
Towards a generic framework
for analyzing C++ in Rascal

Rodin T.A. Aarssen
CWI Amsterdam, and

Eindhoven University of Technology
The Netherlands

Rodin.Aarssen@cwi.nl

Jurgen J. Vinju
CWI Amsterdam, and

Eindhoven University of Technology
The Netherlands

Jurgen.Vinju@cwi.nl

Abstract—Maintenance of legacy software is often a costly
task. Software analysis tools can help a lot by providing insight
in existing code. However, for C++, this tooling often doesn’t
give satisfactory answers. In this extended abstract, we introduce
ClaiR, our generic C++ analysis framework we built on top of
the meta-programming language Rascal.

Index Terms—Reverse engineering, Rascal, C++

I. INTRODUCTION

A legacy software system is a piece of software that has had
a significant lifetime. This means that it has been developed
for a long time, by many people, and with programming
paradigms changing over time. In practice, this generally
leads to software systems that are unnecessarily complex, and
therefore hard and expensive to maintain. In industry, it is
often not an option to start over with a fresh system, as a lot
of implicit knowledge and business logic is encoded in the
legacy system.

This paper presents our ongoing work towards an analysis
framework for C++ in Rascal.

A. Motivation

We recently started the MERITS (Model Extraction for
Re-engIneering Traditional Software) project, in which we
investigate how we can compare and combine software models
created using active learning with models created using static
analysis. In the project, our focus is on the extraction of the
latter type of models. In order to obtain these models, we need
a more abstract view on software than the code itself. To this
end, we created ClaiR (C language analysis in Rascal)1 [1],
which serves as a front-end plugin for the meta-programming
language Rascal. Combining ClaiR and Rascal, we can create
abstract syntax trees (ASTs) from source code, which serve as
a starting point for language analysis and model extraction.

We chose to use Rascal [7] as an analysis platform, because
it allows us to generalize the project’s problem setting and
lay a foundation for C++ analysis in general. Furthermore,
it allows us to reuse Rascal functionality that has proven
to be effective for program analysis of e.g. Java and PHP
code [6], [8].

1https://github.com/cwi-swat/clair

One of the main goals of ClaiR is to provide better IDE
support for C++, for instance by providing visualization, and
performing static analysis on source code. Also, we want to
create a framework in which software engineers can easily
write their own code analysis tools.

B. Requirements

The C++ language comes in many variants. ClaiR has
been designed not to be specifically aimed towards one of
those flavors. In particular, we want to provide support for
the extensions that have been added to the language in the
Microsoft Visual C++ compiler, as this compiler is widely
used in industry.

One of the goals of ClaiR is that its representation of
the code still resembles the original code; in this way, the
ASTs created by ClaiR are an intuitive abstraction of the
code. Additionally, we require that manipulation of and data
extraction from the ASTs can be performed in an intuitive –
mathematical – way.

C. Types of analyses

ClaiR’s ASTs are the starting point for code analysis;
depending on the question, many views on the code could
be generated, such as call graphs, control flow graphs, and
data flow graphs. Using and combining these views can then
provide an answer to the question.

II. ARCHITECTURE AND FEATURES

Rascal [7] is a meta-programming language, aimed at soft-
ware analysis and transformation. It is a functional language
– yet syntactically, it supports many imperative constructs –
based on term rewriting and relational calculus primitives. In
ClaiR, we defined an abstract data type to represent C++
code in Rascal. At the time of writing, it consists of 339
constructors over 10 data types. For instance, the constructor
multiply(Expression lhs, Expression rhs) is
the abstract representation of a multiplication in the source.

ClaiR does not include its own C++ parser; instead, it reuses
Eclipse’s C++ Development Tooling (CDT)2 to parse source
code. We chose CDT as our external parser, because it has an
abstract representation that still resembles the original source

2https://www.eclipse.org/cdt/

1

Fig. 1: The architecture of ClaiR. The grey boxes represent the involved artifacts. The connecting arrows are labeled with the name of the software that
handles the transformation, and the implementation language. At the time of writing, the parts in the dark blue box have not yet been (fully) implemented.

code. This is in contrast with compiler front-ends, which are
more oriented towards a lower-level internal representation.
CDT has been used for code refactorings [5], which gives
us confidence that it is suitable for other analyses as well: for
refactoring, a detailed view of the code is necessary to perform
semantics-preserving code transformations.

