
Modular Static Analysis of Actor Programs
Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, Coen De Roover

{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be
Vrije Universiteit Brussel, Belgium

Abstract—Existing static analyses for actor programs ex-
plicitely model all possible execution interleavings. Because the
number of interleavings increases exponentially with the number
of actors and messages exchanged, such analyses scale poorly.
We describe the first modular analysis for actor programs,
that analyzes each actor in separation of each other. This
analysis over-approximate over the diferent interleavings without
explicitly modeling them, rendering it scalable. We demonstrate
its enhanced scalability by comparing the analysis of the Savina
benchmark suite with a non-modular analysis and our new
modular analysis. Our technique succeeds in analyzing all of the
Savina benchmarks in a matter of seconds, while the non-modular
analysis times out on more than half of these benchmarks.
Moreover, we show that the precision of our modular remains
on par with the precision of the non-modular analysis.

I. INTRODUCTION

Actor programs consist of isolated processes, called actors,
that run concurrently to each other and communicate through
messages. At run time, actors can change their behavior, create
an unbounded number of other actors, and communicate actor
references through messages. This results in a possible highly
dynamic topology for actor programs.

Existing static analyses for actor programs explicitely repre-
sent every possible interleaving of concurrent actor execution,
and are therefore limited in scalability. Modular analyses allow
for a scalable analysis, and have been explored in the context
of shared-memory concurrent programs, limited to systems
where the number of processes is fixed and known in advance.
We explore modular analysis for actor programs. Compared
to existing work for shared-memory concurrent programs, we
need to account for dynamic creation of new actors.

The core insight behind our modular analysis is that the
dynamic behavior of an actor is entirely defined by its code
and the set of messages it receives. While the code is known
beforehand, the set of messages received must be inferred
by analyzing other actors. The goal of the analysis at the
level of an actor is therefore to infer the set of created actors
and messages sent to other actors for every possible message
the actor understands. We refer to this analysis as the intra-
actor analysis, an analysis that analyzes one actor in isolation
and infers the interferences generated by this actor. The intra-
actor analysis enables a modular analysis, at the level of the
entire program, to infer the set of running actors and the
set of messages received by each running actor. We refer to
this analysis as the inter-actor analysis, an analysis that uses
information from the intra-actor analysis of a set of actors to
drive the next set of intra-actor analyses on a more complete
set of actors. Repeated iterations of the inter-actor analysis

will achieve a sound over-approximation of the behavior of all
actors in the actor program in a scalable manner.

Our approach infers properties about concurrent actor pro-
grams that are required for tool support for pressing problems in
software engineering such as program comprehension and bug
detection. The inferred properties concern the actors created,
the messages exchanged, and the behaviors changed at run time
—in addition to the traditional data and control flow properties
known from analyses for sequential programs. We demonstrate
that our approach scales beyond the current state-of-the-art,
as the first analysis to analyze the entire Savina benchmark
suite [3] in a matter of seconds, with the same precision.

II. DYNAMIC BEHAVIOR OF ACTOR PROGRAMS

Consider the program in Listing 1, implemented in a
Scheme dialect that supports concurrent actors [4]. The program
computes and displays the factorial of a number.

After the definition of three behaviors through the actor
construct (lines 2, 11, and 16), two actors are spawned
through the create construct: actor fact with behavior
fact-actor (line 20), and actor displayer that displays
the messages it receives (line 21). On line 22 the number
returned by read-integer (assumed non-negative) is sent
to actor fact along with actor displayer, the customer
that will receive the answer that fact computes.

When actor fact receives the compute message with n =
0, it sends 1 as answer to the customer (line 5). Otherwise n , 0,
and fact spawns an actor with behavior customer-actor
(line 6), passing n and fact’s customer as arguments. Actor
fact then sends itself a compute message to compute (n−1)!,
passing along the newly created customer (line 8).

Actors with the customer-actor behavior multiply the
number they receive by the number given at their creation, and
send the result to the customer given at their creation (line 13).

Putting everything together, when fact receives the initial
compute message with number n and customer displayer,
it creates a customer c with n and displayer as arguments,
and computes (n − 1)! by sending a compute message to
itself with n− 1 and c as arguments. When the computation of
(n − 1)! is completed, the result is sent to customer c, which
computes n∗(n−1)! = n!, and sends the result to displayer,
which displays the result on the screen.

Figure 1 depicts the evolution of the actor topology through-
out the execution of this program. We see that the fact actor
creates a chain of customers that propagate and multiply a
value until the computed factorial reaches the displayer
actor.

