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Abstract—Code reviews are an important mechanism for
assuring quality of source code changes. Reviewers can either
add general comments pertaining to the entire change or pinpoint
concerns or shortcomings about a specific part of the change
using inline comments. Recent studies show that reviewers often
do not understand the change being reviewed and its context.

Our ultimate goal is to identify the factors that confuse code
reviewers and understand how confusion impacts the efficiency
and effectiveness of code review(er)s. As the first step towards
this goal we focus on the identification of confusion in developers’
comments. Based on an existing theoretical framework categoriz-
ing expressions of confusion, we manually classify 800 comments
from code reviews of the Android project. We observe that
confusion can be reasonably well-identified by humans: raters
achieve moderate agreement (Fleiss’ kappa 0.59 for the general
comments and 0.49 for the inline ones). Then, for each kind of
comment we build a series of automatic classifiers that, depending
on the goals of the further analysis, can be trained to achieve high
precision (0.875 for the general comments and 0.615 for the inline
ones), high recall (0.944 for the general comments and 0.988 for
the inline ones), or substantial precision and recall (0.696 and
0.542 for the general comments and 0.434 and 0.583 for the
inline ones, respectively). These results motivate further research
on the impact of confusion on the code review process. Moreover,
other researchers can employ the proposed classifiers to analyze
confusion in other contexts where software development-related
discussions occur, such as mailing lists.

Index Terms—code review; confusion; machine learning.

I. INTRODUCTION

Code reviews are an important mechanism for software
quality assurance [1], [2], [3], [4], [5]. Active participation
in code reviews has a tendency to decrease the number of
post-release defects and improve software quality in open
source projects [6], [7]. However, the time spent by a de-
veloper reviewing code is non-negligible [1] and may take up
to 60% of the overall time spent on software development
activities [8], [9]. Furthermore, performing code reviews can
be difficult. Several studies [6], [10], [11], [12], [13] show that
code reviewers often do not understand or are confused about
the change under review and its context.

We do not make a distinction between lack of knowledge,
confusion, or uncertainty. Lack of knowledge and confusion,
which also encompass doubt and uncertainty, are strictly linked
(e.g., confusion could be determined by lack of knowledge)
and are both actionable [14]. From now on, for simplicity we
use the term “confusion” to refer to all these terms.

We conjecture that confusion acts as a mediating variable
in the code review process: some attributes of the code being
reviewed cause confusion, and confusion negatively affects

efficiency and effectiveness of the review. To provide empir-
ical evidence supporting or contradicting this conjecture, we
need to identify the comments where the reviewers expressed
confusion. This is the problem that this paper tackles. Once
those cases have been identified, statistical techniques can be
applied to confirm or refute the conjecture [15].

To identify the review comments expressing confusion we
proceed in three steps. Since most of the code reviews do
not express confusion, we employ a theoretical framework of
confusion in computer-mediated discourse [16] to filter out
the review comments that are likely not to express confusion.
Next, we manually classify comments based on the opinions of
four researchers. Finally, using the manually labeled data and
features suggested in the aforementioned theoretical frame-
work, we train a number of different classifiers to perform
confusion identification automatically.

We apply our approach to 400 general and 400 inline
code review comments randomly selected from the Android
project. We found out that confusion can be reasonably well-
identified by humans: the raters achieve moderate agreement
(Fleiss’ kappa 0.59 for the general comments and 0.49 for
the inline ones). Using this manually-classified data, for each
kind of comment we build a series of automatic classifiers that,
depending on the goals of the further analysis, can be trained
to achieve high precision (0.875 for the general comments
and 0.615 for the inline ones), high recall (0.944 for the
general comments and 0.988 for the inline ones), or substantial
precision and recall (0.696 and 0.542 for the general comments
and 0.434 and 0.583 for the inline ones, respectively). These
results suggest that future statistical studies can be employed
to analyze the causes and effects of confusion in code reviews.
Furthermore, we observed that identification of confusion in
inline comments is a more challenging task. It was evidenced
in both manual labeling and the classifiers results.

