
Understanding a Bug Introduction Change:
The First Failing Commit and the Check Test.

Gema Rodrı́guez-Pérez
LibreSoft/GSyC

Universidad Rey Juan Carlos
Madrid, Spain

Email: gema.rodriguez@urjc.es

Jesús M. González-Barahona
LibreSoft/GSyC

Universidad Rey Juan Carlos
Madrid, Spain

Email: jgb@gsyc.es

Gregorio Robles
LibreSoft/GSyC

Universidad Rey Juan Carlos
Madrid, Spain

Email: grex@gsyc.urjc.es

Abstract—The assumption that “a given bug was introduced by
the lines of code that were modified to fix it” seems at first glance
very reasonable. In fact, many studies on bug fixing are built
upon it. However, there is little empirical evidence supporting it,
and a careful examination shows other possible sources for the
introduction of bugs, such as an older modification, or a change
in some API in a different part of the code. This paper presents
an observational study designed to shed some more light in this
area. For that, we studied independently the lines changed by
bug fixes as a part of “the previous commit” (or commits) in two
different projects. Using information from the code management,
issue tracking, and code review systems, we analyzed if the code
introduced by previous commits was the real bug introduction
change, or on contrary it was correct at the time of introduction,
meaning that there was any bug introduction change and was
therefore the cause of the bug. Furthermore, we introduce a new
concept, the First Failing Commit (FFC) to help us explaining
the complex elements that take place in the bug seeding analysis.
Also, we evaluate this new concept by analyzing the behavior
of the implementation of a hypothetical test that is able to find
the FFC as the suspicious commit to be the bug introducing
change. Our results show that (surprisingly) the assumption that
bugs were introduced in the previous commit does not hold for a
large fraction (around 70%); the previous commits was identified
as the FFC in only 30% and 35% of the analyzed commits in
the two projects under study.

I. INTRODUCTION

When a failure is found in some software, developers usu-
ally fix it by locating and modifying those source code line(s)
that are the cause for the wrong behavior. It seems reasonable
to assume that the immediately previous modifications of these
lines are the cause of the bug. However, finding where and
when a bug was introduced in the source code is not a trivial
task; it may be much more complex than what this assumption
suggests.

Without a way to exactly determine what line created a
bug, many studies in the area of software maintenance and
evolution start with the implicit assumption that the line (or
lines) that is (are) being replaced in a bug fix is (are) likely the
one(s) that created such bug. Below is an example of quotes
from papers that use this assumption:

• bug seeding studies, e.g., “This earlier change is the one
that caused the later fixed” [2] or “The lines affected
in the process of fixing a bug are the same one that
originated or seeded that bug” [3],

• bug fix patterns, e.g., “The version before the bug fix
revision is the bug version” [4],

• defect prediction studies, e.g., “A line that is deleted or
changed by a bug-fixing change is a faulty line” [5],

• tools that prevent future bugs, e.g., “We assume that a
change/commit is buggy if its modifications has been later
altered by a bug-fix commit” [6].

But although the assumption can be found frequently in
the research literature, there is not enough empirical evidence
supporting it. Our main goal is to determine if the previous
commit that modified the same line as in the bug fix is the
commit introducing the bug. With this purpose we address the
following research questions:

• RQ1: When a line is changed to fix a bug, how frequently
was this line the cause of a bug?

• RQ2: When a line is changed to fix a bug, how frequently
is its previous change the cause of a bug?

• RQ3: How frequently can we automatically find the bug
introducing change of a bug fixing?

Our first contribution is an empirical study developed
manually which addresses the challenges of finding the bug
introducing change in two different projects. The method
focuses on the analysis of the bug fix commit at line level,
looking whether the bug introducing change is the last commit
that inserted the fixed line. To understand if our findings are
independent of the language, we have studied two projects:
Nova, an OpenStack subproject written in Python, and
ElasticSearch written in Java. The second contribution
is the proposal of the First Failing Commit (FFC) concept
and the idea of a recursive test to find the bug introducing
change. In order to mitigate those false positives that SZZ
causes, we believe that a similar approach to the one used
in the bisection version control system is beneficial to
determine the correct bug inducing commit. In bisection,
when an issue is resolved a test case is added. Using that
test, we are able to know in which previous version the bug
has been injected. Thus, going back to previous revisions we
would be able to determine whether or not the bug is present.
If it is indeed present, the test case will fail and the bug must
have been injected before (or by) that revision. The FFC might
indicate whether the commit is the real BIC or it is the first



time that the code fails after a change in other part affects the
code we are testing.