We will now elaborate on ClaiR’s architecture, which is
depicted schematically in Fig. 1.

This process yields a Java object containing, among other
things, CDT’s abstract view of the source code under analysis.
Then, ClaiR’s adapter takes this Java object and transforms it
to a Rascal object. More specifically, it returns an AST, which
is an instance of the data model we described earlier. This
representation is the basis for further analysis.

There are various reusable intermediate representations pos-
sible at this point. For instance, one could extract a call
graph or a control flow graph [3]. Combining several of these
intermediate results allows the user to answer questions about
the code. Currently, call graph extraction is implemented in
ClaiR.

A. Features

This section summarizes the key features of ClaiR.
Name resolution ClaiR performs name resolution for every

name encountered in the source code. This means that
every use of a name can be linked to its declaration, and
vice versa.

Type resolution For every expression, ClaiR resolves the
type of the expression.

Traceability Every node in a ClaiR AST has an attribute
containing the original source location it corresponds
with.

Include resolving If possible, ClaiR resolves the include
directives that are present in the source code. This is
instrumental for correct name resolution.

Macros ClaiR handles macros in their expanded form. This
ensures that the syntax of the code under analysis is not
invalidated by the use of macros, e.g. by hiding curly
braces under a macro definition.

Visualization ClaiR has some IDE-integrated visualization
features. By selecting a piece of code in an Eclipse editor,

a user can generate the corresponding AST in text, or
generate a visual representation of that AST.

Pattern matching The underlying platform Rascal provides
strong pattern matching functionality. Because ClaiR’s
ASTs are Rascal objects, this functionality can also be
used on ClaiR ASTs. Pattern matching is a very powerful
technique for e.g. detection of design patterns and code
smells.

Relational algebra Rascal contains the relational model M3,
which is a general model for code analysis in Rascal [4].
An M3 model contains several relations that describe
certain properties of the source code; using relational
algebra, these relations can be combined to extract data
from the model. ClaiR implements the M3 model for
C++.

Not dialect-specific We want ClaiR to be a generic frame-
work for analyzing C++. Therefore, we do not want it
to be tied to a specific dialect of C++. Specifically, we
want ClaiR to support Microsoft-specific additions to the
language. For this, we have adapted CDT’s parser to add
support for these constructs.

III. DEMONSTRATION

For a demonstration of ClaiR’s capabilities, let’s consider
the piece of C++ code from Listing 1, which calculates the fac-
torial of a positive integer. In Listing 2, the AST as produced
by ClaiR’s parsing and adapting is given. To preserve space,
the type resolution and physical source location attributes are
omitted. The AST does show the results of name resolution:
every occurrence of the name constructor comes with a decl
attribute. This attribute, with a URI-like syntax, is the internal
representation of the corresponding name. An example of
ClaiR’s visualization features is shown in Fig. 2, which is
a visual encoding of the return argument of the code from
Listing 1.

int factorial(int n) {
return n<=1 ? 1 : n * factorial(n-1);

}

Listing 1: Example C++ code.

2

functionDefinition(
declSpecifier(
integer()),

functionDeclarator(
name("factorial"),
[parameter(

declSpecifier(
integer()),

declarator(
name("n"),
decl=|cpp+parameter:///factorial(int)/n|))],

decl=|cpp+function:///factorial(int)|),
compoundStatement(
[return(

conditional(
lessEqual(

idExpression(
name("n"),
decl=|cpp+parameter:///factorial(int)/n|),

integerConstant("1")),
integerConstant("1"),
multiply(

idExpression(
name("n"),
decl=|cpp+parameter:///factorial(int)/n|),

functionCall(
idExpression(
name("factorial"),
decl=|cpp+function:///factorial(int)|),

[minus(
idExpression(

name("n"),
decl=|cpp+parameter:///factorial(int)/n|),

integerConstant("1"))]))))]))

Listing 2: ClaiR AST of the code from Listing 1.