The main contributions of this paper are: (1) to the best of
our knowledge the first approach to identify confusion in code
review comments; (2) an exploration of the application of 14
different classifiers to this problem; and (3) a gold standard
dataset with the confusion annotations.!

II. METHODOLOGY

The main vehicle of this research is an explanatory case
study [17] on confusion in code reviews. We aim at under-
standing how developers express confusion during code re-
views. The theoretical framework for confusion identification
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is based on the model of Jordan et al. [16], summarized
in Section II-A. As a preliminary step towards building a
classifier for confusion, we assess whether confusion can be
identified by humans. Hence, our research questions are: (1)
can human raters agree on the presence of confusion in code
review comments?, and (2) is it possible to design a tool to
recognize confusion in developers’ comments?

A. Theoretical Framework

To the best of our knowledge, there exists no theoretical
framework for identification of confusion in software engineer-
ing artifacts. Thus, we employ the framework created by Jor-
dan et al. [16] for confusion in computer-mediated discourse.
The framework contains seven categories of textual elements
related to expression of confusion: hedges, probables and
hypotheticals representing indirect expressions of uncertainty,
questions requesting a solution, I statements and nonverbals
describing direct psychological expression of uncertainty, and
meta capturing the discussion of uncertainty. Each one of those
categories is illustrated by several examples, e.g., “sort of” and
“maybe” are examples of hedges [16].

While the original framework [16] supports general reason-
ing about confusion, an obstacle to applying it in practice
is challenged by the restricted list of linguistic features in
each category provided by the authors [16]. Furthermore,
Jordan et al. exclude words, e.g., modal verbs, if they have
other common uses besides expressing confusion. Therefore,
with the exception of the Questions category, we augment the
lists of features in each category based on additional linguistic
sources [16], [18], [19], [20], [21], [22]. The complete list of
features of each category is publicly available.?

B. Case Study Subject: Android

As the case study subject we select Android, a large and
well-known open source project with a rigorous code review
process and large number of publicly available code reviews.

Android uses Gerrit® as its code review system. Developers
submit their changes into Gerrit, and invite others to review the
changes. The change is merged only after being verified and
approved by a senior developer. The web-interface provided
by Gerrit allows reviewers to create general comments in the
code review page, and inline comments in the source code file,
referencing a word, a line or a group of lines.

C. Data Collection and Pre-processing

Using the Gerrit API we downloaded all Android code
reviews until November 25, 2016 (the date we run the scripts).
In total, we obtained data from 140,006 code reviews including
28,091 with inline comments. We have extracted 232,471
inline comments and 899,105 general comments. From the
general comments, we have identified several bots, such as
Treehugger Robot, Deckard Autoverifier, and Android Merger,
and excluded comments authored by these bots from our
dataset leaving 660,845 general comments for further analysis.
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Next using the extended framework we exclude the com-
ments that do not contain features associated with confusion.
We keep 91,658 general and 116,292 inline comments.

D. Manual Labeling

As a first step to identify comments expressing confusion,
we evaluate the hedges category from the framework because
they represent the majority of the comments: 97% for gen-
eral and 87% for inline. We plan to evaluate the remaining
categories in the future work.

A random sample of 25 comments was extracted from our
data and manually classified as confusion or no confusion.
The authors have agreed upon the labels of the sample and
used it as a guideline during the labeling process. To obtain
a confidence interval less than 5%, we randomly sampled
400 general and 400 inline comments. Four raters, having at
least a master’s degree in Computer Science, have manually
classified the comments. The raters were instructed to consider
as no confusion comments that employ uncertainty to express
politeness, e.g., “Maybe add checker tests to make sure you
cover the cases you intended?”. The raters worked individually.

We used Fleiss’ kappa to measure the agreement for general
and inline comments. The disagreement was resolved with
online meetings with all four raters. In the rare cases when the
agreement between the raters was not possible, we decided to
discard the comments. Four general and four inline comments
have been discarded, leaving 396 general and 396 inline
comments that constitute the gold standard set.

