
UNIVERSITY OF ANTWERP

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Software Testing Lab

Assignment 3

Submission Deadline: March 13th, 20:00

Refer to Assignment 1 for introductory information.
Note that this assignment has a 25 point late fee instead of additional exercises.

ENFORCING PROPER ASSOCIATIONS WITH ASSERTS

Binder distinguishes between implementation-based and responsibility-based assertions. The
former category is used to define and check implementation assumptions. On p818 (see at-
tached page), a list of implementation-based assertion types is presented.

• Exercise 1. Look up examples of the assertion types in the JPacman code. Where would
you introduce new instances? Against which erroneous scenarios do they protect? (Re-
quired, 10 points)

For the responsibility-driven assertions, we look at associations. Implementing associa-
tions correctly—disallowing the creation of inconsistent states—is tricky. In particular, two-
way associations are notoriously dangerous, since it is all too easy that object o1 points to o2,
but not the other way around. As an example, the (naive) implementation of the CellGuest
association offered is correct, but can easily be misused (e.g. for Cell c and Guest g, c.setGuest(g)
can be invoked irrespective of whether g points to c or to some other cell). Recall that both
ends of the association have multiplicity 0...1. A simple consistency criterion should be that

1



whenever a Cell thinks that it is occupied by a Guest, that the Guest knows it is occupying
that Cell. Here we will see how to add Java assert statements to ensure to that incorrect as-
sociations are not possible (they will lead to an assertion failure), and we will see how to test
such associations. After each change, rerun the test suite with assertion checking enabled to
see the effect.

• Exercise 2. Analyze the class invariants in Cell class, and replace the dummy imple-
mentation (which always returns true) by a proper one. (Required, 10 points)

• Exercise 3. Do the same for the class invariant of Guest class. (Required, 10 points)

Next, we will give one method only full responsibility for setting the association properly,
under well-defined circumstances only. Guest.occupy(aCell) is the method we use for
this. First, we will assume that the cell is actually empty, so that the move is possible. Sec-
ond, we will assume that the guest is not already occupying some other cell. Under those
circumstances, we can safely swap the pointers of the associations.

• Exercise 4. Add pre- and post-conditions in the form of assert statements to Guest.occupy,
listing all assumptions about the guest’s current state, as well as the assumptions about
the cell to be occupied. (Required, 10 points)

• Exercise 5. Likewise, add pre- and post-conditions to Guest.deoccupy() method, if
relevant. Explain your answer. (Required, 10 points)

Now that the top level contracts are explicit, we can try to make the assumptions of the
helper methods explicit.

• Exercise 6. Add pre- and post-conditions to Cell.setGuest(aGuest). (Required, 10
points)

• Exercise 7. Add pre- and post-conditions to Cell.free(). (Required, 10 points)

Last but not least, we will revisit the test suite covering this association. Since the guest is in
charge of the association, we will put it in GuestTest. This class already exists, and provides
a setup method creating two guests and two cells that can be used for testing purposes.

• Exercise 8. Add JUnit test cases for the correct scenarios, such as an occupy-deoccupy-
occupy sequence. (Required, 10 points)

Since in this case the preconditions are fairly complicated and important, we add some test
cases ensuring that the methods do indeed fail when invoked with a violated precondition.
See BoardTest.testFailingBoardCreation() for an example on how you could test that
failing preconditions indeed generate an assertion failure.

• Exercise 9. Add a test case for an occupy-occupy sequence, which should not be per-
mitted, since an occupy requires a deoccupy first. (Required, 10 points)

• Exercise 10. Add a test case for Cell.setGuest(aGuest) method, which cannot be
simply invoked for a given cell and guest. (Required, 10 points)

Late fee: -25 points

2



3


