From Python to Pythonic:
A study of Python idioms

José Javier Merchante
Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain

Email: jj.merchante@gmail.com

Abstract

Our study is focused on developing a
tool that can help beginners and advanced
programmers to make their Python code
more legible and readable with the use of
Pythonic idioms, that is, using typical ways
to accomplish some tasks. The study of
Python idioms could give us a quantitative
measure about how are used, but we also need
a qualitative measure to obtain information
on what the python community think about
the use of this structures and also improve
the tool and do more research on this topic.
We are now making interviews to Python
programmers and we are going to show the
procedure, the results of the interviews and
also a brief overview of the actual project.

1 Introduction

Every programming language has its culture and usual
way to code a task; that’s what programmers usually
call idioms [2]. For an advanced programmer in a given
language there is always a better way of accomplishing
a task that is more suitable in that language (e.g.,
it improves its readability) instead of writing the
implementation it replaces in the same way as in
another language.

Python is a programming language that in the last
years has grown a lot. For this language there are
many tools that check the code against very common
style conventions (such as the ones specified in the
PEP-8'), but there is to our knowledge no tool that
identifies what idioms a program contains, or that

IPEP 8 — Style Guide for
https://www.python.org/dev/peps/pep-0008/.

Python Code:

Gregorio Robles
GSyC/LibreSoft
Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain
Email: grex@gsyc.urjc.es

helps improving your Python code making it more
idiomatic (commonly referred to as more Pythonic [6]).
Even though no such tool exist, the Python community
is concerned a lot about these issues and many books,
articles, talks and references on how to make your
Python code more Pythonic can be found.

Many Python books and web pages explain the
language without including these idioms, and focus
on explaining the language as it would be another
programming language, but with Python syntax. As
an example, the following is correct Python:

colors = ["blue", "red", "yellow"]

for i in range(len(colors)):
print colors[i]

However, even if the code runs and works perfectly,
there is a more Pythonic way of doing it:

colors = ["blue", "red", "yellow"]

for color in colors:
print color

These are some reasons that shows that the Python
code could be better with the use of idioms, but
after all, there isn’t a empirical way to show their
importance in the python code, and thereby we have
to make some interviews to know what the Python
community thinks about all these structures. Also,
this information could be useful to improve the tool
we are developing to help beginners and advanced
programmers to evolve their Python code, making it
more legible, readable, and show them how to write
the task the right, Pythonic way.

2 Interviews in software

research

empirical

Interviews historically have been frequently used to
study human behaviour. The purpose to use them
in empirical studies is to obtain information about a
topic that cannot be measured using only quantitative
methods. However, interviews are a useful method
for data collection but are also very time-consuming
activities because you have to spend time planning the
questions, conducting the interview and analysing the
results.

The most important part of making interviews is
the preparation. All the questions must be very
accurate and focused in the main topic. There is
usually a limited time to ask the interviewees and
sometimes you just have one opportunity to do it,
therefore a previous preparation is really important
in order to collect the most information as possible.

The second most important part of an interview
is how to conduct it. There exist a large amount of
literature about how to do it [4]. Some important
skills are create an atmosphere of trust, not expressing
disagreement with what the interviewee is saying,
letting him talk, paying attention to avoid asking
questions answered and also expressing the questions
clearly among others issues.

And last, but not least, is to analyse the results of
the interview. Good questions and accurate interviews
may show that this part is easier to do, but that does
not mean that it consumes less time. Occasionally, the
interview should be transcribed into text to extract the
information of all the interviewees and merge to know
what they think in general.

3 Phases for the pythonic interview
3.1 Preparation

The interview focuses on getting information about
what people think about Python idioms, which are
the most important, how they cooperate to propagate
them, and how important are in the code.

For the preparation of the interview questions,
we have found in the literature that there are
different types of questions [5]: open-ended questions
for the interviewees to talk freely about the topic,
closed questions for specific details and hypothetical
questions about a situation.

In order to complete the preparation, once the
questions are ready, these should be studied and also
answered by the interviewer to detect repetitions or
the possible lack of information.

In the results sections, you will see the answers
to some of the most relevant questions asked to the
interviewees.

3.2 Interview

The interview duration lasted 11 minutes on average.
All the interviews were recorded in order to pay more
attention to what he was saying and avoid a possible
loss of information.

