
An Empirical Study of Popularity and Quality in
NPM Packages

Ahmed Zerouali
Email: ahmed.zerouali@umons.ac.be

University of Mons
Bitergia

Abstract—Software systems, and open source software in
particular, often leverage on libraries to reuse functionalities.
Such libraries are readily available through software package
management systems like npm for JavaScript. However, devel-
opers often struggle to identify the most appropriate library
that fits their needs, due to huge amount of available packages,
often with similar functionalities. In this paper, we empirically
study the relationship between quality and popularity in a large
dataset of 308k npm packages whose metadata was extracted
from two open source datasets: libraries.io and npms.io. We found
only a weak relation between popularity and quality. We also
found the package popularity in terms of community interest
to be moderately correlated with the package’s usage by other
repositories. We observed that maintenance effort (i.e., commit
and release frequency and, opening and fixing issues) has little
impact on package usage popularity.

I. INTRODUCTION

In software systems, and open source software systems in
particular, reusing code provided by external libraries is widely
accepted as common practice by software developers. It allows
them to reuse important and often complex functionality that
these libraries offer, rather than needing to implement it from
scratch.

In order to make external libraries available and easy to use,
most of the programming languages come with at least one
software package manager, such as the Node Package Manager
(npm) for JavaScript packages. These package managers auto-
mate the distribution, installation and upgrading of thousands
of different software packages.

If similar functionalities are provided by different packages,
it is not always easy for developers to select the most appro-
priate package for their needs. Should one choose the most
popular package? Should one prefer packages that have higher
code quality, more tests and less unresolved issues? Should one
avoid packages with less, or less active, contributors? Should
one avoid packages that have too many dependencies?

In this empirical study, we focus on analysing the relation
between software popularity and software quality of pack-
ages in a package-based software distribution. We will target
JavaScript/Node.Js packages in npm because of its widespread
use, and because it is by far the biggest package manager
in terms of number of hosted packages (over 500k packages
as of October 2017). Because of its size, it becomes much
more likely to find “similar” packages, justifying the need for
concrete guidelines for selecting the most appropriate package.

II. RESEARCH QUESTIONS

In this paper we focus on the following research questions:
RQ1: Is there a relation between package quality control

and package popularity? Given the availability of different
packages providing similar functionalities, most developers
often struggle to choose the right one with a good quality
and they find themselves influenced by popular choices [2].
With this question we aim to verify if there is a quantitive
evidence of a relation between quality and popularity.

RQ2: Is there a relation between the maintainability and
popularity of packages? Software maintenance is an integral
part of a software life cycle because it eases the understanding
and enhancement of the software. With this research question
we aim to study the possible relations between maintenance
effort and popularity.

III. METHOD

In this section, we motivate the selection of the packaging
system and present the data extraction process.

A. Choice of Package Manager

In order to study popularity and code quality in software
packages, it is important to choose a relevant software package
manager. For the purpose of our study, we would like to
have a popular ecosystem [3] that involves a big and very
active developer community, and a large number of software
packages that is increasing over time. The most obvious choice
is to focus on a package manager for a popular programming
language.

JavaScript is one of the most used programming languages
and the most popular one on GitHub1, the world’s leading
software development platform [1]. Thanks to a very active
community and to popular frameworks that can be used to
create software applications, such as AngularJS and ReactJS
in the client-side and Node.Js in server-side, JavaScript de-
velopers can either write projects that can be used as regular
software applications, or software packages that are intended
to be reused (through explicit dependencies) by other projects.

The npm (Node Package Manager) has grown exponentially,
and is now the largest package registry in the world. It is the

1For more information on the popularity of programming languages in
GitHub, see http://githut.info and https://langpop.corger.nl

official package manager for Node.Js and it contains more than
523,000 packages2. Thus, we believe that npm packages are
good candidates to focus on. Figure 1 shows the evolution of
the number of newly created software packages that are still
in npm, and the number of their releases. The packages and
releases available in npm at the time of the data extraction
were 516K and more than 3,5M respectively.

2011 2012 2013 2014 2015 2016 2017
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
le

as
es

×106

releases

0

1

2

3

4

5

6

pa
ck

ag
es

×105

packages

Fig. 1. Evolution of the cumulative number of newly created software
packages (right y-axis) and package releases (left y-axis) in npm

B. Data Selection and Extraction
To extract data about npm packages, in particular with

respect to package quality and popularity, we combined in-
formation from two different data sources.

libraries.io3 is an open source repository containing meta-
data of package dependencies extracted from 23 package
managers. The dataset is available as open access under the
CC Share-Alike 4.0 license4. Based on the dataset of 15 June
2017 we extracted the following information for each npm
package: the package name and size, the number of packages
depending on it, the number of applications/repositories other
than packages using this package, and the status, which is the
attribute that describes if a packages is deprecated or not. Data
from this source was basically about the age, size, status and
popularity in terms of usage.

npms.io5 is an online open source search engine for npm
packages. For each package, the engine computes a score
(i.e., a percentage) for the package’s popularity, quality and
maintenance.6 To calculate these scores, many metrics are
taken into consideration; these are summarised in Table I.
Based on the names of all npm packages extracted from
libraries.io, we searched in npms.io the recent available in-
formation concerning these scores, as well as the number of
open issues for each package.