1 (define fact-actor
2 (actor ()
3 (compute (n customer)
4 (if (= n 0)
5 (send customer result 1)
6 (let ((c (create customer-actor
7 n customer)))
8 (send self compute (- n 1) c)))
9 (become fact-actor))))

10 (define customer-actor
11 (actor (n customer)
12 (result (k)
13 (send customer result (* n k))

14 (become customer-actor n customer))))
15 (define displayer-actor
16 (actor ()
17 (result (v)
18 (display v)
19 (become displayer-actor))))
20 (define fact (create fact-actor))
21 (define displayer (create displayer-actor))
22 (send fact compute (read-integer) displayer)

Listing 1: Program computing the factorial of a user-given
number with actors, adapted from Agha [1].

main

disp

fact

cust(n) cust(n − 1) . . . cust(1)

compute(n, pdisp)

result(1)

result(1)result((n − 2)!)result((n − 1)!)result(n!)

Fig. 1: Evolution of the actor topology during the execution of the factorial program in Listing 1. Plain edges represent actor
creation, and dashed edges represent message sends. When annotated, the dashed edges indicate the message being sent. Actors
denoted by disp and cust respectively denote actors with behaviors displayer-actor and customer-actor. The
dots in the chain of cust actors represent a number of actors that depend on the value of n.

Despite its relative simplicity, this factorial program poses
multiple challenges to static analyses due to its dynamicity.
First, the number of actors created is not fixed nor known
in advance. It depends on user input: n instances of the
customer actor are created. Second, any actor can create
other actors: customer actors are created in the fact actor,
while the displayer actor is created from the main process.
Third, actors exchange messages that contain actor references:
the compute message is sent along with a reference to a
customer. In general, actor programs can exchange messages
that contain primitives such as integers or non-primitive values
such as arrays and closures. Data flow and control flow
information is required to reason about these values.

III. APPROXIMATING DYNAMIC BEHAVIOR

We give here a high-level overview of our modular analysis
on the factorial program of Listing 1. Our approach is devised
in an inter-actor analysis and an intra-actor analysis. Each
iteration of the inter-actor analysis performs one intra-actor
analysis on every actor that has been discovered. The intra-
actor analysis infers the set of messages being sent and the set
of actors being created, which are used in the next iteration.
This process continues until a fixed point is reached, i.e., when
no new message sends nor actor creations are discovered.

We describe the 4 iterations of the inter-actor analysis on
the factorial program in Listing 1. The information computed
by the analysis is summarized in Table I.
Iteration 1.
At the start of the first iteration no actor has been created yet,
so only the main process is analyzed. Because the main process

does not receive any messages, it can be fully analyzed in this
first iteration. The intra-actor analysis deduces that the main
process performs the following actions:

• it creates two actors: one with process identifier pfact
and behavior fact-actor (line 20), and one with pro-
cess identifier pdisp and behavior displayer-actor
(line 21), and

• it sends a message with tag compute and two arguments
(an integer and pdisp) to pfact (line 22).

Iteration 2.
The main process does not have to be analyzed in this iteration,
because it was already fully analyzed and cannot receive
messages. As a message was sent to a newly created actor
pfact in the previous iteration, this iteration now analyzes
the code of this actor with behavior fact-actor and a
mailbox containing the message compute(Int, pdisp). The
body of the processor for message compute is analyzed with
its parameters bound to the given values, and the intra-actor
analysis of actor pfact infers the following actions:

• send the message result(Int) to customer (bound to
pdisp),

• create a new actor with process identifier pcust and
behavior customer-actor, and

• send the message compute(Int, pcust) to itself.
This second iteration also has to analyze pdisp created in

the previous iteration. Because its mailbox is empty, no code
can be executed in this actor and the analysis trivially finds
no new effects. This trivial analysis is omitted from Table I.
Iteration 3.
The third iteration re-analyzes actor pfact because this actor

Pid Behavior Message received Messages sent Actors created

1 pmain main – (pfact, compute(Int, pdisp))
(pfact, fact())
(pdisp, disp())

2 pfact fact() compute(Int, pdisp)
(pdisp, result(Int))

(pcust, cust(Int, pdisp))(pfact, compute(Int, pcust))

3 pfact fact() compute(Int, pcust) (pcust, result(Int)) (pcust, cust(Int, pcust))
pdisp disp() result(Int) – –

4 pcust cust(Int, pcust) result(Int) (pcust, result(Int)) –
pcust cust(Int, pdisp) result(Int) (pdisp, result(Int)) –

Table I: Results of analyzing the program from Listing 1. The # column denote the inter-actor analysis iteration. Columns
Pid and Behavior denote the process identifier under analysis with the given behavior. Column Message received denotes
the message for which the actor is analyzed, and columns Messages sent and Actors created give the effects inferred by the
intra-actor analysis.

received a new message compute(Int, pcust). The behavior
inferred by the intra-actor analysis is now more complete than
in the previous iteration as the following additional behavior
is discovered:

• send the message result(Int) to pcust,
• create a new actor with process identifier pcust and

behavior customer-actor(Int, pcust).
The third iteration also has to analyze pcust with an empty
mailbox, and trivially finds no new effects.
Iteration 4.
In the fourth and final iteration, pfact is not re-analyzed as no
new effects affecting this actor have been discovered. Therefore,
the analysis has reached a fixed point for this actor.