Our primary findings reveal that API changes are the first
reason followed by changes in the operating system, packages
or requirements. As expected, we found that when only one
previous change touched the lines fixed by the fix commit, we
can identify it as the one that caused the bug. However, when
more than one previous changes touched the fixed lines in a
bug fix, in most cases only one of them is the cause of the
bug and the others can not be blamed as the cause.

II. METHODOLOGY

In the case of Nova and ElasticSearch, the data
needed can be obtained from the source code management,
the issue tracking, and the code review systems. Figure 1
provides an overview of each step involved in our study and
their outcomes.

Fig. 1. Overview of the steps involved in our analysis. PC refers to the
immediately previous commit of a fixed line

A. Identifying the Bug introducing change of a ticket

The income of this stage is a set of bug report tickets
extracted randomly from the issue tracking system. All these
tickets have to be closed and have a fixed commit committed
and merged in the code source of the project to be able to
follow the methodology described in this section.

1) Finding the lines which fixed the bug: We identify the
commit that fixed the bug from the information of the bug
fix commit (BFC), finding the lines that this commit added,
modified or deleted and filtering out those lines that are not
code.

2) For each of those lines, identify what commit added or
modified or deleted last these lines: For each line touched by
the BFC there is one previous commit, which we will refer to
as pc. However, the pc does not have to be the same commit
for all lines affected. Thus, the result of finding the pc of the
bug is the PC set, which could be a set of one or more pc.

3) Each of these pc (and its previous commits) is analyzed
to determine whether it was the bug introduced change: This
analysis uses information from the BFC log and the ticket
description, as well as from the log and commit changes of
the pc.

At the end of this step we have –for each ticket analyzed–
two outcomes:

• A Bug Introducing Change (BIC) does not exist: Some
tickets describe a bug, but this bug was not inserted by a
pc or some previous commit to these pc, therefore there
is no BIC. We will refer this set of tickets as “No BIC”.

• A BIC exists: there is a BIC, it could be the pc to the
changed lines by the BFC or another commit that might
be in the chain of previous changes of such lines or in
other part of the project. We will refer this set of tickets
as “BIC”.

III. EVALUATION

We have validated our methodology analyzing tickets
from two different Open Source projects: ElasticSearch
and Nova. Filtering was only necessary in the case of
Nova, as Launchpad does not distinguish between bug
reports and other issues. Two researchers were involved in
this process, who analyzed each ticket independently. For
ElasticSearch, we relied on its strong policy of bug
labeling. We then manually analyzed tickets (that contain bugs,
as a result from the filtering) to identify the BIC in both
projects.

Our aim is to address some limitations of the SZZ approach
by identifying the exact location of the BIC and understanding
the reasons why a previous commit may not induce the
fix. Hence, we introduce a new concept: the First Failing
Commit (FFC), which is the suspicious commit to be the bug
introducing commit and ideally it is located using a test case.
This concept helps to fill the scenario where lines were correct
at the time of introduction but at some point a change caused
that these lines become buggy, causing the bug. The FFC might
be identified by using the check test idea, where a test is passed
to all previous commits until it find the first that fails. We will
refer to this commit as the FFC.

Figure 2 shows the check test idea. We are able to find the
FFC based on the idea of having an omnipotent view. Thus,
the test is passed to all previous commits looking for the one
that fails. If found, we will be consider it as a candidate for
the BIC.

Fig. 2. Example of how we could find a candidate commit to be the bug
inducing change. Each version passes or not a test written after fixing the bug
in the FC (fixing commit).

A. For each of the tickets, could the hypothetical recursive test
find the BIC as the FFC?

At the end of this step we have two main groups for each
FFC identified:

• Group 1: The bug has been always there. Then, the FFC
is the first commit in the project, and the test will always
fail.