E. Classifier

Before training the classifier we first remove the line breaks
and replace urls, numbers, commits’ Shal and user names
with meta tokens (e.g., @URL, USERNAME, COMMIT and
NUMBER). To identify the user names we leveraged the
name list collection by Vasilescu et al. [23]. We exploit
machine learning techniques using our gold standard for
training and validation. We experimented with several state-of-
the-art classifiers using Weka [24]. To understand the impact
of the feature choice on the classifier performance we run the
classifiers over three different feature settings.

Features of the baseline model are uni- and bigrams ex-
tracted by the unsupervised StringToWordVector filter and
selected based on the Term Frequency Inverse Document
Frequency (TF-IDF). The “Baseline + 3” model extends the
baseline by including i) the modal verbs count, ii) the count of
the hedges from the extended framework and iii) the presence
of a question mark. In this model we do not distinguish
between different hedges or modal verbs. The “Baseline +
hedges” model also adds to the baseline hedges from the
extended framework but as opposed to “Baseline + 37 it
considers different hedges as different features.

To assess the performance of different classifiers we com-
pare them against the ZeroR classifier, which always predicts
the majority class, and random guessing. We run our exper-
iments in a 10-fold cross-validation setting, using stratified
sampling as implemented by Weka.



III. RESULTS

The manual labeling agreement between the four rates
measured with Fleiss’ « is 0.59 for general and 0.49 for inline
comments. We believe those results reveal that humans can,
indeed, reasonably identify confusion in code review com-
ments (s between 0.41 and 0.60 is considered moderate [25]).
After solving the disagreement, we observe that confusion
is expressed both in the general (18%) and in the inline
(21%) comments, and while there are slightly more confusion
comments among the inline ones, the association between the
kind of comments and presence of confusion is not statistically
significant (p ~ 0.33 for the Fisher’s exact test.)

The results of the best classifiers are shown in Table I. The
best precision on confusion class is obtained by OneR for
both general and inline comments albeit with different feature
settings: for general comments, the best model is Baseline + 3
(0.875), and for inline ones—Baseline + hedges (0.615). For
recall, the best classifier is Multinomial Naive Bayes, for both
general (0.944) and inline comments (0.998). It achieves the
same performance for all models, both for general and inline
comments. Regarding the balance between precision and recall
the best classifier is JRip for general (0.609) and Logistic for
inline comments (0.497). In both cases the model with best
performance is Baseline + 3.

IV. DISCUSSIONS

We discuss the results IV-A, their implications IV-B, and
threats to validity of our conclusions IV-C.

A. Detection of confusion

The interrater agreement suggests that identification of
confusion can be reliably performed by human raters. This
confirms the reliability of our annotation schema and the
resulting golden sets. However, dealing with small, highly
unbalanced dataset is something undesirable when training a
classifier in a supervised machine learning setting [26]. Still,
our preliminary results confirm that automatic detection of
confusion in both general and inline comments is feasible.

More specifically, we observe that more advanced models
Baseline + 3 and Baseline + hedges tend to outperform the
Baseline model, and none of the best classifiers reviewed
above makes use of the Baseline model. This means that
addition of more specific features geared towards detection
of confusion is indeed beneficial.

Highest recall is observed for both general and inline
comments when using Multinomial Naive Bayes, regardless of
the feature setting. This is consistent with previous evidence in
literature showing how Multinomial Naive Bayes outperforms
other approaches when dealing with small, unbalanced training
set with few positive examples [27], as in our case.

While differences between general and inline comments
affect the precision and recall figures, the same classifiers
seem to perform best. This is, however, not the case for the
F-measure. Overall, reasonably high precision and recall have
been obtained, enabling future statistical studies of causes and
effects of confusion in code reviews.

The best precision for the general comments is higher than
the one for the inline comments, suggesting that identification
of confusion in inline comments is a more challenging task.
This observation concurs with the previous observation that
identification of confusion in inline comments turned out to
be more difficult to the human raters as well. Alternatively,
one might need different predictors, e.g., the context of the
code change, to detect confusion in inline comments. How-
ever, OneR produces a very simplistic model, i.e., a set of
rules operating on a single predictor, which may be poorly
generalizable on new unseen data.