At the beginning of the interview, we put in context
and inform the interview purposes to the interviewees.
We explain the project we are doing as well as possible
future research.

Some good interview skill [3] are to encourage the
interviewees to talk freely, ask relevant questions, not
repeat answered questions and follow up and explore
interesting topics.

There are also some important notes to take in
the interview, such as python experience, for what
purposes they use python, and also the surroundings
in their work. This information may be a bit personal,
but it could be very important in further analysis.

3.3 Analysis

For subsequent analysis it is very important to
transcribe the records into text. There are some
useful voice-to-text tools, but they are still not very
accurate for interviews or conversation where there
are two or more people talking. Therefore, the
consequent transcript is somehow slow and should be
done by listening multiple times to make an accurate
representation of what we were saying.

4 Results

In this section we show some of the most relevant
questions answered by the interviewees. We can
differentiate the questions in three main groups.
General questions related with the language in general,
specific questions focusing on some details on how
programmers learn python and also relevant social
questions to know how the idioms propagate in the
community.

We have done four interviews to python
programmers with different levels of python, from 1 to
8 years. One of them came from a different language
programming (Java), and could be considered
important due to it is lack of knowledge on python
and how is he learning the idioms. They all come
from companies developing open software.

4.1 General questions

To get started, we asked a question to know how much
they know about python idioms and also to know if we
have the same idea about the definition of pythonic.
One of them found the questions difficult to answer,
he knows a lot about the topic, and summarizing a
definition in a sentence could be difficulty in a first a

approach. They all know the concept, they related the
meaning as write python in less lines, more readable,
improve in some cases the performance in the code and
the use of those structures make python a powerful
language. Some examples they gave were mainly list
comprehensions and decorators.

Other questions have been asked about whether the
pythonic code means that an advanced programmer
has written it. All of them agreed that the more
appearances of idioms you see in the code and varied,
the more pythonista that person should be, because
he should understand the language very well. Some
of them also pointed out that some idioms might
degenerate the python level if aren’t used well, such
as multi-line list comprehensions.

Focused on which phase of learning python you have
to learn the idioms there are different opinions. Some
of them think that you should learn them when you
know all the syntax of python; you are programming
the task as you were in another language, and as time
passed, you should improve the knowledge in python
and hence become a expert in python. On the other
hand, they think that the idioms should be acquired
while learning python, that is, while you are learning
how to make a list, they have to learn also how to do
it in a pythonic way. This debate is also in the Python
books, some of them teach the idioms while you are
learning the language and also most of them do not
mention nor list comprehensions.

There is another question to get details about
how complex the idiomatics expressions are in terms
of reading and implementation. In this question,
the answer is basically the same from all of them,
it depends on your Python level. For beginners
Python programmers, understanding an idiom for
the first time can be difficult, but then it is easier.
Implementing the idioms is a bit more complex in
some situations such as decorators, but in others
like methods from the package ”collections” or ”list
comprehensions” could be easier.

4.2 Specific questions

For the specific questions they tend to response similar
answers. They used to use python idioms as much as
possible because they think that could improve the
readability. Their code has evolved over the time,
when they started programming they didn’t know so
much about pythonic programming, but now they are
using more idioms in their code.

Sometimes, but not frequently, they use to search
in stackoverflow specially, what is the pythonic way to
write a task, they argue that sometimes help them to
learn something new and also improves the readability
of the code writing it in less lines and with a better

syntax.

They also say that they use a IDE and install some
plugins to help them to write more pythonic in terms
of syntax and if there were some plugin to identify
anti-idioms and the possible python alternative, they
will use it everyday.

4.3 Social questions

In the social questions we try to understand how the
idioms get propagated over the community, how do
they learn them and also the advantages of using these
structures in a social aspect.

To the questions how do they learn the idioms, they
affirm that most of them are learnt reading python
code of other people, that is the main way the idioms
get propagated. Some of them affirm that they have
seen some conferences of python with people talking
about what is the pythonic way of coding some tasks,
or how to turn python code to pythonic code. They
admit that haven’t read many python books because
most of them doesn’t show the pythonic way to code
a task and just explain the python syntax.

They think that code in a pythonic way in
interviews or uploading pythonic code to GitHub
increase the opportunity to get hired in a company in
contrast to write the code like you where programming
in another language.

Among them they admit that use to show how to
write more pythonic and some tricks for improving
their code, they review the code before they push to
GitHub and try to improve it to be more readable.

