
Drizzt: Dynamic Analysis of Distributed JavaScript
Applications

Laurent Christophe, Coen De Roover, Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

Email: lachrist—cderoove—wdmeuter@vub.ac.be

I. INTRODUCTION

JavaScript has become ubiquitous on servers and client tiers
of contemporary web applications. Accordingly, the research
community has shown an increasing interest in helping web
developers to understand and maintain JavaScript programs.
The study of a program’s execution, known as dynamic
program analysis, has become a common technique in this
respect [2].

Since the first apparition of JavaScript on the client side
for form validations, the communication between a web
application’s tiers continuously increased to meet industrial
standard in responsiveness. Yet, web developers still have little
choices but to analyze each application tiers separately. The
result of every separated analysis must then be recomposed to
draw a complete picture of the system. Techniques have been
proposed to automate this process for so called “lightweight
dynamic analyses” such as tracing and profiling.

However it is not yet the case for so called “heavyweight
dynamic analyses” such as taint analysis [4]. Taint analysis is
a form of information flow analysis which aims at detecting
flows of data that violate program integrity by marking or
tainting program values. Today, web developers can taint
values on each tier separately, but there is no approach to
preserve the taint during cross tiers communication. Losing
a value’s taint every time it crosses tier boundaries may no
longer be acceptable in today’s application landscape.

In this position paper we introduce DRIZZT an instrumen-
tation platform enabling a wide variety of dynamic analyses
for distributed JavaScript applications. Analyzing a distributed
system requires an analysis which is itself distributed. How-
ever, asking the users of our approach to write distributed
code bears a heavy burden on them as it adds a lot of
accidental complexity. To factor the burden of orchestrating
different parts of the analysis into the approach, we made
the key design decision to provide a non-distributed interface.
In DRIZZT, to analyze distributed JavaScript programs, users
write non-distributed code which can be either synchronous or
asynchronous. The synchronous interface of DRIZZT is actu-
ally identical to the interface of ARAN which is a JavaScript
instrumenter for non-distributed JavaScript programs [1]. In
other words analyses developed for ARAN can be directly
plugged into DRIZZT and be deployed in an distributed context
“for free”.

II. DESIGN DECISION OF THE APPROACH

We now present the main design decisions of our approach
which are motivated by the three important criteria below:

• Reliability: We want the analyses built on top of our
platform to produce reliable results.

• Applicability: We want our approach to be applicable in
a large range of situations.

• Expressiveness: Building new dynamic analyses should
be as easy as possible.

A. Source Code Instrumentation

In general, to perform dynamic analysis one is left with
little choice but to either modify the execution environment or
the program under analysis. On the one hand, instrumenting
runtimes is a powerful approach because it enables analyses
to break barriers imposed by the language specification. On
the other hand, instrumenting source code links the approach
to language specifications which are much more stable than
runtimes. When targeting JavaScript, one must be aware that
there exists many fast evolving engines which are all deployed
on multiple operating systems. To maximize the applicability
of our approach we should support all of these combinations
and not force our users to use one particular version of
an engine for one particular operating system. Opting for
runtime instrumentation in this landscape would poses a severe
maintenance challenge. Therefore, for the rest of this paper
we focus on source code instrumentation which only requires
maintenance against the ECMAScript specification.

B. Centralized Remote Advice

Before moving forward, we introduce two important con-
cepts borrowed from the aspect-oriented terminology: “advice”
and “poincut” [3]. We call advice the code written by the
user of our approach whose execution is interleaved with the
instrumented code. In our approach, the advice is composed
of functions called traps which are called by the instrumented
code. We call poincut the specification that dictates how the
advice must be interleaved with the code of the application
under analysis.

