UNIVERSITY OF ANTWERP
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Software Testing Lab

Assignment 6

Submission Deadline: April 17th, 20:00

Refer to Assignment 1 for introductory information.

MUTATION TESTING

Mutation testing is a technique to measure the quality of a test suite by assessing its fault
detection capabilities. Mutation testing starts with a green test suite, i.e. a test suite in which
all the tests pass. First, a faulty version of the software is created by introducing faults into the
system (Mutation). This is done by applying a known transformation (Mutation Operator) on
a certain part of the code. After generating the faulty version of the software (Mutant), it is
passed onto the test suite. If there is an error or failure during the execution of the test suite,
the mutant is marked as killed (Killed Mutant). If all tests pass, it means that the test suite
could not catch the fault, and the mutant has survived (Survived Mutant).

Mutation testing allows software engineers to monitor the fault detection capability of a
test suite by means of mutation coverage (see Equation [I). If the output of a mutant for all
possible inputs is the same as the original program, it is called an equivalent mutant. It is
not possible to create a test case that passes for the original program and fails for an equiva-
lent mutant, because the equivalent mutant has the same semantics as the original program.
A test suite is said to achieve full mutation test adequacy whenever it can kill all the non-
equivalent mutants, thus reaching a mutation coverage of 100%. Such test suite is called a
mutation-adequate test suite.



) Number of killed mutants
Mutation Coverage = - (@))]
Number of all non-equivalent mutants

In this assignment we will use LittleDarwin. LittleDarwin is a mutation testing tool to pro-
vide mutation testing within a continuous integration environment. It is designed to have a
loose coupling with the test infrastructure, instead relying on the build system to run the test
suite.

* Exercise 1. Use LittleDarwin to analyse the original version of JPacMan. LittleDarwin
and its manual can be seen and downloaded fromhttps://github.com/aliparsai/
LittleDarwin. Explain the results. Now, use LittleDarwin to analyse your version of
JPacMan. What differences can you see? (Required, 10 points)

» Exercise 2. Repeat the previous exercise, but this time use branch coverage (with Ja-
CoCo) instead of mutation coverage. Look for a class with 100% branch coverage and
less than 100% mutation coverage. Why did this happen? Look for similar examples
(interesting differences between the coverages of the two techniques) and explain the
difference between two results. (Required, 10 points)

» Exercise 3. Repeat the first exercises using PITest or Javalanche. Explain the difference
in the results. (Only when late, -10 to 0 points)

» Exercise 4. Find a killed mutant. Explain why, where, and how it was killed? (Required,
5 points)

* Exercise 5. Take a survived mutant for class Engine, and write a test that kills it. Re-
peat the process until all survived mutants from the Engine class are covered. Rerun
LittleDarwin to confirm. Note that you can run LittleDarwin for specific classes/files.
This drastically cuts down on run time. (Required, 15 points)

* Exercise 6. Can you find an example of an equivalent mutant? How do you know
(proof) it is equivalent? (Required, 5 points)

* Exercise 7. Make a mutation-adequate test suite for the model package of JPacMan.
How many tests did you have to write? (Count them!) How many equivalent mutants
did you find? Explain why each of them is equivalent. Note that you can run LittleDar-
win for specific classes/files. This drastically cuts down on run time. (Required, 50
points)

* Exercise 8. Make a mutation-adequate test suite for the controller package of JPacMan.
How many tests did you have to write? (Count them!) How many equivalent mutants
did you find? Explain why each of them is equivalent. (Only when late, -50 to 0 points)

* Exercise 9. What are the upsides and downsides of mutation testing? Explain your
argument. (Required, 5 points)


https://github.com/aliparsai/LittleDarwin
https://github.com/aliparsai/LittleDarwin