Actor pcust does have to be re-analyzed with a
non-empty mailbox containing result(Int), and with
two possible behaviors: customer-actor(Int, pcust) and
customer-actor(Int, pdisp). As two distinct behaviors can
process the message, the intra-actor analysis also infers two
possible message sends.

The newly sent message result(Int) has already been
taken into account for pcust and pdisp in the previous iteration,
hence the analysis has reached a fixed point and no additional
intra-actor analyses will be triggered.
Analysis result.
After reaching a fixed point, the analysis has discovered every
actor that is created and every message that is sent to or received
by each actor, with information about the values contained in
the messages. Figure 2 depicts the corresponding actor topology
that has been inferred, with the abstract actor states and abstract
message values as expected. Note that the analysis has merged
the unbounded chain of customers into a single abstract actor.

IV. EXPERIMENTAL EVALUATION

To evaluate our approach, we implemented the analysis in
Scala on top of the SCALA-AM static analysis framework [5].
Our implementation is available online1. We also implemented
a concrete interpreter for the input language in Racket. This
enables comparing the results of the analysis with the results
of actually running a λα program.

1https://github.com/acieroid/scala-am/tree/modularactors

main

disp

fact

cust(Int)

compute(n)

result(Int)

result(Int)
result(Int)

Fig. 2: An over-approximation of the actor topology’s
evolution, as inferred by the analysis. Actors denoted by
disp and cust respectively denote actors with behaviors
displayer-actor and customer-actor.

For our experiments, we translated all of the Savina bench-
mark programs into our Scheme-based input language. The
original Savina benchmark programs, written in Scala (with
fragments in Java), range from 102 to 616 lines of code. After
translation into the input language, they range from 17 to 293
lines of code. Benchmarks of this size are beyond what is
currently supported by existing static analyses. To support that
claim, we compare our modular analysis with a non-modular
analysis on the same set of benchmark programs and report
on the results.

We ran each benchmark 1000 times with our concrete inter-
preter, and recorded every actor that is created, every become
statement that is executed, and every message that is received.
We then compared these observations with the information
computed by the analysis. This enables the soundness and
precision of our implementation to be respectively verified and
measured empirically.

A. Performance

To assess performance of our modular analysis, we analyzed
each Savina benchmark program two different analyses.

1) Our implementation of the modular analysis presented
here.

2) Our previous non-modular analysis MBA [4], which pro-
vides several mailbox abstractions that vary in precision.

We used MBASet, that is MBA with the least precise,
set-based, mailbox abstraction, to match the mailbox
abstraction used by our modular approach.

Both analyses were executed under Scala 2.12.2 using Java
1.8.0_102 on a Mid-2014 MacBook Pro with a 2.8 GHz Intel
Core i7 and 16 GB of RAM, and we report on the average
timing of 20 runs after 10 warmup runs. We employed a timeout
of two minutes, after which we denote an analysis time as
infinite (∞). If the analysis completes under 0.01 second, we
denote the analysis time as ε .

Table II lists the results of our experiments, which give a
general idea of the scalability and precision of each analysis.
Although the analyses differ slightly on what is computed, it
is clear that our modular technique scales to the entirety of the
Savina benchmark suite, analyzing it in a matter of seconds.

