
Responsive Software Architecture Patterns for Workload Variations: A

Case-study in a CQRS-based Enterprise Application

Gururaj Maddodi

dept. name of Computing and Information Science

Utrecht University

Utrecht, Netherlands

g.maddodi@uu.nl

Slinger Jansen

dept. name of Computing and Information Science

Utrecht University

Utrecht, Netherlands

slinger.jansen@uu.nl

I. EXTENDED ABSTRACT

In any software system, end-users’ workloads vary due to

different requirements and business models. In enterprise

applications, variation is typically caused by the types of
business an organization does, e.g. whether it is a wholesale

business with large numbers of orders from the same customer,
while supermarkets process single orders for each customer,

and each of the orders contains many items. For applications
deployed in the cloud, the current approach is to scale the

hardware as the usage varies . However, it may be profitable to

dynamically adjust the application architecture itself based on
the usage of an end-user organization. We term this responsive

architecture. Responsive architecture can be dynamically
adapted to varying workloads as the components of software

maps directly to business elements of the business domain the
application is serving. This mapping helps to connect the

architecture to the application usage.

In the case-study an architectural pattern called Command-

query responsibility segregation (CQRS) [1, 2] is used. CQRS

is a distributed computing approach, where the system handle s

requests in the form of commands and queries. CQRS pattern

advocates a separation of the request types where the parad igm

is that request to view the state of the system should not change

its current state. Hence, commands are defined as the actions

that create a new state or modify the existing state of the

system, whereas queries are the requests that access and

present the current state. The separation of command-side and

the query-side of the application using CQRS architecture can

provide opportunities to optimize the architecture that is used

to build the states, the storage mechanisms etc. based on the

requirements, hence providing flexibility. CQRS pattern is

often used along with Event Sourcing [2]. In event sourcing the

creation or modification of new states are recorded as events

which are then played back in sequence to obtain the present

state of the system.

The command-side in CQRS approach, handles the requests to

create new state, hence the framework to build the state is

present on the command-side. Also, the mechanism of how the

dependencies that exist in the domain elements are handled on

command-side in the form of aggregates . Aggregates are

concepts from domain-driven design (DDD) [4] that from a

functional and business point-of-view consist of entities which

can be processed together. Formally, the aggregates can be

defined as groups of entities with a defined consistent domain

boundary and dependency structure. An example of such a

domain boundary could be, a person who has an order placed

for purchase, and order contains the items that the person

wants to purchase. Here, the entities person, order, and order

items are all belonging to a single domain boundary of

purchasing, and there is hierarchical structure where the person

first opens an order and then selects the items that he/she wants

to purchase with the order.

Though the aggregates are formed from several entities,

separate aggregates can be formed from individual entities.

Though they are not in same domain boundary, they can still

interact with each other by mechanism of internal events which

are not played back while building the state. There are

advantages as well as disadvantages to each choice, i.e. a single

aggregate containing all the entities or separates aggregates

with entities or a combination of them. Firstly, the creating new

state is much simpler with single aggregate as everything is in a

single boundary and does not need communication as in

separated aggregates, but modification of state need the whole

aggregate state to be built, while with separate aggregates

individual entities can be updated separately. The usage

patterns also involve validations which requires attributes to be

shared between entities, which in case of single aggregates is

simple but complicated in separate aggregate case. Also with

the number of attributes increasing, building state in single

aggregate become very memory intensive, while in separate

aggregate case it being separated can build states only when

needed. In this presentation, we present a case-study of impact

of workload patterns involving combination of validations,

attributes, and entity to entity ratio (e.g. items to order) on

architectural choices in terms of resource utilization.

REFERENCES

[1] Jaap Kabbedijk, Slinger Jansen, and Sjaak Brinkkemper. 2012. A case

study of the variability consequences of the CQRS pattern in online
business software. In Proc. of the 17th European Conference on a ttern
Languages of Programs. 2:1–2:10.

[2] Greg Young. [n. d.]. CQRS and Event Sourcing. Feb. 2010. URl:
http://codebetter. com/gregy oung/2010/02/13/cqrs-and-event-sourcing
([n. d.]).

[3] Martin Fowler. 2005. Event sourcing. Online, Dec (2005), 18

[4] Eric Evans; Domain-Driven Design—Tackling Complexity in the Heart
of Software; 2003, AddisonWesley, ISBN 0-321-12521-5.

