
Automatic classification of software issues
via code maintainability metrics

Marco di Biase
Software Improvement Group
Amsterdam, The Netherlands

m.dibiase@sig.eu

Magiel Bruntink
Software Improvement Group
Amsterdam, The Netherlands

m.bruntink@sig.eu

Arie Van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.VanDeursen@tudelft.nl

Abstract—Understanding the purpose of software issues is
a challenging problem in software engineering. Even more so
is to automatically detect their goal given some information
about them. Several studies provided techniques to automatically
classify changes using details taken from source code metadata
and issue trackers.

In this work, we investigate if we can classify issues using
source code as our only source of information by extracting
maintainability metrics and computing the differences at issue
level. We use a manually classified dataset of more than 4,000
issues belonging to five Java Open-Source projects. We conduct
an initial evaluation by using these values to train a machine
learning algorithm. We validate our approach first on the dataset
itself, and then we test our approach against a set of issues
extracted from GitHub using GHTorrent.

I. INTRODUCTION

Change classification in software systems is a known prob-
lem as software products continuously evolve and increase
in complexity [1]. Issue classfication is still a responsibility
for the reporter; this is both time-consuming and error-prone.
Reporters, which often are users of the software system,
generally have a shallow understanding of the technicalities of
the software artifact. When something is not correctly working
they file a new issue most likely as a bug. Previous research
back up this claim: Herzig et al. found that more than 40% of
the issues are not classified correctly [2]. This misclassification
can cause a plethora of issues: for instance, a misclassified
issue is correlated with its reassignment [3]. Given a change
for a system, being able to automatically classify its purpose
would provide a real-world benefit for scenarios like the one
just mentioned.

Previous studies already explored the field of automatic
software changes classification. Hindle et al. [4] propose a
technique to categorise large changes into software mainte-
nance categories using a set of features extracted from the
software projects. Thung et al. [5] propose a classification
that automatically puts defects into three categories, part of the
IBM’s Orthogonal Defect Classification, using a mix of data
coming from source code and bug reports. Somasundaram and
Murphy [6] propose an automatic classification which is able
to categorize issues using the bug report textual description.

In spite of the innovative techniques proposed to classify
software changes in a different set of categories, these are done
always using data coming from the issue tracker. The classi-

fication of an issue becomes more challenging in scenarios in
which one would consider having available only code artifacts.
In fact, when issue tracker informations are not available, the
aforementioned approaches show severe limitations that hinder
their applicability. This is the case, for instance, when dealing
with closed source code. Coming up with data relative to
the issue tracker or the versioning system is, in fact, often
unfeasible.

To fill this gap, in this paper we propose a novel approach
on how to classify issues belonging to software products, using
fine-grained differences at issue level in maintainability met-
rics. Firstly, we set our research goal to understand if different
categories of issues show differences in maintainability metrics
when analysing their fixes. In addition to that, we use the
resulting dataset to evaluate how effectively maintainability
metrics can be used to automatically classify issues in software
projects. This approach can provide an abstraction relatively to
the classification of issues by using only source code, without
relying on any data coming from the issue tracker.

Using a manually pre-classified set of issues categorized by
Herzig et al. [2], we set up our study aiming at discovering the
differences in the computed metrics of an aggregated change-
set (i.e., the the set of commits that fix an issue, aggregated
by their source code modifications). We analyse more than
2,000 issues belonging to five popular and widely studied Java
Open-Source projects. We train a Machine-Learning algorithm
to automatically classify these issue, using the aforementioned
metrics as features. Then, after evaluating the performances of
various approaches, we seek to externally validate our findings.
By extracting the same maintainability metrics from other
issues belonging to Java Open-Source projects on GitHub, we
estabilish the confidence level that our approach has when
assessing the performance of the classificator.

II. RESEARCH METHOD

This section defines the overall goal of our study, motivates
our research questions, and outlines our research method.

A. Research Questions

The ultimate goal of our study is to understand the primary
purpose of aggregated code changes that are fixing an issue,
given only its source code. We define aggregated code changes
as the set of commits that fix an issue, aggregated by their



source code modifications. The challenge is that we do not
use description messages or any of additional info regarding
these changes.

Our analysis of past literature that studied automatic classi-
fication of code changes provides insight as how to categorise
these in maintenance tasks [4]. However, such studies make
use of a plethora of informations that are not strictly related to
the source code itself (i.e., author identity, word distribution,
etc.). Therefore, the first research question that we aim to
answer is is:

RQ1. Can aggregated source code changes be automat-
ically classified based on maintainability metrics?

Given the relevance that this has for our final purpose, the
natural next step is to test the automatic classification. For
this reason, we research the extent of the approach described
in RQ1 in classifying aggregated code changes according
to our strategy. The accuracy of an automatic classifier is
an essential step to provide real-world benefit. Our second
research question is then:

RQ2. Based on the Machine Learning approach, is
the automatic classification of aggregated code changes
effective?

B. Selection of subject systems

To conduct our study, we limited our scope to Open-Source
project written in Java. This is because we want a narrower
sample to gather more meaningful results. Our hypotheses
here is that different languages might have differences in
metrics, thus introducing some level of inconsistency. In fact,
Zhang et al. [7] reports that the most influential context factor
that impacts the distribution of maintanability metrics is the
programming language.