Analyses for distributed programs can directly be built on
top of instrumenters for non-distributed programs. Indeed, as
depicted in Figure 1 (left), such instrumenters can be used
to implement an analysis for distributed programs which is
itself distributed. In this setting, each tier process would run
instrumented code and a local advice written by the user of our

Forward

Instrumented Tier A

Forward

Instrumented Tier B

Orchestrator

Central Advice

Meta Meta

Base

Advice B

Instrumented Tier B

Advice A

Instrumented Tier A

Base
Communication

Peer-to-peer
Meta Communication

Code of the approachCode written by the user Code generated by the approach

Central Agent

Centralized Meta Communication

Fig. 1. Two distribution models: distributed local advices (left) and centralized
remote advice (right).

approach. To draw a complete picture of the distributed system
theses local advices would have to communicate either peer-to-
peer or in a centralized manner. However, this contradicts the
expressiveness criteria because orchestrating these distributed
local advices bears a heavy load for the user of our approach as
it adds a lot of accidental complexity. In short, this distribution
model provides an interface which is too low-level to easily
build dynamic analyses for distributed programs.

As it is often the case when designing frameworks, the
challenge lies in balancing expressiveness and applicability.
We want to factor as much complexity as possible in our
approach yet it should be generic enough to implement many
different dynamic analyses. A radical way of lifting the burden
of analysis orchestration into the approach would be to require
the user to write code that would only be executed on a single
process. This is what depicts Figure 1 (right): the tier processes
still execute instrumented code but, the local advices have been
replaced by code forwarding everything to a central process.
This central process runs an orchestrator who is responsible
for providing a high-level interface to the centralized remote
advice. To validate the applicability of this model we should
make sure that the interesting dynamic analyses that motivated
our work can still be implemented in it.

C. Synchronous Communication for Tier Processes

We now focus on how tier processes should communicate
with the central process. We show in this section through an
example that if this communication is asynchronous it neces-
sarily introduces so called “heisenbugs”. The word “Heisen-
bug” is a pun made from Werner Heisenberg’s name who
discovered that observing a quantum system necessarily alters
its state. In the context of dynamic analysis, a heisenbug
arises when the analysis alters the original program in an
undesired and/or unintended way. So although asynchronous
communication is encouraged by event-driven languages such
as JavaScript, we opted for synchronous communication to
preserve the reliability of our approach.

For the sake of the argument the example is based on
ARAN-style instrumentation but the discussion holds for any
style of instrumentations. We first start in a non-distributed
context with the advice of Listing 1 being applied on the
target program of Listing 2. The advice logs every program
branching while the target program sets a timeout for an
exception to be thrown, performs an if test and finally clears
the timeout before it had the chance to be triggered. Applying

the advice on the target program with the pointcut ["test"]

would involve executing the instrumented code of Listing 3.
We note that the analyzed program behaves as the original
program at the exception of the analysis log which is the only
deviation we should tolerate.

1 var advice = {};
2 advice.test = function (x, i) {
3 console.log("TEST", x, i);
4 return x;
5 };

Listing 1. Advice for logging branching events.

1 function boum () { throw "BOUM" }
2 var id = setTimeout(boum, 0);
3 function clear () {
4 clearTimeout(id);
5 console.log("cleared");
6 }
7 if ("foo")
8 console.log("bar");
9 clear();

Listing 2. boum.js

bar
cleared

1 function boum () { throw "BOUM" }
2 var id = setTimeout(boum, 0);
3 function clear () {
4 clearTimeout(id);
5 console.log("cleared");
6 }
7 if ($traps.test("foo", 19))
8 console.log("bar");
9 clear();

Listing 3. boum.js instrumented with the pointcut ["test"].