Fig. 2: Visualization of part of the AST from Listing 2.

IV. CONCLUSION

Code analysis tooling is essential in modern software engi-
neering. In this extended abstract, we have introduced ClaiR,
which lays the foundation for a static analysis framework
for C++. With ClaiR, we have created a platform on which
software engineers can create their own code analysis tools
for C++. ClaiR supports pattern matching on its ASTs, and
supports code analysis with relational algebra.

A. Future work

ClaiR’s ASTs are lossy in the sense that the whitespace and
comments from the original source code are not represented.
We aim to add support for lossless AST creation in the future,
to make it possible to fully regenerate the original source code
from ClaiR’s syntax trees. Likewise, we aim to encode whether
or not an AST node originates from a macro expansion.

Currently, ClaiR can deliver an M3 model and a call graph
from source code. We aim to provide more analysis algorithms
for ClaiR, and specifically, we will work towards extracting
actions models from code.

At the moment, pattern matching on abstract patterns is a
rather tedious procedure, as it requires the programmer to ex-
actly type in the patterns. As (nested) patterns can grow in size
fairly quickly, this is an error-prone task. Therefore, we want
to provide pattern matching on concrete syntax [2], [9], [10].
In this situation, a user can provide actual C++ code as
a “pattern”, and match that with an AST. This abstracts
away from the abstract representation, and will make pattern
matching more accessible. As a corollary, implementing this
in Rascal will make concrete pattern matching available for
all languages in Rascal using an external parser.

REFERENCES

[1] R. Aarssen, “C language analysis in Rascal (ClaiR), Rascal plugin,”
Sep. 2017. [Online]. Available: https://doi.org/10.5281/zenodo.891122

[2] A. Aasa, K. Petersson, and D. Synek, “Concrete syntax for data objects
in functional languages,” in Proceedings of the 1988 ACM conference
on LISP and functional programming. ACM Press, 1988, pp. 96–105.

[3] A. Aho, R. Sethi, and J. Ullman, Compilers. Principles, Techniques and
Tools. Addison-Wesley, 1986.

[4] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer,
and J. J. Vinju, “M3: A general model for code analytics in Rascal,” in
2015 IEEE 1st International Workshop on Software Analytics (SWAN),
March 2015, pp. 25–28.

[5] E. Graf, G. Zgraggen, and P. Sommerlad, “Refactoring support
for the C++ development tooling,” in Companion to the 22Nd
ACM SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion, ser. OOPSLA ’07. New York,
NY, USA: ACM, 2007, pp. 781–782. [Online]. Available: http:
//doi.acm.org/10.1145/1297846.1297885

[6] M. Hills, P. Klint, and J. Vinju, “An empirical study of PHP feature
usage: A static analysis perspective,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis, ser. ISSTA
2013. New York, NY, USA: ACM, 2013, pp. 325–335. [Online].
Available: http://doi.acm.org/10.1145/2483760.2483786

[7] P. Klint, T. van der Storm, and J. Vinju, “Easy meta-programming
with rascal,” in Proceedings of the 3rd International Summer School
Conference on Generative and Transformational Techniques in Software
Engineering III, ser. GTTSE’09. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 222–289. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1949925.1949932

[8] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of Java reflection: Literature review and empirical study,”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 507–518. [Online]. Available: https://doi.org/10.1109/ICSE.2017.53

[9] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin,
LISP 1.5 Programmer’s Manual. Cambridge, Mass.: The MIT Press,
1966.

[10] M. Sellink and C. Verhoef, “Native patterns,” in Proceedings of the Fifth
Working Conference on Reverse Engineering, M. Blaha, A. Quilici, and
C. Verhoef, Eds. IEEE Computer Society Press, 1998, pp. 89–103.

3