B. Implications

As direct implications, the classifiers presented enable statis-
tical studies of causes and effects of confusion in code reviews.
Moreover, researchers now have evidence that inline comments
are prevalent and relevant for future code review studies.

Later implications of our ultimate goal have larger scope.
Software developers can learn from the reasons that make
code changes hard to understand (and to accept), thus they
will be able to write code changes and submit them in ways
that attempt to avoid confusion. Tool builders can benefit by
expanding static analysis tools so as to more comprehensively
identify factors that make code changes hard to understand.
Educators can train their students from the outset to write
better code changes. Researchers will be able to propose solu-
tions to overcome the problems that confusion in code reviews
bring forth, e.g., by including more context information in
the code reviews. Researchers also can use our approach as a
basis to identify confusion in a number of different contexts,
with different implications, e.g., bug reports and the associated
discussions (commit messages, email discussions, and design
and requirements documentation).

C. Threats to validity

The threats to construct validity are related to how properly
a measurement reflects the concept being studied. Identifying
confusion is not an easy task, and its has been being oper-
ationalized using keywords. We used an existing confusion
framework [16] and also considered features from different
sources [16], [18], [19], [20], [21], [22]. Considering the inter-
nal validity we note that none of the raters has been involved
in Android development, so they might have misinterpreted
certain comments as confusion or no confusion. However,
all raters are computer scientists and two of the four have
a substantial experience with labeling textual information. All
disagreements were solved with a meeting with all raters. The
threats to external validity are related to the generalizability of
the study results. Our study targeted only Android, this means
that other projects might have different results. Furthermore,
rebalancing was not applied to counteract majority class bias
that inherently affects our data. Learning from imbalanced data
poses new emerging challenges that need to be addressed to
build robust models of knowledge from raw data [26]. Repli-
cations are needed with larger datasets, using machine learning



General comments Inline comments
Classifier Class Baseline Baseline + 3 Baseline + hedges Baseline Baseline + 3 Baseline + hedges
P R F P R F P R F P R F P R F P R F

Multinomial C 0.209 0.944 0.342| 0.209 0.944 0.342| 0.211 0.944 0.345 | 0.234 0.988 0.378 | 0.234 0.988 0.378 | 0.234 0.988 0.379
Naive Bayes NC 0.943 0.204 0.335| 0.943 0.204 0.335| 0.946 0.216 0.352 | 0.976 0.128 0.227 | 0.976 0.128 0.227 | 0.976 0.131 0.232
Logistic C 0.344 0.611 0.440 | 0.362 0.639 0.462 | 0.352 0.597 0.443 | 0.431 0.560 0.487 | 0.434 0.583 0.497 | 0.431 0.560 0.487
NC 0.896 0.741 0.811 | 0.903 0.750 0.820 | 0.894 0.756 0.819 | 0.871 0.801 0.835| 0.876 0.795 0.834| 0.871 0.801 0.835

IRip C 0.563 0.125 0.205 | 0.696 0.542 0.609 | 0.643 0.125 0.209 | 0.571 0.143 0.229 | 0.433 0.155 0.228 | 0.609 0.167 0.262
NC 0.834 0.978 0.901 | 0.903 0.948 0.925| 0.835 0.985 0.904 | 0.808 0.971 0.882| 0.806 0.946 0.870| 0.812 0.971 0.885

OneR C 0.571 0.056 0.101 | 0.875 0.194 0.318 | 0.571 0.056 0.101 | 0.234 0.988 0.378 | 0.462 0.071 0.124 | 0.615 0.095 0.165
NC 0.825 0.991 0.900 | 0.847 0.994 0.915| 0.825 0.991 0.900 | 0.976 0.128 0.227 | 0.796 0.978 0.878 | 0.802 0.984 0.883