TEST foo 19
bar
cleared

Transposing this situation in the centralized remote advice
model would involve executing code similar to Listing 1 in an
other process and possibly on a remote host. The traps invoked
by the instrumented code would then have to perform some
sort of remote communication with this central process. A
priori, event-driven languages such as JavaScript would invite
for asynchronous communication. This can be achieved by
performing a continuation passing style (CPS) transformation
to the program under analysis. In JavaScript specifically, the
only other alternative would be to use the keyword await but
it would have the same outcomes as Listing 4. For ARAN-
style instrumentation, CPS transformation would involve pass-
ing an additional callback parameter which would represent
their continuation i.e., the instructions to be executed after it
returns. However, such transformation may lead to instructions
interleaving that would never happen while executing the
original program. Indeed, as depicted in Listing 4 and Listing
5, regardless which instructions we decide to embed in the
continuation we cannot avoid heisenbugs.

1 function boum () { throw "BOUM" }
2 var id = setTimeout(boum, 0);
3 function clear () {
4 clearTimeout(id);
5 console.log("cleared");
6 }
7 $traps.test("foo", 19, function (res) {
8 if (res)
9 console.log("bar");

10 clear();
11 });

Listing 4. boum.js CPS instrumented with the pointcut ["test"] (clear()
inside the continuation)

BOUM

1 function boum () { throw "BOUM" }
2 var id = setTimeout(boum, 0);
3 function clear () {
4 clearTimeout(id);
5 console.log("cleared");
6 }
7 $traps.test("foo", 19, function (res) {
8 if (res)
9 console.log("bar");

10 });
11 clear();

Listing 5. boum.js CPS instrumented with the pointcut ["test"] (clear()
outside the continuation)

cleared
"bar"

In Listing 4, the timeout having zero delay was triggered
before the traps completion which led to an exception being
thrown. In Listing 5, the function clear was invoked before
returning to the event loop but the logging order was inversed.
In both cases the CPS transformation introduced a heisenbug.
It is important to underline that using other instrumentation
styles would still require some sort of CPS transformation and
eventually would introduce the same heisenbugs.

A principle of importance amongst event-driven program is
run-to-completion, it states that an event must be completely
processed before processing the next one. In other words, no
code can interrupt the current event processing nor can it
resume it later. However this is precisely what CPS transfor-
mation simulates by wrapping subsequent instructions inside
a callback. For our approach to be reliable, it is important that
the analyses built on top of it preserve this principle from the
point of view of the original program. This is why we opted
for synchronous communication on tier processes even though
it introduces waiting time and performance overhead.

Tier
Process
(base)

[null, "foo"]

trap-apply(base#0, null, ["bar"], 8)

get(base#0, "name")

apply(base#0, null, ["bar"])

[null, "foobar"]

[null, "foobar"]

ENTER foo null ["bar"] 8

Central Process (meta)

LEAVE foo "foobar"

Fig. 2. Communication resulting from applying the advice of the Listing 6
to the program of Listing 7 with the pointcut ["apply"].

III. PRESENTATION OF THE PROTOTYPE

We now briefly present our prototype named DRIZZT. First,
we provide an example of communication between the central
process and a tier process then we depict the architectural
overview of our approach.

A. Communication Example

To illustrate the kind of communication carried out by our
approach, we study how the advices of Listing 6 behave when
applied to the program of Listing 7 with the pointcut ["apply"].
This involves executing the instrumented code of Listing 8.
The resulting communication between the central process and
the tier process is depicted in Figure 2. First the apply trap
sends a request to the central process indicating a function
application. This initial request contains the context of the
function application. Of interest is the parameter base#0 which
will be used to create a representation of foo within the central
process. The first action of the remote advice is to retrieve the
name of f by sending a request back to the tier process. Upon
which the tier process replies with the array [null,"foo"].
The first element of that array is a potential error, its second
element is the result of the operation should it succeeds. Upon
receiving this response, the central process logs a message
indicating the beginning of a function application. It then
forwards the application to the actual function owned by the
tier process. The tier process performs the function application
and returns the array [null,"foobar"]. Upon receiving this
response, the central process logs a message indicating the end
of a function application. Finally the central process returns
the same array as the final result of the apply trap.