For the Java programmer, he says that python
idioms are very easy to understand, he used to write
python as he was programming in Java, but with the
time, he is learning how to write the pythonic way
because their cowerkers offer him help to improve his
code to be more readable for python programmers.

5 Conclusions

We have obtain information about the interviews but
we have also to obtain more in order to find patterns
and possible differences about what do they think
about python code. This is a work in progress, the
idea is to do about 20 interviews and show a better
results. In general, in these interviews, we can extract
that idioms are necessary for a better code and for
improving the readability. They used to cooperate
between them for obtaining a better code and also
learn a lot from that technique.

6 Work in progress

We are conducting some interviews and also
developing the tool to make the code more pythonic

and therefore make an evolution of it. The benefits of
the pythonic code can be extracted from the interviews
and we are now looking for new participants in order
to obtain more accurate results.

The results of the interviews are contributing to
develop a tool to help python programmer to improve
their code with python idioms.

The application is running over Django, a high level
Python framework that encourages rapid development
and clean, pragmatic design?.

When a user enters his username of GitHub in the
web application, we select his profile repositories in a
first approach and let him introduce others that he has
contributed to. When the repositories are cloned, the
tool filters the Python files looking at the extension or
the first line of code.

Our work in progress is to identify the level of a
user and give a mark about his Python knowledge.
Our first approach is to classify the idioms in three
different levels depending on the difficulty to be learnt.

For example, analysing a previous version of the
tool that extracts Pythonic idioms, we got the mark
that is in figure 1. That is a good mark, but is also
tricky, because in this repository there are test for each
idiom in Python.

PYTHON ANALYZER

Results

‘You know a lot about beginner, intermediate and advanced

Suggestions

There are some idioms that do not appear in the repository. You can click on them for more int
be more pythonic in the future.

formation and improve your code to

Figure 1: Results of 'Pythonic analyser’ repository

We are working on more precise metrics that can be
used to assign a level of Python mastery to developers
and some path to improve his level.

7 Future work

This paper shows work-in-progress in our quest for
finding how idioms are used in Python. In the near
future, we would like to do the following:

e Extend and assess the list of Python idioms. We
would like to have a list of idioms as complete as
possible. These should be evaluated by Python
developers.

2https://www.djangoproject.com/

e There are idioms that are conceptually more
difficult than others. We would like, again with
the help of Python developers, see if we can
classify the idioms by their complexity.

e If idioms are good practices, we have noticed as
well the existence of anti-idioms (similar to the
patterns and anti-patterns idea [1]). We would
like to identify them and see how often they are
used.

e We would like to filter projects by their
importance, first by omitting pet or student
projects (for instance those that have a lifetime
of less than 6 months) and second by giving a
weight to projects by using data from the Python
Package Index (PIP).

e We would like to study how Python idioms get
propagated. This has two perspectives: how
do new Python idioms propagate, and how do
developers learn them.

e Cluster python programmer depending on their
code, like scientific, scripters and software
programmers.

8 Acknowledgements

The work of Gregorio Robles has been funded
in part by the Region of Madrid under project
“eMadrid - Investigacion y Desarrollo de
tecnologias para el e-learning en la Comunidad
de Madrid” (S2013/ICE-2715) and in part by the
Spanish Government under project SobreVision
(TIN2014-59400-R).

References

[1] W. H. Brown, R. C. Malveau, H. W. McCormick,
and T. J. Mowbray. AntiPatterns: refactoring
software, architectures, and projects in crisis. John
Wiley & Sons, Inc., 1998.

[2] J. Coplien. Advanced c++ programming styles
and idioms. In Technology of Object-Oriented
Languages and Systems, 1997. TOOLS 25,

Proceedings, pages 352-352. IEEE, 1997.

3] S. E. Hove and B. Anda. Experiences
from conducting semi-structured interviews in
empirical software engineering research. In 11th
IEEE International Software Metrics Symposium
(METRICS’05), pages 10 pp.—23, Sept 2005.

[4] S. Kvale. Interviews: an introduction to qualitative
research interviewing. Sage Publications, 1996.

[5] S. Merriam. Qualitative Research: A Guide to
Design and Implementation. Higher and adult
education series. John Wiley & Sons, 2009.

[6) G. Van Rossum et al. Python programming
language. In USENIX Annual Technical
Conference, volume 41, 2007.