• Group 2: The FFC can be found using the test. Thus,
we may have two possibilities: (a) The test fails as we
expected because the failure was due to a change in
other part of the code that affects the code fixed or the
fixed line(s) cannot be checked before because they didn’t
exists. (b) The FFC is the BIC, the test fails because
a previous change (the previous commit or an older
commit) injected the bug.

IV. RESULTS

We have analyzed 60 random tickets from the two projects,
determining if the lines changed to fix a bug were the cause
of the bug, and identifying whether a previous commit(s) is
the BIC or not. Thus, after finding the lines which fix the
bug in the 60 tickets in Nova and ElasticSearch, we
classified the tickets into two different sets, the “BIC” set and
the “No BIC” set. In addition, each previous commit also was
classified into one of following sets: “FFC” and “NO FFC”.

From the 60 tickets analyzed in Nova, 72% were classified
into BIC group and 28% into NO BIC group. The number of
commits analyzed at the line level was 141 and only in 30%
of the cases those commits were the FFC. Finally in 22% of
the cases the FFC was the BIC.

On the contrary, from the 60 bugs in ElasticSearch,
the number of tickets classified into set BIC was higher: 75%.
However, the set of NO BIC was a little bit lower, 25%. The
number of commits analyzed at line level was 132 and only
in 35% of the cases those commits were the FFC. Finally in
29% of the cases, the FFC was the BIC.

Additionally, in those cases where the ticket does not present
a BIC, we are able to present a short classification of the main
reasons:

• Changes to APIs, such as the addition of an argument.
• Updates done, such as changes in the operating system,

packages or requirements.
In any case, our research shows evidence that assuming that

the pc is where the cause of a bug can be found does not hold
for a significant fraction of bugs. The most common reasons
for the pc was neither a FFC or a BIC in the projects are:

• Variable renaming.
• Changes done by the BFC in a clean line.
• Refactoring of the code in some lines.
• Grammar errors, dragged from former commits.

V. CONCLUSION

The empirical study we have performed with some bug
reports from Nova and ElasticSearch has shown that
for a large fraction of the analyzed tickets, around 25%, no
BIC has been identified. So, in those tickets that present a
BIC, the implicit assumption that bugs were introduced in the
previous commit does not hold at least in 70% of them.

Our study also shows that even when we are sure that some
previous change introduced the bug in the line, only in some
cases the pc is the bug introducing change.

In many cases, we have identified which ones are the
changes that actually introduced the bug, which could be

useful to improve the accuracy of tools and models devel-
oped to prevent bugs. Also, software developers can benefit
from identifying where the bug was inserted, improving their
processes.

Once we have found that at least in two projects, im-
plemented in different programming languages, the pc is in
many cases not the bug introduction change, it makes sense
to explore, as future work, to which extent this occurs in other
projects, studying a higher number of tickets.

REFERENCES

[1] ,Śliwerski, Jacek and Zimmermann, Thomas and Zeller, Andreas,When
do changes induce fixes?,Proceedings of the 2005 International Workshop
on Mining software repositories,1–5,2005,ACM

[2] ,Williams, Chadd and Spacco, Jaime, ”Szz revisited: verifying when
changes induce fixes”, Proceedings of the 2008 workshop on Defects
in large software systems, 32–36,2008,ACM

[3] ,Izquierdo-Cortazar, Daniel and Capiluppi, Andrea and Gonzalez-
Barahona, Jesus M, Are Developers Fixing Their Own Bugs?: Tracing
Bug-Fixing and Bug-Seeding Committers, International Journal of Open
Source Software and Processes (IJOSSP),23–42,2011

[4] ,Pan, Kai and Kim, Sunghun and Whitehead Jr, E James,Toward an
understanding of bug fix patterns,Empirical Software Engineering,286–
315,2009,Springer

[5] ,Altman, Edward I,Financial ratios, discriminant analysis and the predic-
tion of corporate bankruptcy,The journal of finance,589–609,1968,Wiley
Online Library

[6] ,Fejzer, Mikołaj and Wojtyna, Michał and Burzańska, Marta and
Wiśniewski, Piotr and Stencel, Krzysztof,Supporting Code Review by Au-
tomatic Detection of Potentially Buggy Changes,473–482,2015,Springer


