UNIVERSITY OF ANTWERP
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Software Testing Lab

Assignment 4

Submission Deadline: March 20th, 20:00

Refer to Assignment 1 for introductory information.
Note that this assignment has a 25 point late fee instead of additional exercises.

DECISION STRUCTURES

In this exercise we will test the movement of guests using decision structures (Forgacs Chap-
ter 7, p129-154), and extend JPacman with moving monsters.

* Exercise 1. Create a decision table following the style of Table 7.6 (Forgédcs) indicating
what should happen when a guest tries to occupy a new cell. Cases to be distinguished
include whether or not the move remains within the borders, whether or not the move
is possible based on the type of the moved object (player or monster), and the type of
the (optional) guest occupying the other cell. (Required, 10 points)

* Exercise 2. Run the current test suite and describe the coverage of Move, PlayerMove,
Guest, and all Guest subclasses. (Required, 10 points)

» Exercise 3. Implement all entries in the decision table concerning player movements
as JUnit test cases in PlayerMoveTest class. Since the player movement has been im-
plemented already, start by testing these. (Required, 10 points)



Buibbo)

X X X X X X X X X '10.143 UO}I3]8s
21

9]0e328)85 S|

X adA1 194211 Auy

9L 7'l Le (4n3)

X ON X ON X ON 9214d 1e10|

a1qissod

X X X JuswAed

suoly

- N A - - N A A A N A N N 1121} Jnoy-#¢

19391}

_ N - A - N A A N A N A N 39UB3SIP 1OYS

_ _ 1930

_ N A N A N A A N N A pJEpUE}S

0 > ON J0 _ o ON ‘S19%21}
ON >0l 0=ON OL>ON>1" 155 Jo saquiny

€1y ¢ly LY (1]R-] 64 8y Ly 9 SH 7y €y 4. 2-} suonipuo)

ajdwexa WAL Y} J0) a)qe) uoisidap Aljua-papualxy 9L ajqel



» Exercise 4. Re-run with coverage enabled, and re-assess the coverage. (Required, 10
points)

* Exercise 5. Explain the interplay between the abstract methods Guest .meetPlayer
and Move. tryMoveToGuest and their implementations in Guest and Move subclasses.
(Required, 10 points)

» Exercise 6. Implement a monster move in the same style as a player move. Add a
MonsterMove class, place it correctly in the inheritance hierarchy, and implement the
required methods. Make sure you add or update appropriate invariants as well as pre-
and post-conditions wherever possible, and implement them using assertions. (Re-
quired, 20 points)

» Exercise 7. Introduce a MonsterMoveTest class to implement the test cases related to
monster moves. You will probably want to extend MoveTest for this. Verify the test
coverage for this class. (Required, 20 points)

* Exercise 8. How many tests in your decision table would you need to get 100% cov-
erage of the relevant moving methods? Why do you need the remaining test cases?

(Required, 10 points)

Late fee: -25 points