The work by Herzig et al. [2] provides a reliable dataset of
manually classified issues in five different Java projects.1 We
filter out only the issues belonging to the categories:

• BUG, that classifies corrective maintenance tasks
• RFE, that classifies adaptive maintenance task that im-

plement a new functionality
• IMPROVEMENT, that classifies perfective maintenance

that improve an existing functionality
This is because the total number of issues for each category

not belonging to these three are far outnumbered. Using this
predefined dataset we build the aggregated code changes that
fix each issue. Using the log of commit messages provided
by the version control system, we filter data using the unique
issue identifier. Commits that contain this id are added to our
set of issues. Our dataset consist of 4,346 issues: 2,230 are
classified as BUG, 1,071 are classified as IMPROVEMENT
and 1,045 are classified as RFE.

C. Extracting aggregated changesets from classified issues

Once we select the sample of issues with their aggregated
code changes, we extract the maintainability metrics. To this
end, we use Software Improvement Group (SIG) System

1https://www.st.cs.uni-saarland.de/softevo/bugclassify

Analysis Toolkit (SAT). SAT is a source code analysis tool
that retrieves maintainability metrics of a system given its
codebase. Metrics are based on the SIG Maintainabilty Model,
and maintainability measurement are compliant to the ISO/IEC
25010 standard [8].

To gather all the metrics we checkout the projects source
code from their git repository. For each issue in our dataset,
given the commits that fix that issue, we extract the maintain-
ability metrics.

D. Automated classification of source code maintainability
metrics

In the first research question we set to investigate to what
extent and with which accuracy source code maintainability
metrics can be used to automatically categorize aggreagated
software changes. To this end, we use automatic classification
techniques that are capable of extracting common features
given the differences between categories.

We set the detail of our delta to file level, but then we
aggregate our results at issue level. In fact, our final purpose
is to classify what we have defined as the aggregated code
changes defined in Section II-A.

Having a large dataset to answer RQ1 (comprising more
than 4,000 issues over five Java Open-Source projects), we
make use of supervised machine learning techinques to build
the classificator. In particular, we tested two different classes
of supervised classifiers: (1) probabilistic classifiers, such as
naive Bayes or naive Bayes Multinominal, and (2) decision
tree algorithms, such as J48 and Random Forest. These classes
make different assumptions on the underlying data, as well as
have different advantages and drawbacks in terms of execution
speed and overfitting.

E. External validation of our approach
To build an external validation set, our source of data is

GHTorrent [9], a dataset that mirrors the content of GitHub,
one of the most popular host for Open-Source software. We
select only Java systems that: 1) are not forked from other
projects 2) have at least 50 stars 3) have at least 10 issues 4) the
issues have at least one commit referenced . This filtering
choice is to discard small-scale projects that might not be
representative for our target, as well as to remove issues that
have no reference to any commit or activity. We extract 1847
projects and 222,034 issues, that we random sample to gather
a significant set of issues. We set a range of systems, rather
than the number of issues, as variable to use for the sampling.
This is because results in the sample sets give a better accuracy
when sampling issues from a limited set of systems. Moreover,
this allows to speed up the metric extraction phase.

III. CONCLUSIONS

In our proposed research talk, we plan to discuss about
our work on automatic issue classification using source code
maintanability metrics. Through our presentation, we would
like to show our first results and discuss with the audience with
the goal of gathering useful feedback and discuss potential
improvement and future work.

https://www.st.cs.uni-saarland.de/softevo/bugclassify


REFERENCES

[1] M. M. Lehman. Laws of software evolution revisited, pages 108–124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[2] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature:
How misclassification impacts bug prediction. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 392–
401, Piscataway, NJ, USA, 2013. IEEE Press.

[3] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan
Murphy. Not my bug! and other reasons for software bug report
reassignments. In Proceedings of the ACM 2011 conference on Computer
supported cooperative work, pages 395–404. ACM, 2011.

[4] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. Automatic
classication of large changes into maintenance categories. In 2009 IEEE
17th International Conference on Program Comprehension, pages 30–39,
May 2009.

[5] Ferdian Thung, David Lo, and Lingxiao Jiang. Automatic defect catego-
rization. In Reverse Engineering (WCRE), 2012 19th Working Conference
on, pages 205–214. IEEE, 2012.

[6] Kalyanasundaram Somasundaram and Gail C Murphy. Automatic cate-
gorization of bug reports using latent dirichlet allocation. In Proceedings
of the 5th India software engineering conference, pages 125–130. ACM,
2012.

[7] Feng Zhang, Audris Mockus, Ying Zou, Foutse Khomh, and Ahmed E.
Hassan. How does context affect the distribution of software maintainabil-
ity metrics? In Proceedings of the 2013 IEEE International Conference
on Software Maintenance, ICSM ’13, pages 350–359, Washington, DC,
USA, 2013. IEEE Computer Society.

[8] Iso/iec 25010:2011. https://www.iso.org/standard/35733.html.
[9] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s data from a

firehose. In Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, MSR ’12, pages 12–21, Piscataway, NJ, USA,
2012. IEEE Press.

https://www.iso.org/standard/35733.html