Modular Non-modular

Benchmark LOC Observed t Spurious t Spurious

PP 27 9 0.03 0 0.11 0
COUNT 29 8 0.02 0 0.09 0
FJT 38 3 0.02 0 0.03 0
FJC 17 2 ε 0 ε 0
THR 43 5 0.02 2 ∞ –
CHAM 81 10 0.05 0 ∞ –
BIG 52 10 0.06 2 ∞ –
CDICT 67 13 0.09 1 21.25 1
CSLL 61 16 0.08 1 ∞ –
PCBB 98 13 0.66 0 102.99 0
PHIL 58 13 0.05 0 ∞ –
SBAR 77 19 0.08 1 ∞ –
CIG 49 9 0.05 1 1.40 1
LOGM 106 15 0.11 7 ∞ –
BTX 61 9 0.08 0 2.50 0
RSORT 60 10 0.03 0 12.98 0
FBANK 143 38 0.15 0 ∞ –
SIEVE 37 8 0.03 0 0.09 0
UCT 145 20 0.85 11 ∞ –
OFL 293 13 5.75 0 ∞ –
TRAPR 72 7 0.08 0 10.24 0
PIPREC 74 8 0.05 0 0.38 0
RMM 113 14 0.45 0 ∞ –
QSORT 69 6 1.41 0 ∞ –
APSP 188 5 1.06 1 ∞ –
SOR 201 12 2.39 31 ∞ –
ASTAR 92 11 0.26 0 ∞ –
NQN 106 11 0.55 0 ∞ –

Fully analyzed 28/28 12/28

Table II: Scalability of our modular analysis and a non-
modular analysis. The LOC column indicate the length of the
benchmarks a Scheme-based input language. Column Observed
reports the number of different elements observed at run-time
(messages received, become statements, actors created) in
1000 runs of a benchmark program. For each analysis, we list
the time taken to analyze each benchmark; and the number
of spurious elements that have been reported by the analysis.
Timings are in seconds where ε represents a time strictly
smaller than 0.01s and ∞ a time out, which was set to two
minutes (120s). The last row shows how many benchmarks
could be analyzed by each analysis within the given time limit.

B. Soundness testing

We provide empirical evidence for the soundness of our
implementation through soundness testing [2]. To this end, we

verified that all information recorded during the concrete runs
of each benchmark program is indeed over-approximated by the
analysis of the same program. No unsound results were reported
for any of the benchmarks, i.e., the analysis implementation
over-approximated every value that was observed during the
concrete executions.

C. Precision

Similar to the empirical verification of soundness, we
measured the precision of the analysis. We compared the
maximum-precision abstraction of the observed values in
concrete runs of the program with the abstract values computed
by the analysis.

Table II reports on the number of spurious values computed
by the analysis. These are values that do not correspond to
any value observed during any concrete execution. We also
produced the same evaluation for our previous non-modular
technique [4], and report on the spurious elements computed
in benchmark programs for which the analysis does not time
out. We observe that on these benchmarks, the precision of
both techniques is identical: the same number of spurious
elements appears in all benchmarks supportedby the non-
modular technique. Overall, the precision of our modular
analysis on the Savina benchmark suite is 84% (317 true
positives and 61 false positives).

The reported numbers are merely an upper-bound on the
number of potential false positives, as they correspond to
elements that have not been observed in any concrete executions
but that may be present in non-explored executions.

V. CONCLUSION

This paper presents a modular static analysis for concurrent
actor programs that scales to all programs in the Savina
benchmark suite. Relying on a sequential analysis to perform
intra-actor analysis, we explain how a complementary inter-
actor analysis uses the effects inferred by the intra-actor analysis
to run the intra-actor analysis on other actors. Eventually, each
actor is analyzed with an over-approximation of its mailbox,
and the whole inter-actor analysis terminates. This yields a
sound analysis that does not explicitely model every possible
interleaving and, unlike existing techniques, scales well.

We evaluated our modular analysis through its implementa-
tion on top of an existing static analysis framework and show
that, unlike non-modular approaches, it supports the entire
Savina benchmark suite. The modular analysis generates few
spurious elements and achieves a precision of 84% with respect
to detecting messages sends, actor creations, and executions
of become statements.

In summary, this paper demonstrates that it is possible to
construct a scalable, sound, and precise analysis for actor
programs. This is achieved by taking advantage of the fact that
actor programs are made of actors that only interfere through
messages. By relying on a sequential analysis for single actors,
we are able to build a modular, scalable analysis for actor
programs.

REFERENCES

[1] G. A. Agha. ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press, 1986.

[2] E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic approaches
for increasing soundness and precision of static analyzers. In Proceedings
of the 6th ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis, pages 31–36. ACM, 2017.

[3] S. M. Imam and V. Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In E. G. Boix, P. Haller, A. Ricci,
and C. Varela, editors, Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized Control, AGERE!
2014, Portland, OR, USA, October 20, 2014, pages 67–80. ACM, 2014.

[4] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover. Mailbox
abstractions for static analysis of actor programs. In P. Müller, editor,
31st European Conference on Object-Oriented Programming, ECOOP
2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages
25:1–25:30. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[5] Q. Stiévenart, M. Vandercammen, W. De Meuter, and C. De Roover. Scala-
am: A modular static analysis framework. In 16th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM
2016, Raleigh, NC, USA, October 2-3, 2016, pages 85–90. IEEE Computer
Society, 2016.