Table II presents a summary about the metrics extracted
from libraries.io and npms.io. After combining the data from
both sources, from the 516,705 packages on libraries.io, we
found 308,777 of them also on npms.io. We observed that all
packages on npms.io are hosted on GitHub, which is of great
value for our research since our purpose is to analyse packages
that evolve in the same technical environment.

Table III presents a summary about the considered ecosys-
tem and the used dataset.

2http://www.modulecounts.com
3www.libraries.io
4https://zenodo.org/record/808273
5www.npms.io
6See https://npms.io/about

TABLE I
SUMMARY OF THE METRICS USED BY npms.io TO CALCULATE SCORES

Score Characteristic Metric

Popularity

community Interest

number of stars
number of forks
number of subscribers
number of contributors

downloads number of downloads
downloads acceleration

dependencies number of dependents

Quality

carefulness

has license
has readme?
linters configured?
has .gitignore and friends?
changelog

tests
has tests
test coverage %
build status

health # outdated dependencies
outdated deps with vulnerabilities

branding has badges?
has custom website?

Maintenance

commits commit frequency
most recent commit

releases release frequency
issues ratio of open vs total issues

time to close issues

TABLE II
SUMMARY OF THE METRICS EXTRACTED FROM libraries.io AND npms.io.

Source Metrics

libraries.io
age, keywords, releases,

dependent repositories, dependent packages
dependencies, size, status

npms.io popularity,
quality , maintenance

TABLE III
DESCRIPTIVE STATISTICS OF THE CONSIDERED DATASET

Characteristics NPM
URL npmjs.com
Language JavaScript
Packages from libraries.io 516,705
Packages from libraries.io in npms.io and GitHub 308,777
Extraction date 15 June 2017

IV. FINDINGS

A. Is there a relation between package quality control and
package popularity?

• Package community interest and its usage by other repos-
itories, are moderately correlated.

• 38% of all packages are not used in any package or other
repository.

• The most hot topics in npm are related to react, jquery
and test.

• Most packages are not popular but most of them have
good quality control.

• There is no correlation between package branding quality
and popularity.

• npm developers care more about the basics of a package,
such as the README, license, stability, then tests.

• Software quality and popularity, are weakly correlated.

B. Is there a relation between the maintainability and popu-
larity of packages?

• 48% of packages have zero or disabled issues in their
repository.

• Maintenance quality has less impact on the package usage
popularity.

• Packages that have frequent commits have also frequent
releases.

• Package with zero or disabled issues have less number
of releases and their size is smaller than the size of the
other packages.

V. THREATS TO VALIDITY

We used libraries.io and npms.io to measure various quan-
titative metrics related to quality, popularity and maintenance.
Our measurements are only as accurate as these two tools,
the motivation and full derivation of their metrics is beyond
the scope of this paper. However, given that we checked the
reliability of data manually for few packages and that they both
continuously analyze the npm ecosystem, we feel confident
about their metrics and measurements.

Our results may not be generalizable to other JavaScript
packages, or other packages that are published in other soft-
ware package managers.

The particular metrics that we have chosen for carrying out
the study may bias the results. Our results could be different
when considering and relying on different metrics that have
been measured in a different way for quantifying quality or
popularity.

VI. DISCUSSION AND FUTURE WORK

We quantitatively analyzed the quality of development and
popularity in terms of usage and community interest of a large
number of npm packages, using metrics provided by two open
source data platforms libraries.io and npms.io. We found that
most npm packages are not popular, however, they have good
quality control. This latter metric is weakly correlated with
popularity.

We also analyzed the relationship between maintenance and
popularity and we found that maintenance quality has less
impact on the package usage. Packages that have frequent
commits have also frequent releases.

As future work, we would like to extend our study to other
ecosystems, such as PyPI, to compare and better understand
the relation between popularity and quality across ecosystems.

ACKNOWLEDGMENT

This research is part of SENECA7 and SECOHealth project.

REFERENCES

[1] H. Borges, M. T. Valente, A. Hora, and J. Coelho. On the popularity of
github applications: A preliminary note. arXiv preprint arXiv:1507.00604,
2015.

7http://senecaproject.github.io

[2] M. J. Lee, B. Ferwerda, J. Choi, J. Hahn, J. Y. Moon, and J. Kim.
Github developers use rockstars to overcome overflow of news. In CHI’13
Extended Abstracts on Human Factors in Computing Systems, pages 133–
138. ACM, 2013.

[3] D. G. Messerschmitt, C. Szyperski, et al. Software ecosystem: under-
standing an indispensable technology and industry. MIT Press Books, 1,
2005.