1 var advice = {};
2 advice.apply = function (f, t, xs, i) {
3 var n = f.name;
4 console.log("ENTER", n, t, xs, i);
5 var r = Reflect.apply(f, t, xs);
6 console.log("LEAVE", r);
7 return r;
8 };

Listing 6. Advice for logging function application

1 function foo (x) {
2 return "foo" + x;
3 }
4 foo("bar");

Listing 7. foobar.js

1 function foo (x) {
2 return "foo" + x;
3 }
4 $traps.apply(foo, null, ["bar"], 8);

Listing 8. foobar.js instrumented with the pointcut ["apply"].

B. Architectural Overview

When developing our prototype, considerable efforts were
made to properly modularize it. As a result, DRIZZT is
built on top of 5 modules which have been decoupled as
much as possible. Some of these modules can be used to
develop analyses for non-distributed applications while the
others orchestrate the distributed part of the analysis. Each

MelfAran

Kalah

Otiluke

DrizztLinvail

Central AdviceCode written by the user

Code of the approach
(reusable in non-distributed context)

Code of the approach
(specific for distributed context)

Module import
Indirect dependency

Fig. 3. The dependency links between the components of DRIZZT.

component of our approach is briefly presented below and
Figure 3 depicts their dependency links.

• OTILUKE: [https://github.com/lachrist/otiluke]: Platform for devel-
opping and deploying JavaScript code instrumenters
which are themselves written in JavaScript. OTILUKE
provides a uniform interface for deploying instrumenters
both on browsers and nodejs.

• ARAN: [https://github.com/lachrist/aran]: JavaScript code instru-
menter for building dynamic analyses fully compatible
with ECMAScript5. In ARAN, an analysis is implemented
as a set of trap functions which are collectively called
advice. Analyses written in ARAN can be deployed on
modular applications with OTILUKE.

• LINVAIL [https://github.com/lachrist/linvail]: JavaScript shadow-
executer built as an ARAN advice which enables tag-
ging runtime values with analysis-related data. Linvail
achieves primitives tracking by swapping them with spe-
cial wrapper objects. The main challenge of this approach
lies in preventing wrappers from escaping to the external
world which would introduce heisenbugs.

• MELF: [https://github.com/lachrist/melf]: Communication library
that supports both non-blocking synchronous requests and
asynchronous requests between JavaScript processes.

• KALAH: [https://github.com/lachrist/kalah]: Synchronous imple-
mentation of far references based on MELF. Unlike other
implementations of far references, KALAH returns actual
values instead of promises. Although this makes them
easier to use, it comes at the price of performance
overhead as only MELF-related event can be processed
while manipulating them.

• DRIZZT: [https://github.com/lachrist/drizzt]: Angular stone of our
approach, this module imports every other components
but LINVAIL which is only needed for value-centric
analyses. After launching a DRIZZT orchestrator the
application tiers must be launched within a DRIZZT
instance to handle code instrumentation and information
forwarding.

IV. CONCLUSION

We have detailed a novel approach to build dynamic anal-
yses for distributed programs. To factor as much accidental
complexity as possible into the approach we centralized code
written by the analysis implementer into a single process. This
main design decision imposes synchronous communication on
the client side to preserve the “run-to-completion” principle
and avoid modifying the behavior of the program under
analysis.

The work we presented in this paper is still in progress.
The next corner stone of our approach consists in making
analyses aware of cross-tier communications. This would
enable analyses to keep track of primitive values as they
are passed between an application’s processes. If tiers are
themselves using far references, this value tracking could be
extended to references as well. Only then, we will fully benefit
from the centralized architecture of our approach.

REFERENCES

[1] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen
De Roover. Linvail: A general-purpose platform for shadow execution of
javascript. In Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, volume 1, pages 260–270.
IEEE, 2016.

[2] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen,
and Rainer Koschke. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. ECOOP’97Object-oriented programming, pages 220–242,
1997.

[4] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. Taj: effective taint analysis of web applications. In ACM
Sigplan Notices, volume 44, pages 87–97. ACM, 2009.

