*p = *q;
*q = r;

}

(b)

FIGURE 4. (a)–(c) The three parallel threads of execution, with three statements in each, without conditionals or loops. Because

there are no conditional paths, the cyclomatic complexity of each function is one.

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

 JULY/AUGUST 2020 | IEEE SOFTWARE 15

even for this small graph, can quickly
become excessively large (we stopped
the tests after 26 h of runtime). The
main reason for the inefficiency of this
test suite is the amount of duplicate
work that is done, with tests perform-
ing the same executions over and over.
So, is there no hope?

Graph Algorithms
What if we used a plain depth-first
search algorithm from the same start
node in the graph and see how long it
takes to visit each node? As you might
expect, it takes just one single “test”
to do this, and this run visits all 781
unique nodes, for 100% coverage, in a
fraction of a second.

How can we make use of the large
difference between the performance
of a depth-first search algorithm com-
pared with the relatively low coverage
that can be obtained with randomized
tests or test suites that are compliant
with an MC/DC metric?

The key here is that the depth-first
search algorithm can remember nodes
that have been visited before and can
backtrack efficiently to a previous
point in the search to explore alterna-
tives for moving forward. To enable
backtracking, we should be able to
either save complete search states on
a stack or to recreate a previous state
by undoing the last action performed.
That is simple for small graphs but can
be expensive for execution graphs of a
realistic size, where a single-state de-
scription could require the storage of
hundreds of kilobytes or more. There
are tools such as logic model check-
ers that can optimize this process, but
they are not always easy to use.

The Mars Rover
The following numbers can show
what is possible though. I was involved
in the testing of the flash file system
software for the Curiosity Rover that

landed on the surface of Mars in Au-
gust 2012, and that today still con-
tinues its exploration of the Martian
surface. The flash file system code is
roughly 6,000 lines of code, so it’s not
particularly large, but it is quite com-
plex. Standard testing of the code was
a required part of the development
process, with the usual goal of getting
as close as possible to 100% statement
coverage. There was no requirement to
also maximize MC/DC coverage or to
consider the cyclomatic complexity of
functions at this time.

Jointly, the approximately 100 unit
tests that were defined for this code
reached 35,796 unique system states.
Across six modules from this code, the
median value of the statement coverage
that was realized in these tests was a
respectable 98%, meeting the formal
test requirements.

We also instrumented the same
code to do a randomized search. After
approximately 5 h, the randomized
search had reached 398 Million system

states, exploring roughly 50,000 exe-
cution paths. That’s already quite a bit
better than the standard test suite. We
then repeated the test by instrumenting
the code for a depth-first search using
the Spin6 model checker as the search
engine. After running this test for an-
other 5 h, the search had reached 745
million distinct system states, while
exploring approximately 50 million
distinct execution paths. The numbers
are summarized in Table 1. So, in this
application, the more rigorous tests
explored four orders-of-magnitude-
more states and execution paths than
with standard test methods, bringing
a comparable increase in rigor and in
the number of problems discovered in
these tests.

Given the effort that is required to
set up this type of model-driven test,
this level of rigor is typically only fea-
sible for a subset of the truly critical
modules within a larger application.
The full Mars Rover software counted
roughly 2.8 million lines of code, of

153

1,340

14,338

139,692

1,408,469

8.71
37.26

80.79 96.54 99.23

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10 100 1,000 10,000 100,000
Number of Random Test Runs of Up to 5,000 Steps

Graph of 1,000 Nodes, 2,000 Edges, and 781 Reachable Nodes
Cumulative Coverage of Random Test Runs

Number of Nodes (Re)visited

Effective Coverage (%)

FIGURE 5. The cumulative coverage of random test runs in a random graph of 1,000

nodes and 2,000 edges, with 781 nodes reachable.

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

which the 6,000 lines for the flash file
system was only a small part.

Static Testing
Test rigor is, of course, not an all-or-
nothing issue. What if you do not
have the resources to explore the type
of rigorous code exercise that I de-
scribed previously? Fortunately, there
are still some very good choices, and
for the Mars Rover software, we used
them all.

The most direct method for in-
creasing the level of rigor of a software
test effort is currently to use tools that
work by performing symbolic execu-
tions of the code while testing for po-
tential anomalies. A single symbolic
execution uses ranges of possible data
values, capturing the possible effect of
large numbers of concrete executions,

although with less precision. One can
even use this type of framework to
reason backwards and answer ques-
tions like “for which input data values
can a given statement execution result
in an error, such as a nil-pointer defer-
ence, an out-of-bounds array-indexing
error, or the evaluation of an uninitial-
ized variable?”

The tools that can do this type of
analysis are static source code ana-
lyzers, which have quickly gained in
popularity. If you can afford it, it is
recommended to use more than just
one state-of-the-art static source code
analyzer. For the Mars Rover flight
software, for example, we used five
different source code analyzers. There
is surprisingly little overlap in the out-
put of the tools: most tools currently
on the market are developed with a

particular strength and theoretical
foundation, and they excel at the cor-
responding type of analyses. The com-
bined results of all the tools were an
integral part of the code reviews that
we used on the Rover software.7

The best part of static code analy-
sis is perhaps that the checks that are
performed are automated and can be
run repeatedly, from the moment cod-
ing starts, on every new module check-
in and on every integration build. This
addresses another common feature of
standard testing: test fatigue. After all,
“exhaustive” testing often means that
testing continues until either the test
team, or the time available to them,
is exhausted.

References
1. Road Vehicles—Functional Safety—

Part 2: Management of Functional

Safety, ISO Standard 26262-2, 2018.

2. Railway Applications—Communica-

tion, Signalling and Processing Sys-

tems—Software for Railway Control

and Protection Systems, EN Standard

50128, 2011.

3. Functional Safety of Electrical/Elec-

tronic/Programmable Electronic

Safety-Related Systems, IEC Standard

61508, 2010.

4. Software Considerations in Airborne

Systems and Equipment Certification,

RTCA Standard DO-178C, 2012.

5. T. J. McCabe, “A complexity measure,”

IEEE Trans. Softw. Eng., vol. SE-2,

no. 4, pp. 308–320, 1976. doi:10.1109/

TSE.1976.233837. [Online]. Avail-

able: https://ieeexplore.ieee.org/

document/1702388

6. Spin. [Online]. Available: http://spin

root.com.

7. G. J. Holzmann, “Mars code,” Com-

mun. ACM, vol. 57, no. 2, pp. 64–73,

2014. doi: 10.1145/2560217.2560218.

[Online]. Available: https://dl.acm.org/

doi/10.1145/2560217.2560218

ABOUT THE AUTHOR

GERARD J. HOLZMANN works on developing stronger methods for
the design and analysis of safety-critical software as a consultant and
researcher at Nimble Research. Contact him at gholzmann@acm.org.

Table 1. A comparison of coverage for three different
test methods of the Mars Curiosity Rover flash file

system software.

Number of unique
states reached

Number of
execution paths

Standard unit test with 98% statement coverage 35,796 100

Randomized fuzz test 398 million 50,000

Depth-first search instrumented test 745 million 50 million

Authorized licensed use limited to: Serge Demeyer. Downloaded on June 29,2020 at 09:06:08 UTC from IEEE Xplore. Restrictions apply.