Random C 0.181 0.500 0.265| 0.181 0.500 0.265| 0.181 0.500 0.265 | 0.212 0.500 0.297 | 0.212 0.500 0.297 | 0.212 0.500 0.297
Guessing NC 0.818 0.500 0.620 | 0.818 0.500 0.620 | 0.818 0.500 0.620 | 0.787 0.500 0.611 | 0.787 0.500 0.611 | 0.787 0.500 0.611
ZeroR C 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000
(Majority) NC 0.818 1.000 0.900 | 0.818 1.000 0.900 | 0.818 1.000 0.900 | 0.788 1.000 0.881 | 0.788 1.000 0.881 | 0.788 1.000 0.881

TABLE I

CLASSIFIER RESULTS: C—CONFUSION CLASS, NC—NO CONFUSION CLASS; P-PRECISION, R—RECALL, F—THE F-MEASURE.

tehcniques specifically designed to deal with skewness in class
distribution, to further assess the generality of our models.

V. RELATED WORK

Code review has been extensively studied in recent
works [2], [10], [11], [28], [29], [30], [31], [32], [33], [34].
Bacchelli and Bird [10] presented the concept of modern code
review as a review that is informal, supported by tools, and
happens frequently. They show the main challenge of code
review is understanding the code change. Tao et al. [11] show
that the rationale of the code change is the most important
information for understanding the code review. Our work
differs from those because we are focusing in confusion
in code review comments. Furthermore, to the best of our
knowledge, none of the studies that provide dataset for code
reviews [30], [31], [32], [33] covers inline comments. In our
dataset we present both general and inline comments.

Confusion detection is one of the examples of detecting
mental states [35], [36]. Yang et al. [35] described a classifica-
tion model using discussion forum behavior (comments) and
clickstream data to automatically identify posts that express
confusion. Their confusion model is based on i) users’ click
patterns, ii) users’ linguistic features based on LIWC* words,
and iii) questions features. They also tried to understand
what users are confused about by looking to the recent click
behavior. As their confusion model is not publicly available,
we could not compare to ours. Jean et al. [36] proposed a
new supervised and generic approach to automatically detect
uncertain expressions within natural language. It is based
on the statistical analysis of multiple lexical and syntactic
features used to characterize sentences through vector-based
representations. We could apply their uncertainty method
to our dataset, however we tend to disagree with Jean et
al.on what constitutes confusion. For instance, “Could anyone
submit this?”” and “I rebased could you review again please.”
are examples of non-comments from our dataset tagged as
confusion by the method of Jean et al. [36].

A related but distinct problem is detection of affective states,
a topic that has recently attracted substantial attention in the
software engineering community [37], [38], [39], [40], [41].

“https://liwc.wpengine.com

Similarly to confusion detection, detection of affective states
can be formulated as a classification problem; furthermore,
similarly to our expectation that confusion is related to ef-
fectiveness of code review, affective states of developers have
been related to effectiveness of their collaboration [42].

VI. CONCLUSIONS

In this paper we presented a framework for identifying
confusion in textual comments and also analyzed whether con-
fusion can be reasonable recognized by humans and automat-
ically. The agreement among the raters shows that confusion
can be indeed recognized by humans. Furthermore, confusion
identification in inline comments has been shown to be more
a difficult task than in general ones. We believe that is due to
inline comments usually containing less information and also
being more context dependent than the general comments as
the former ones are directly related to certain parts of the code.

We construct the gold standard set of 396 general and 396
inline comments, and evaluate several classifiers. We observe
that models with more specific features are beneficial towards
detection of confusion. Multinomial Naive Bayes presents the
highest recall for both general and inline comments, regardless
of the feature setting. OneR classifier is the best for high
precision for both general and inline comments. However,
to achieve substantial precision and recall, there results are
different for general and inline comments. For the former, the
best classifier is the JRip classifier, and for the latter, the best
one is the Logistic classifier.

As the future work we plan to increment our model with
the other categories from our framework and then train new
classifiers. Thereafter, through statistical modeling and devel-
oper surveys we plan to study the reasons for confusion in
code reviews, as well as the impact of confusion on the code
review duration and outcome.
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