UNIVERSITY OF ANTWERP
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Software Testing Lab

Assignment 2

Submission Deadline: March 6th, 20:00

1 INTRODUCTION

1.1 OBJECTIVE

The objective of the lab work of the Software Testing course is to help you learn how you can
apply the various testing techniques and test design patterns as discussed during the lectures
in practice. You will apply these techniques to a simple Pacman system written in Java. The
amount of coding that needs to be done is relatively small: The focus is on testing.

Many testing approaches are based on partitioning the data set into categories, focusing
on domain boundaries, and selecting appropriate combinations of inputs, as explained in
Chapter 10 of Binder. In this exercise we will build up some experience with these techniques,
and learn how to test methods using them.

1.2 APPROACH

The work in the labs is mostly self-study. The handouts contain a chain of tasks, some more
practical, others in the form of more philosophical questions reflecting on previous tasks.
Programming exercises are in Java. For your Java development, you can use your favorite
IDE. All the material needed for the completion of the assignment is available at http://

http://ansymore.uantwerpen.be/courses/software-testing
http://ansymore.uantwerpen.be/courses/software-testing

ansymore.uantwerpen.be/courses/software-testing. The JPacman distribution includes
source files, test files, and documentation (in the doc directory).

* pacman-requirements.txt: A text file describing the JPacman use cases

* pacman-design.txt: A text file describing the key JPacman design decisions

1.3 FRONT HEAVY COURSE

The course and assignments are front heavy. This means that all assignments will be given in
approximately the first half of the semester. This in contrast to most other courses which will
require more work at the end of the semester. You are encouraged to complete and submit
the assignments on time, to free up ample time in the second half of the semester.

1.4 GRADING

Each assignment is graded from 0 to 100. To be eligible for the final exam, you need to score
at least 50/100 for each assignment. Most assignments build upon each other. It is possi-
ble that some exercises can only be completed if you completed previous exercises. You are
encouraged to submit the assignments on time. If you submit late, you should answer the
“Only when late” exercises. With these you cannot gain points, you lose point when you do
not answer them or answer them incorrectly.

1.5 REPORT

Please note that the report is the most important part of your answer, so take some time to
write an adequate report. Describe your actions, results, and explanations for each exercise
in your report with full sentences. If appropriate, provide screenshots to show you fulfilled
the exercise. Accompany the report with all of the requested material. All submitted artefacts
should be stand-alone, runnable with single commands, and should not require additional
packages. Upload all files in a zipped archive with your name, underscore and the assignment
number, i.e. <Surname_LastName_2.zip>.

1.6 QUESTIONS

There will be a lab session every Monday from 10:45 to 12:45 to answer any questions. Pre-
pare your questions beforehand. Broken packages, links, missing images, etc that prevent
the assignment to be completed can be reported to Onur.Kilincceker@uantwerpen.be and
Mutlu.Beyazit@uantwerpen.be.

2 ASSIGNMENT

Important Note: Create an archive from the JPacman system after you perform each exercise
that requires modifications to the files. Name the archive according to the exercise number, and
submit them along with your report.

http://ansymore.uantwerpen.be/courses/software-testing
http://ansymore.uantwerpen.be/courses/software-testing
mailto:Onur.Kilincceker@uantwerpen.be
mailto:Mutlu.Beyazit@uantwerpen.be

CATEGORY-PARTITION AND BOUNDARY VALUES

In this assignment, you will be building and testing an implementation Board.withinBorders (int
X, int y) method, which simply checks that x and y integer values fall within the borders
(width x height) of the board, i.e. 0 <= x < width, and 0 <= y < height. Our approach follows

the approach from Forgécs (Practical test design : selection of traditional and automated test
design techniques), chapter 5: p57-89.

* Exercise 1. List at least three possible errors that an implementor of this method could
make. (Required, 9 points)

* Exercise 2. Identify the equivalence partitions for the withinBorders method. You
should provide a table similar to Table 5.1 (see Forgics). You may assume the single
fault model. (Required, 10 points)

» Exercise 3. Similarly, identify the equivalence partitions for the withinBorders method,
but for the multiple fault model. (Required, 10 points)

» Exercise 4. Next, generate a test design against predicate faults (see Forgacs, Table 5.2).
You should have a table for predicate x and a table for predicate y. (Required, 10 points)

* Exercise 5. Implement your test case specs into BoardTest class and run the test suite.
(Required, 10 points)

* Exercise 6. Actually implement withinBoarders method. Then re-run the test suite.
Inspect code coverage results, and explain your findings. (Required, 10 points)

* Exercise 7. Which code coverage metric did you use (Branch coverage, Statement cov-
erage or others)? Why? (Only when late, -5 to 0 points)

* Exercise 8. Would your test suite reveal all the faults you proposed in Exercise 1? If not,
explain why the equivalence partitioning approach missed it, and add appropriate test
cases separately to your JUnit implementation. (Required, 8 points)

» Exercise 9. Are your test cases dependent on your method implementation? Did you
need to change your test cases while developing the method? Does this have a positive
or a negative impact on the design of the test cases? (Only when late, -5 to 0 points)

» Exercise 10. Repeat the exercises for the method Game . addGuestFromCode (char code,
int x, int y).How many test cases do you end up with? (Required, 25 points)

* Exercise 11. Imagine a more complex Board and an additional parameter that de-
scribes the shape of the Guest (like occupying multiple cells). How does an equivalence
partitioning approach scale? (Required, 8 points)

» Exercise 12. Create an equivalence partition table where a guest can vary in size. The
guest is a 2D being that can occupy 1 or more cells. You may limit the shape of the guest
to rectangles. Does your equivalence partitioning table scale like you predicted? (Only
when late, -10 to 0 points)

Table 5.1 Equivalence partitioning for the authorisation example

Equivalence Password attributes

partitions

1 Number of At least At least At least At least one
characters onelower oneupper one character: %, <,
>= 8 and case case numeric =@
<= 14 character character character

2 Number of At least At least At least At least one
characters one lower oneupper one character: ", '<)
<8 case case numeric =@

character character character

3 Number of At least At least At least At least one
characters one lower oneupper one character: ", '<)
> 14 case case numeric =@

character character character

4 Number of At least At least At least No special
characters one lower oneupper one character: !, %',
> 8 and case case numeric <= @
<14 character character character

b Number of At least At least No At least one
characters one lower one upper numeric character: =\, '<,
> 8 and case case character ‘=, '>,"7,'@
<14 character character

6 Number of At least No upper At least At least one
characters one lower case one character: =\, '<,
> 8 and case character numeric =L@
<14 character character

7 Number of No lower At least At least At least one
characters case one upper one character: =\, '<,
> 8 and character case numeric =S @
<14 character character

8 Inputs outside all of the partitions above

Table 5.2 Test design against predicate faults. BVA for predicate Age > 42

Program Correct/wrong Test data 1

b . Testdata2 Testdata3 Testdata4
version no. predicate

Age Specific values of the variable Age

43 (ON) 42 (OFF) 20 (OUT) 50 (IN)

Output

1 (correct) > 42

2 >= 472
<42
<= 42
=42
<> 42
> 43
> 41

oo 1 o 0 B~ W

4 7 4 7 T A
-4 M T A A T A
mM mMm 4 Mm 4 4 T m
4 4 4 m T 4 -

	Introduction
	Objective
	Approach
	Front heavy course
	Grading
	Report
	Questions

	Assignment

